Inner Classes




public class DrawingExample extends JFrame {

public boolean drawLine = false; Without Inner
private DrawingPanel drawingPanel; classes
public DrawingExample() {

super ("Drawing Example");

drawingPanel = new DrawingPanel(this);
) Each class has a

y reference

class DrawingPanel extends JPanel { to the other
private DrawingExample owner;
public DrawingPanel (DrawingExample p) { owner = p; }
public void paintComponent (Graphics gc) {

super.paintComponent(gc);

if (owner.drawLine) {

gc.drawLine(10, 10, 100, 100); Needs to access
} frame's field
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public class DrawingExample extends JFrame {
private boolean drawLine = false;
private DrawingPanel drawingPanel;
public DrawingExample() {
super ( "Drawing Example");

drawingPanel = new DrawingPanel();

class DrawingPanel extends JPanel {
public DrawingPanel () { }
public void paintComponent (Graphics gc) {

super.paintComponent(gc) ;

With Inner
classes

drawlLine is private

No explicit reference
to frame from panel

Inner class can
access frame's

if (drawLine) { <—
gc.drawLine(10, 10, 100, 100);

private members
directly
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Basic Example

Key idea: Classes can be members of other classes...

public class Outer {
private int outerVar;
public Outer () {

outerVar = 6; Name of this class is

} _ Outer.Inner
public class Inner {

private int innerVar;
public Inner(int z) {
innerVar = outerVar + z;

}

(which is also the static

type of objects that this
class creates)

Reference from inner

class to instance variable

bound in outer class
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Object Creation

Inner classes can refer to the instance variables and methods of the
outer class

Inner class instances usually created by the methods/constructors
of the outer class

public Outer () {

Inner b = new_Inner ();

' Actually this.new

Inner class instances cannot be created independently of a
containing class instance.

Outer.Inner b = new Outer.Inner():><:

Outer.Inner b = a.new Inner();

Outer a = new Outer(); *V/

Outer.Inner b = (new Outer()).new Inner();‘v/




Anonymous Inner class

 New expression form: define a class and create an object
from it all at once

New keyword new InterfaceOrClassName() { —_

public void methodl (int x) {
// code for methodl
} Normal class

public void method2(char y) { gl definition,

// code for method2 no constructors
} allowed
}
Static type of the expression Dynamic class of the created
is the Interface/superclass object is anonymous!

used to create it Can't really refer to it.
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Like first-class functions

 Anonymous inner classes are the Java equivalent of Ocaml
first-class functions

* Both create "delayed computation" that can be stored in a
data structure and run later
— Code stored by the event / action listener
— Code only runs when the button is pressed
— Could run once, many times, or not at all

* Both sorts of computation can refer to variables in the current
scope
— OCaml: Any available variable

— Java: only instance variables (fields) and variables marked final



