Java Objects and Classes

Object: a structured collection of fields (aka instance
variables) and methods

Class: a template for creating objects

The class of an object specifies
— the types and initial values of its local state (fields)

— the set of operations that can be performed on the object
(methods)

— ohe or more constructors: code that is executed when the
object is created (optional)

Every Java object is an instance of some class

Can (optionally) implement an interface that
specifies it in terms of its operations

Objects in Java

public class Counter ({

}

private int r;

public Counter
r = 0;

}

public int inc
r =r + 1;
return r;

}

public int dec
r=r - 1;
return r;

}

()

()

()

instance variable

{

{

{

constructor

class declaration
class name

methods object creation and use

CIS120 / Spring 2011

public class Main {

public static void

main (String[] args) { constructor

invocation

Counter c¢ = new Counter();

System.out.println(c.inc());

4

} method call

Creating Objects

* Declare a variable to hold the Counter object
— Type of the object is the name of the class that creates it

* |nvoke the constructor for Counter to create a Counter
instance with keyword "new" and store it in the variable

Counter c;
c = new Counter();

e ...ordeclare and initialize together (preferred)

Counter ¢ = new Counter();

Constructors with Parameters

Constructor methods can take
parameters

public class Counter {

private int r;

Constructor must have the same
public Counter (int r0) { name as the class
r = r0;

}

public int inc () {

object creation and use
r =r + 1;

return r; public class Main {

}

public static void constructor

public int dec () { main (String[] args) { invocation

r =r - 1;

} return r; Counter ¢ = new Counter(3);

}

System.out.println(c.inc());

CIS120 / Spring 2011 11

Creating objects

* Every Java variable is mutable

Counter c;
c = new Counter(2);
c = new Counter(4);

* A lJava variable of reference type contains the special value
"null" before it is initialized

Counter c;
if (¢ == null) {
System.out.println ("null pointer");

}

45 Single = for assignment
Double == for equality testing

Using objects

At any time, a Java variable of reference type can contain
either the special value “null” or a pointer in the heap
— i.e., a Java variable of reference type "T" is like an OCaml variable of

type "T option ref"
— The dereferencing of the pointer and the check for “null” are implicitly
performed every time a variable is used

let £ (co : counter option ref) : int = class Foo {
begin match !co with public int f (Counter c) {
| None -> return c.inc();
failwith "NullPointerException" }
| Some ¢ -> c.inc() }
end

* If null value is used as an object (i.e. with a method call) then
a NullPointerException occurs

Encapsulating local state

public class Counter {
private int r;

public Counter () {
r = 0;

}

public int inc () {
r =r + 1;
return r;

}

public int dec () {
r =r - 1;
return r;
}
}

constructor and
methods can
refertor

CIS120 / Spring 2011

other parts of the

program can only access
public static void public members
main (String[] args) {

public class Main {

Counter c¢ = new Counter();
System.out.println(c.inc());

} method call

14

Encapsulating local state

* Visibility modifiers make the state local by
controlling access

* Basically:
— public : accessible from anywhere in the program
— private : only accessible inside the class
* Design pattern, first cut
— Make all fields private
— Make constructors and methods public

(There are a couple of other protection levels — protected and
“package protected”. The details are not important at this point.)

Interfaces

Give a type for an object based on what it does, not
on how it was constructed

Describes a contract that objects must satisfy

Example: Interface for objects that have a position
and can be moved

public interface Displaceable {
public int getX();
public int getY();
public void move(int dx, int dy);

}

No fields, no constructors, no
method bodies!

Implementing the interface

e Aclass that implements an interface provides appropriate
definitions for the methods specified in the interface

* That class fulfills the contract implicit in the interface

public class Point implements Displaceable {

private int x, y; N\\
public Point(int x0, int yO0) {

interfaces

x = x0;
implemented

y = y0;
}
public int getX() { return x; }
public int getY() { return y; }

rnmﬁods public void move(int dx, int dy) {
required to _
, X = x + dx;
satisfy contract _
— 5 Y =yt dy;

}
}

Another implementation

public class Circle implements Displaceable {

private Point center;

private int radius;

public Circle(Point initCenter, int initRadius) {
center = initCenter;
radius = initRadius;

}

public int getX() { return center.getX(); }

public int getY() { return center.get¥Y(); }

public void move(int dx, int dy) {
center.move(dx, dy);

