Inner Classes

public class DrawingExample extends JFrame {

public boolean drawLine = false; Without Inner
private DrawingPanel drawingPanel; classes
public DrawingExample() {

super ("Drawing Example");

drawingPanel = new DrawingPanel(this);
) Each class has a

y reference

class DrawingPanel extends JPanel { to the other
private DrawingExample owner;
public DrawingPanel (DrawingExample p) { owner = p; }
public void paintComponent (Graphics gc) {

super.paintComponent(gc);

if (owner.drawLine) {

gc.drawLine(10, 10, 100, 100); Needs to access
} frame's field

20

public class DrawingExample extends JFrame {
private boolean drawLine = false;
private DrawingPanel drawingPanel;
public DrawingExample() {
super ("Drawing Example");

drawingPanel = new DrawingPanel();

class DrawingPanel extends JPanel {
public DrawingPanel () { }
public void paintComponent (Graphics gc) {

super.paintComponent(gc) ;

With Inner
classes

drawlLine is private

No explicit reference
to frame from panel

Inner class can
access frame's

if (drawLine) { <—
gc.drawLine(10, 10, 100, 100);

private members
directly

21

Basic Example

Key idea: Classes can be members of other classes...

public class Outer {
private int outerVar;
public Outer () {

outerVar = 6; Name of this class is

} _ Outer.Inner
public class Inner {

private int innerVar;
public Inner(int z) {
innerVar = outerVar + z;

}

(which is also the static

type of objects that this
class creates)

Reference from inner

class to instance variable

bound in outer class

22

Object Creation

Inner classes can refer to the instance variables and methods of the
outer class

Inner class instances usually created by the methods/constructors
of the outer class

public Outer () {

Inner b = new_Inner ();

' Actually this.new

Inner class instances cannot be created independently of a
containing class instance.

Outer.Inner b = new Outer.Inner():><:

Outer.Inner b = a.new Inner();

Outer a = new Outer(); *V/

Outer.Inner b = (new Outer()).new Inner();‘v/

Anonymous Inner class

 New expression form: define a class and create an object
from it all at once

New keyword new InterfaceOrClassName() { —_

public void methodl (int x) {
// code for methodl
} Normal class

public void method2(char y) { gl definition,

// code for method2 no constructors
} allowed
}
Static type of the expression Dynamic class of the created
is the Interface/superclass object is anonymous!

used to create it Can't really refer to it.

26

Like first-class functions

 Anonymous inner classes are the Java equivalent of Ocaml
first-class functions

* Both create "delayed computation" that can be stored in a
data structure and run later
— Code stored by the event / action listener
— Code only runs when the button is pressed
— Could run once, many times, or not at all

* Both sorts of computation can refer to variables in the current
scope
— OCaml: Any available variable

— Java: only instance variables (fields) and variables marked final

