Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-15/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 10

LR parsing with ambiguous grammars

Error recovery in LR parsing

Parser generators: yacc/bison

Handgling ambiguos grammars in yacc/bison

Using Ambiguous Grammars

e All grammars used in the construction of LR-
parsing tables must be un-ambiguous

* Can we create LR-parsing tables for
ambiguous grammars ?
— Yes, but they will have conflicts

— We can resolve these conflicts in favor of one of
them to disambiguate the grammar

— At the end, we will have again an unambiguous
grammar

Using Ambiguous Grammars

* Why we want to use an ambiguous grammar?

— Some of the ambiguous grammars are much natural, and
a corresponding unambiguous grammar can be very

complex

— Usage of an ambiguous grammar may eliminate
unnecessary reductions (single productions)

— We may want to postpone/possibly change decisions
about associativity/precedence of operators

e Example grammar:

E—E+E | E*E | (E) | id —=2

E—E+T | T
T—T*F | F
F— (E) | id

Sets of LR(0) Items for Ambiguous Grammar

I E = .E
E — E+tE
E — E*E
E — .(E)
E— .id

E

17: E — E+E.
E —=E.+tE
E—E.*E

N
A

E

k

I;: E — E*E.
E — E.+E
E — E.*E

[E —E. FP{I;E—=E+.E
E—E .+E E— E+E
E—E .*E E — E*E

E — «(E)
E— .id
(
//Ht> I;E—E*.E

L: E — (.E) B~ .E+E
Eo .E E — E*E
s E — «(E)
E—.E*E| | E—ed
E — «(E)
E%Jd\\\%Ee@J

E— E.+E
E— E.*E

/e

13: E — ldo

y

I: E—=(E).

SLR-Parsing Tables for Ambiguous Grammar

E— E+E
E— E*E
E — (E)
E—id

ol o

Action Goto

id + * () $ E
0 s3 s2 1
1 s4 S5 acc
2 s3 s2 6
3 4 4 4 4
4 s3 s2 7
5 s3 s2 8
6 s4 S5 s9
7 rl/s4 | rl/s5 rl rl
8 12/s4 | 12/s5 12 12
9 r3 3 3 3

FOLLOW(E) =
{$,+,%,)}

Resolving conflicts

State |, has shift/reduce conflicts for symbols + and *.

After reading id +id:

E

ly

when current token is +
shift = +is right-associative
reduce = + is left-associative

when current token is *
shift = * has higher precedence than +
reduce = + has higher precedence than *

Resolving conflicts

Also state Ig has shift/reduce conflicts for symbols + and *.
After reading id * id:

E * E

when current token is *
shift =2 *is right-associative
reduce = * is left-associative

when current token is +
shift =2 + has higher precedence than *
reduce = * has higher precedence than +

Disambiguated SLR-Parsing Tables

E— E+E
E— E*E
E — (E)
E—id

ol o

Action Goto

id + * () $ E
0 s3 s2 1
1 s4 B acc
2 s3 s2 6
3 4 4 4 4
4 s3 s2 7
5 s3 s2
6 s4 S35 s9
7 rl $S rl rl
8 r2 r2 12 12
9 r3 r3 r3 r3

FOLLOW(E) =
{S,+,%,)}

Error Recovery in LR Parsing

An LR parser will detect an error when it consults the parsing
action table and finds an error entry. All empty entries in the
action table are error entries.

Errors are never detected by consulting the goto table.

An LR parser will announce error as soon as there is no valid
continuation for the scanned portion of the input.

A canonical LR parser (LR(1) parser) will never make even a
single reduction before announcing an error.

The SLR and LALR parsers may make several reductions
before announcing an error.

But, all LR parsers (LR(1), LALR and SLR parsers) will never
shift an erroneous input symbol onto the stack.

Panic Mode Error Recovery in LR Parsing

Scan down the stack until a state s with a gotoon a
particular nonterminal A is found. (Get rid of everything
from the stack before this state s).

Discard zero or more input symbols until a symbol a is
found that can “legitimately follow” A.

— The symbol a is simply in FOLLOW(A), but this may not work for
all situations.

The parser stacks the nonterminal A and the state
goto[s,A], and it resumes the normal parsing.

This nonterminal A is normally is a basic programming
block (there can be more than one choice for A).