}
} Objects with different Delegation: move the

local state can satisfy | circle by moving the
the same interface center

And another...

class ColorPoint implements Displaceable {
Point p;
Color c;
ColorPoint (int x0, int y0, Color c0) {

p = new Point(x0,y0);
c = c0;
}

public void move(int dx, int dy) {
p.move(dx, dy);
}

public getX() { return p.getX(); }
public getY() { return p.get¥(); } Flexibility:

public Color getColor() { return c; } Classes may contain
} more methods than
the interface

Yet another...

public class Rectangle implements Displaceable {
private Point lowerLeft;
private int width, height;
public Rectangle(Point initLowerLeft,
int initWidth,
int initHeight) {
lowerLeft = initLowerLeft;
width = initWidth;
height = initHeight;

}
public int getX() { return lowerLeft.getX(); }
{ }

)

public int getY() return lowerLeft.getY();

public void move(int dx, int dy) {
lowerLeft.move(dx, dy);

}

Interfaces as types

* Can declare variables of interface type
Displaceable d;
* Can assign any implementation to the variable
d = new Circle(new Point(1l,2), 3);

* ... but canonly operate on the object according to

the interface
d.move(-1,1);

.. d.getX() ..
. d.getY() ..

v

Using interface types

* Interface variables can refer (during execution) to
objects of any class implementing the interface

Displaceable d0, dl, d2;

d0 = new Point(1l, 2);

dl = new Circle(new Point(2,3), 1);
d2 = new ColorPoint(-1,1, red);
dO0.move(-2,0);

dl.move(-2,0);

d2.move(-2,0);

. d0.getX() ..

= -1.0
. dl.getX() .. 2> 0.0
. d2.getX() .. > -3.0

Abstraction

 The interface gives us a single name for all the possible kinds
of shapes. This allows us to write code that manipulates
arbitrary “displaceables”, without caring whether it’s dealing
with points or circles.

class DoStuff {
public void moveItALot (Displaceable s) {
s.move(3,3);
s.move(100,1000);

s.move(1000,234651);
}

public void dostuff () {
Displaceable sl = new Point(5,5);
Displaceable s2 = new Circle(new Point(0,0),100);
moveIltALot(sl);
moveIltALot(s2);

Multiple interfaces

* An interface represents a point of view
...but there are multiple points of view

* Example: Geometric objects

— All can move (all are Displaceable)
— Some have area

Area interface

* Contract for objects that that have an area

— Circles do
— Points and ColorPoints don't

public interface Area {
public double getArea();

}

Circle implementation of Area

public class Circle implements Displaceable, Area {
private Point center;
private int radius;

public double getArea() {
return Math.PI * radius * radius;

}

Rectangle implementation of Area

public class Rectangle
implements Displaceable, Area {
private Point lowerLeft;
private int width, height;

public double getArea() {
return width * height;

}

Recap

Object: A collection of related fields (or instance variables)

Class: A template for creating objects, specifying
— types and initial values of fields
— code for methods

— optionally, a constructor method that is executed when the object is
first created

Interface: A “signature” for objects, describing a collection of
methods that must be provided by classes that implement the
interface

Object Type: Either a class or an interface (meaning “this
object was created from a class that implements this
interface”)

Pragmatics: Java identifiers

e Variable, class and method names are identifiers

* Alphanumeric characters or _ starting with a letter or _
— size
— myName
— MILES PER GALLON
— Al
— the _end
* Interpretation depends on context: variables and classes can
have the same name

ldentifier abuse

Class, instance variable,
constructor, and method with
the same name...

public class Turtle {
private Turtle Turtle;
public Turtle() { }

public Turtle Turtle (Turtle Turtle) {

return Turtle;

30

Naming conventions

kind part-of-speech |identifier

class noun RacingCar
variable noun initialSpeed
constant |noun MAXIMUM SPEED
method verb shiftGear

The OO Style

e Coreideas:

objects (state encapsulated with operations)

classes (“templates” for object creation)

dynamic dispatch (“receiver” of method call determines behavior)
subtyping (grouping object types by common functionality)
inheritance (creating new classes from existing ones)

e Good for:

GUIs!

* and other complex software systems that include many different
implementations of the same “interface” (set of operations) with different
behaviors (cf. widgets)

Simulations

* designs with an explicit correspondence between “objects” in the
computer and things in the real world

