
	
ADVANCED	PROGRAMMING	

2015-16	
	

Programming	Assignment	1	
	

	
The	 assignment	 involves	 a	 programming	 activity	 and	 includes	 an	 optional	
problem.	 The	 submission	 must	 include	 all	 required	 files	 for	 compiling	 and	
executing	the	proposed	solution.	It	is	allowed	to	develop	the	solution	into	teams,	
however	the	proposed	solution	should	be	discussed	individually.		
	

Introduction:	The	Tiny	Programming	Language	
	
Tiny	 is	 a	 functional	 programming	 language	 and	 programmers	 will	 code	 their	
programs	through	expressions.	Tiny	contains	a	small	set	of	data	types.	It	has	the	
three	 primitive	 types	 boolean,	 number,	 and	 string	 and	 the	 special	 valued	
undefined.	You	can	assume	standard	operators	for	the	primitive	data	types.		

As	 usual,	 Tiny	 has	 one	 uniform	 construct	 for	 giving	 names	 to	 values:	 the	 let	
definition.	The	(standard)	let	syntax	is:		

	let	name	=	expr1	in	expr2	

and	the	semantics	is	the	obvious	one.	

Functions	are	values	in	Tiny,	they	are	introduce	as	Lambda	value	with	fun,	and	
one	 can	 bind	 function	 values	 to	 names	 with	 let.	 As	 an	 example	 the	 following	
definition	introduce	a	function	named	inc	and	applies	it	to	the	number	0.	

let	inc	=	fun	n	->	n	+	1	in	inc	0	

Functions	have	static	(lexical)	scoping	and	are	first	order	values.	For	simplicity	
we	assume	that	functions	are	not	recursive.	

The	 set	 of	 Tiny	 expressions	 includes	 if-the-else,	 while,	 do,	 break,	 continue,	
return.	They	work	the	same	as	in	other	programming	languages.	

Tiny	 records	 are	 like	 the	 record	 of	 OCAML	 (or	 struct's	 of	 C):	 they	 are	 tuples	
except	 that	 their	 components	 (also	 called	 fields)	 are	 labeled.	 This	 means	 that	
their	type	is	independent	of	any	ordering.	For	instance	the	expression		

let	myR	=	{foo	=	1;	bar	=	"yikes"}	in	myR.foo	

introduces	a	record	with	two	components.	As	usual	we	can	use	dot	notation	for	
accessing	record	fields.		

Differently,	 from	 OCAML,	 Tiny	 records	 include	 methods	 that	 allow	 one	 to	
program	actions	 to	be	performed	on	 record	 fields.	As	 an	example	 consider	 the	



following	expression:	

let	mm	=	{firtstName	=	“Mickey”;	lastName	=	“Mouse”;		 	
																			fullName	=	fun()	->	{return	this.firstName	+	"	"	+	this.lastName;}	 	
in	mm.fullname()	

returns	the	string	“Mickey	Mouse”.	

	
The	problem	set	(mandatory)	
	
Define	 the	 interpreter	 for	 the	 Tiny	 language	 in	 OCAML.	 It	 is	 mandatory	 to	
implement	 the	 type	 checking	 required	 to	 ensure	 that	 Tiny	 programs	 operate	
correctly	with	types.	It	is	up	to	the	candidate	to	fill	the	gaps	in	the	specification	
and	provide	motivations	for	the	choices	made.	

The	problem	set	(optional)	
The	optional	problem	requires	modifying	the	Tiny	language	with	concurrent	
programming	 features.	 References	 and	 examples	 can	 be	 found	 in	
Chapter	18.	Concurrent	Programming	with	Async	of	the	book	Real	World	OCaml.		

We	 assume	 to	 equip	 the	 Tiny	 language	 with	 the	 eval()	 function.	 The	 eval()	
function	 evaluates	 Tiny	 code	 as	 an	 independent	 thread.	 For	 example	 the	
expression	

eval(let	x=	5	in	let	z	=	37	in	x+z);		

eval(let	z	=	42	in	z);		
	
spawns	two	independent	threads	both	returning	as	result	the	integer	value	42.		
	
Outline	the	design	of	the	interpreter	for	the	Tiny	language	extended	with	eval().	
It	 is	 up	 to	 the	 candidate	 to	 fill	 the	 gaps	 in	 the	 specification	 and	 provide	
motivations	for	the	choices	made.	
	
Grading	
	
The	breakdown	for	the	programming	assignment	is	as	follows:	

• Problem	set	(Mandatory):	60%	
• Problem	set	(Optional):	30%	
• Other	factors	(code	quality):	10%	

	
Submission	
	
The	AP	homework	should	be	submitted	by	e-mail	by	02-11-2015	(midnight)	to	
gian-luigi.ferrari@unipi.it	with	the	subject	prefix	[AP-HW1].	
	
The	submission	must	 include	all	 required	 files	 for	compiling	and	executing	 the	
proposed	solution.	



	
	
	
	
	