— stmt, expr, block, ...
Symbol a can be typically }’, ‘¥

Phrase-Level Error Recovery in LR Parsing

 Each empty entry in the action table is marked
with a specific error routine.

e An error routine reflects the error that the user
most likely will make in that case.

* An error routine inserts the symbols into the
stack or the input (or it deletes the symbols from
the stack and the input, or it can do both
insertion and deletion).

— missing operand
— unbalanced right parenthesis

Phrase-Level Error Recovery: intuition

12

Suppose abEc is poped and there is no
production right hand side that matches abEc

If there were a rhs aEc, we might issue message
“illegal b on line x”

If the rhs is abEdc, we might issue message
“missing don line x”

If the found rhs is abc, we might issue message
“illegal E on line x”

where FE stands for an appropriate syntactic

category represented by non-terminal E

Disambiguated SLR-Parsing Tables

E— E+E
E— E*E
E — (E)
E—id

ol o

Action Goto

id + * () $ E
0 s3 s2 1
1 s4 B acc
2 s3 s2 6
3 4 4 4 4
4 s3 s2 7
5 s3 s2
6 s4 S35 s9
7 rl $S rl rl
8 r2 r2 12 12
9 r3 r3 r3 r3

FOLLOW(E) =
{S,+,%,)}

13

Disambiguated SLR-Parsing Tables with

error routines

ol o

E— E+E
E— E*E
E — (E)
E—id

Action Goto

id + * () $ E
0 s3 | E1 | E1 | s2 | E2 | E1l 1
1 E3 | s4 sS5 | E3 | E2 | acc
2 s3 | E1 | E1 | s2 | E2 | E1l 6
3 r4 4 4 r4 4 4
4 s3 | E1 | E1 | s2 | E2 | E1l 7
5 s3 | E1 | E1 | s2 | E2 | E1l
6 E3 | s4 sS5 | E3 | s9 | E4
7 rl rl $S rl rl rl
8 r2 r2 r2 r2 12 12
9 r3 r3 r3 r3 r3 r3

FOLLOW(E) =
{S,4+,%,)}

14

Phrase-Level Error Recovery: example

* E1:/* called when operand expected: ‘(‘ or ‘id’, but ‘+’, *’
or ‘'S’ found */
— push ‘id’ (state 3) onto the stack
— print “missing operand”
* E2:/* called when unexpected ‘)’ is found */
— delete ‘) from the input
— print “unbalanced right parenthesis”

* E3:/* called when expecting an operator, but ‘id” or ‘(
found/

— push ‘4’ (state 4) onto the stack
— print “missing operator”

* E4: /* called from state 6 when end of input is found */
— print “missing right parenthesis”

15

PARSER GENERATORS

Parser Generators:
ANTLR, Yacc, and Bison

e ANTLR tool
— Generates LL(k) parsers

* Yacc (Yet Another Compiler Compiler)
— Generates LALR parsers
* Bison

— Improved version of Yacc (GNU project)

17

Creating an LALR(1) Parser with

yacc
specification

spec.y

y.tab.c Or
spec.tab.c

input
stream

Yacc/Bison

yacc or
bison

C compiler

> y.tab.c Or
spec.tab.c

> a.out

a.out

S output

stream

18

Yacc Specification

* Avyacc specification consists of three parts:

* yacc declarations, and C declarations within %{ %}
%%
translation rules (productions + semantic actions)
%%
user-defined auxiliary procedures

* The translation rules are productions with actions:
production; {semantic action, }
production, {semantic action, }

production, {semantic action,, }

19

Writing a Grammar 1n Yacc

* Productions head -> body, | body, | ...|body,| ¢
becomes 1n Yacc

head : body, { semantic action,; }
body, { semantic action, }

/* empty */

we

* Tokens (terminals) can be:
— Quoted single characters, e.g. ’ +’ , with corresponding ASCII code

— Identifiers declared as tokens in the declaration part using
%token TokenName

* Nonterminals:
— Arbitrary strings of letters and digits (not declared as tokens)

20

Semantic Actions and Synthesized Attributes

* Semantic actions are sequences of C statements, and
may refer to values of the synthesized attributes of
terminals and nonterminals in a production:

X :Y Y Y . Y { action }
— $8§ refers to the value of the attribute of X
— $i refers to the value of the attribute of Y,

