Simplifying
let, variables, operators,
and if expressions
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X |22

let y = 2 + x in
if x > 23 then 3 else 4

X is not a value: so look it up in the stack
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Simplification Rules

A let-expression “let x = e in body” isready if the
expression e is a value
— itis simplified by adding a binding of x to e at the end of the stack and
leaving body in the workspace
A variable is always ready
— it is simplified by replacing it with its value from the stack, where
binding lookup goes in order from most recent to least recent

A primitive operator (like +) is ready if both of its arguments
are values

— it is simplified by replacing it with the result of the operation

An “if” expression is ready if the test is true or false
— ifitis true, it is simplified by replacing it with the then branch
— ifitis false, it is simplified by replacing it with the else branch



Simplifying
lists and datatypes using the heap
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l::2::3::[]

For uniformity, we’ll
pretend lists are declared
like this:

type ‘a list =
| Nil
| Cons of ‘a * ‘a list
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Simplifying Datatypes

* A datatype constructor (like Nil or Cons) is ready if all its
arguments are values
— Itis simplified by:

e creating a new heap cell labeled with the constructor and containing the
argument values*

* replacing the constructor expression in the workspace by a reference to
this heap cell

*Note: in OCaml, using a datatype constructor causes some space to be automatically allocated on the heap.
Other languages have different mechanisms for accomplishing this: for example, the keyword ‘new’ in Java
works similarly (as we’ll see in a few weeks).
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Do the Call, Saving the Workspace

Workspace

x+1

Stack Heap

add1

//—j fun (x:int) -> x + 1

addl ( )

Note the saved workspace and pushed function argument.
* compare with the workspace on the previous slide.
* the name x’ comes from the name in the heap

The new workspace is the body of the function
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add1

rd

/Tfun (x:int) -> x + 1

See how the ASM restored the saved workspace,
replacing its "hole’ with the value computed into

the old workspace. (Compare with previous slide.)
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Simplifying Functions

A function definition “let rec f (x,:t,)...(x,:t,) = e in body” is
always ready.
— It is simplified by replacing it with “let f = fun (x:t,)...(x:t,) = e in body”

A function “fun (x;:t,)...(x, it ) = €” is always ready.

— It is simplified by moving the function to the heap and replacing the
function expression with a pointer to that heap data.

A function call is ready if the function and its arguments are
all values
— itis simplified by
* saving the current workspace contents on the stack

* adding bindings for the function’s parameter variables (to the actual
argument values) to the end of the stack

* copying the function’s body to the workspace



Function Completion

When the workspace contains just a single value, we pop the
stack by removing everything back to (and including) the last
saved workspace contents.

The value currently in the workspace is substituted for the
function application expression in the saved workspace
contents, which are put back into the workspace.

If there aren’t any saved workspace contents in the stack, the
whole computation is finished and the value in the workspace
is its final result.