* For example
factor : ‘(expr ‘)’ { $5=$2; }

factor.val=x
$$=82

(exprval=x)
|
* The values associated with tokens (terminals) are those

returned by the lexer

21

An S-attributed Grammar for a

The grammar

line — expr ‘\n’

expr — expr + term | term
term — term * factor | factor
factor — (expr) | DIGIT

simple desk calculator

—Also results in definition of

line : expr ‘\n’
expr : expr ‘+ term
| term { $$ =
term : term ‘*’ factor
| factor { $$ =
factor : ‘(expr)’
| DIGIT { $$

.
4

o°
o°

#define DIGIT xxx

{ printf (“= %d\n”, $1); }

{ $$ $1 + $3; } Attribute of

/ term (parent)

@ * $3;)
$1 \
= S$2; }

@ } Attribute of term (child)

\ Attribute of token

A simple desk calculator

o°

{ #include <ctype.h> %}
token DIGIT

o°

= o°

ine : expr ‘\n’ { printf (“= %d\n”, $1); }
expr : expr ‘+ term { $$ = 81 + $3; }
| term { 88 = 81; }
term’ : term ‘*’ factor { $$ = $1 * $3; }
| factor { $$ = 81, }

.
4

factor : ‘(expr)’ $$ = $2; }
| DIGIT { $S @ }

\ Attribute of token

o°
o°

- \ .
int yylex() (stored in yylval)
{ int ¢ = getchar()
?fyﬁ‘s’:igitéf,) ()), . Very simple lexical The grammar
return DIGIT: > analyzer invoked line — expr “\n’
} by the parser expr — expr +term | term
return c: term — term * factor | factor

} W, factor — (expr) | DIGIT

Bottom-up Evaluation of
S-Attributed Definitions in Yacc

Stack val Input | Action Semantic Rule
$ _ 3*5+4n$ | shift

$3 3 *54+44n$ | reduce F — digit | $$ =51

$ F 3 *5+4n$ | reduce T — F $$ =951

$T 3 *54+4n$ | shift

$T* 3 _ 5+4n$ | shift

$7*5 |3 5 +4n$ | reduce F — digit | $$ =51
$T*F |3 _5 +4n$ | reduce T—=T* F | $$ =$1 * $3
$T 15 +4n$ | reduce E —= T $$ =§$1

$E 15 +4n$ | shift

$E+ 15 4n$ | shift

SE+4 |15 4 n$ | reduce F — digit | $$ =51
SE+F |15 4 n$ | reduce T — F $$ =$1
SE+T |15 4 n$ | reducce E—=E+T |$5=5%1+33
$E 19 n$ | shift

$En 19 _ $| reduce L— En |print $1

$L 19 $ | accept

24

Dealing With Ambiguous Grammars

* By defining operator precedence levels and left/
right associativity of the operators, we can
specify ambiguous grammars in Yacc, such as

E — E+E | E-E | E*E | E/E | (E) | -E | num

* Yacc resolves conflicts, by default, as follows:

— Reduce/reduce conflict: precedence to first
production in the specification

— Shift/reduce conflict: precedence to shift
e ok for if-then-else

* infix binary operators are handled as right-associative!

25

Example: PlusTimesCalculator-flat

%$token NUMBER

%%
lines : expr '\n' { printf ("= %g\n", $1); }
expr : expr '+' expr { $$ = $1 + $3; }
| expr '*' expr { 86 = S1 * 83; }
| NUMBER
; State 8 conflicts: 2 shift/reduce

o°
o°

State 9 conflicts: 2 shift/reduce

.) . . state 8
* bison’s warning:) expr: expr . '+ exor

conflicts: 4 shift/reduce | 2 |expr'+ expr.

3 | expr."*" expr

'+' shift, and go to state 6

k1 hﬂ:’ d t t t 7
> ./PlusTimesCalculator-flat shitt, and go to state

1+2*3+4*5 '+' [reduce using rule 2 (expr)]
_ % . *
47 /* right associate, no precedence */ "*' [reduce using rule 2 (expr)]

Sdefault reduce using rule 2 (expr)

Ambiguous Grammars in bison

* To define precedence levels and associativity in
Yacc’s declaration part, list tokens in order of

increasing precedence, prefixed by $1left or
sright:

[[

sleft ‘4 ‘-7 //same precedence, associate left
$left ‘*° ‘/’
sright UMINUS

* |f tokens have precedence, productions also

have, equal to that of the rightmost terminal in
the body. In this case:

— Shift/reduce conflict are resolved with reduce if the
production has higher precedence than the input

symbol, or if they are equal and are left-associative.
27

Example: PlusTimesCalculator

%$token NUMBER /* tokens listed in increasing order of precedence */

$left '+’

$left '*!

%%

lines : expr '\n' { printf("= %g\n", $1); }

expr : expr '+' expr { $$ = $1 + $3; }
| expr '*' expr { $$ = S1 * $3; }

| NUMBER

4

)
°70

. . tate 8
e No warnings by bison |7
2 expr: expr . '+' expr
2 | expr '+ expr.
3 | expr."* expr

> ./PlusTimesCalculator-flat "*' shift, and go to state 6
1+2*3+4%*5
=27 [* correct precedence */ Sdefault reduce using rule 2 (expr)

A more advanced calculator

1 Double type for attributes
#include <ctype h>
#include / and yy1val

#deflne YSTYPE doubl

—stoken NUMBER /* tokens listed in increasing order of precedence */

$left + -
$left ‘*x’ ‘/°
$right UMINUS /* fake token with highest precedence, used below */

oo
o0

lines : lines expr ‘\n’ { printf (“= %g\n”, $2); }
| lines ‘\n’
| /* empty */
expr: expr ‘+ expr { $$ = $1 + $3; }
| expr ‘-’ expr { 6 = 81 - $3; }
| expr ‘*’ expr { 66 = 81 * $3; }
| expr ‘/’ expr { 66 =81 / 8$3; }
| ‘(" expr °)’ { $$ = $2; }
| ‘-’ expr $prec UMINUS { $$ = -$2;} /* rule with highest precedence */
| NUMBER

29

o°
o°

A more advanced calculator (cont’d)

int yylex()
{ int c;
while ((c

4

getchar ()))

if ((c “.7) || isdigit(c))
{ ungetc(c, stdin);
scanf (“$1f”, &yylval);
return NUMBER;
}

return c;
}
int main ()
{ if (yyparse() != 0)
fprintf (stderr, “Abnormal exit\n”);
return O;
}
int yyerror (char *s)
{ fprintf (stderr, “Error: $s\n”, s);

}

\

J\-

J\

Crude lexical analyzer for
fp doubles and arithmetic
operators

> Run the parser

- Invoked by parser

to report parse errors

30

Dealing With Ambiguous
Grammars (summary)

Yacc does not report about conflicts that are solved
using user-defined precedences

It reports conflicts that are resolved with default rules

To visit the automaton and the LALR parsing table
generated, execute Bison/Yacc with option -v, and
read the <filename>.output file

This allows to see where conflicts were generated, and
if the parser resolved them correctly

Graphical representation of the automaton using

Bison/Yacc with option —g. Output should be in dot

format
31

Combining Lex/Flex with Yacc/Bison

yacc

specification
yacc.y

Lex specification
lex.1

Yacc or Bison
compiler

S y.tab.c

and token definitions
y.tab.h

lex.yy.c

Lex or Flex
compiler

y.tab.h

y.tab.c

input

C
compiler

> lex.yy.cC

> a.out

stream

a.out

S output

stream

32

Lex Specification for
Advanced Calculator

option noyywrap
3 {

#define YYSTYPE double

Generated by Yacc, contains

#includq“llillil.’<&

#define NUMBER xxx

%}

number [0-9]+\.7?|[0-9]*\.[0-9]+

o°

[] { /* skip blanks */ }
{

Defined iny.tab.c

number} { sscanf (yytext, “$1f’, &yylval);

return NUMBER;

}
\n]|. { return yytext[0]; }

yacc -d example2.y
lex example2.1

gce y.tab.c lex.yy.c
./a.out

bison -d -y example2.y
flex example2.1

gce y.tab.c lex.yy.c
./a.out

35

Error Recovery in Yacc

* Based on error productions of the form A4 -2 error a

lines : lines expr ‘\n’ { printf(“$g\n”, $2; }
| lines ‘\n’

| /* empty *
| er { yyerror (‘reenter last line: ”);

Error production:
set error mode and
skip input until newline

Reset parser to normal mode

34

