
301AA - Advanced Programming

Lecturer: Andrea Corradini  
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

 

AP-28: Python: OOP, iterators and the GIL

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/


Next topics

• OO Programming in Python, multiple 
inheritance

• Iterators and generators
• Garbage Collection, multi-threading and the 

GIL
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OOP in Python
Typical ingredients of the Object Oriented Paradigm:
• Encapsulation: dividing the code into a public interface, and a 

private implementation of that interface;
• Inheritance: the ability to create subclasses that contain 

specializations of their parent classes.
• Polymorphism: The ability to override methods of a Class by 

extending it with a subclass (inheritance) with a more specific 
implementation (inclusion polymorphism) 

From https://docs.python.org/3/tutorial/classes.html:
"Python classes provide all the standard features of Object Oriented 
Programming: the class inheritance mechanism allows multiple base classes, 
a derived class can override any methods of its base class or classes, and a 
method can call the method of a base class with the same name. Objects can 
contain arbitrary amounts and kinds of data. As is true for modules, classes 
partake of the dynamic nature of Python: they are created at runtime, and 
can be modified further after creation."
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https://docs.python.org/3/tutorial/classes.html


Defining a class (object)
• A class is a blueprint for a new data type with specific internal attributes

(like a struct in C) and internal functions (methods).
• To declare a class in Python the syntax is the following:

• statements are assignments or function definitions
• A new namespace is created, where all names introduced in the

statements will go.
• When the class definition is left, a class object is created, bound to

className, on which two operations are defined: attribute reference and
class instantiation.

• Attribute reference allows to access the names in the namespace in the
usual way
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class className:
     <statement-1>
     …
     <statement-n>



Example: Attribute reference on a class object
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class Point:
  x = 0
  y = 0
  def str(): # no capture: needs qualified names to refer to x and y
      return  "x = " + (str) (Point.x) + ", y = " + (str) (Point.y)  
#--------
import ...
>>> Point.x
0
>>> Point.y = 3
>>> Point.z = 5 # adding new name
>>> Point.z
5

>>> def add(m,n):
      return m+n
>>> Point.sum = add # adding new function
>>> Point.sum(3,4)
7

Point
x = 0
y = 0 
str()
y = 3 
z = 5
sum = add(m,n)



Creating a class instance
• A class instance introduces a new namespace nested in the class

namespace: by visibility rules all names of the class are visible
• If no constructor is present, the syntax of class instantiation is

className(): the new namespace is empty
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class Point:
  x = 0
  y = 0
  def str():
      return  "x = " + str(Point.x) + ", y = " + str(Point.y)  
#--------
>>> p1 = Point()
>>> p2 = Point()
>>> p1.x
0
>>> Point.y = 3
>>> p2.y
3

>>> p1.y = 5
>>> p2.y
3

      Point
x = 0
y = 0 
str()
y = 3

p1
y = 5

p2



Instance methods

• A class can define a set of instance methods, which are just functions:

• The first argument, usually called self, represents the implicit parameter
(this in Java)

• A method must access the object's attributes through the self reference 
(eg. self.x) and the class attributes using className.<attrName> (or 
self.__class__.<attrName>)

• The first parameter must not be passed when the method is called with 
dot-notation on an object. It is bound to the target object. Syntax:

• But it can be passed explicitly. Alternative syntax:
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def methodname(self, parameter1, ..., parametern):
     statements

obj.methodname(arg1, ..., argn):

className.methodname(obj, arg1, ..., argn):



"Instance methods"

• Any function with at least one parameter defined in a class can be
invoked on an instance of the class with the dot notation.

• Since the instance obj is bound to the first parameter, par-0 is usually
called self.

• A name x defined in the (namespace of the) instance is accessed as 
par-0.x (i.e., usually self.x) 

• A name x defined in the class is accessed as className.x (or 
self.__class__.x)
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class Foo
    def fun(par-0, par-1, ..., par-n):
     statements
#----
>>> obj = Foo()
>>> obj.fun(arg-1,...,arg-n)
# is syntactic sugar for 
>>> obj.__class__.fun(obj,arg-1,...,arg-n)



Constructors
• A constructor is a special instance method with name __init__.  
Syntax: 

• Invocation: obj = className(arg1, …, argn)

• The first parameter self is bound to the new object.

• statements typically initialize (thus create) "instance variables", i.e.
names in the new object namespace.

S Note: at most ONE constructor (no overloading in Python!)
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def __init__(self, parameter1, ..., parametern):
     statements

class Point:
   instances = []
   def __init__(self, x=0, y=0):
      self.x = x
      self.y = y
      Point.instances.append(self)
#--------
>>> p1 = Point(3,4)

Point
instances = [<Point 
object at ...>]

p1
x = 3
y = 4



What about "methods in instances?"
• Instances are themselves namespaces: we can add functions to them.

• Applying the usual rules, they can hide "instance methods"
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class Point:
   def __init__(self, x, y):
      self.x = x
      self.y = y
      def move(z,t):
         self.x -= z
         self.y -= t
      self.move = move
   def move(self,dx,dy):
      self.x += dx
      self.y += dy

>>> p = Point(1,1)
>>> p.x
1
>>> p.move(1,1)
>>> p.x
0
>>> p.__class__.move(p,2,2)
>>> p.x
2

Point
__init__(...)
move(...)

p
x = 1
y = 1
move(...)
__class__



String representation

• It is often useful to have a textual representation of an object
with the values of its attributes. This is possible with the
following instance method:

• This is equivalent to Java's toString (converts object to a
string) and it is invoked automatically when str or print is
called.
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def __str__(self) :
     return <string>



Special methods

• Analogous to C++ 
overloading mechanism:
• Pros: very compact syntax
• Cons: may be more difficult

to read if not used with care
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Operator Class Method
- __sub__(self, other)

+ __add__(self, other)

* __mul__(self, other)

/ __truediv__(self, 
other)

Unary Operators
- __neg__(self)

+ __pos__(self)

Operator Class Method
== __eq__(self, other)

!= __ne__(self, other)

< __lt__(self, other)

> __gt__(self, other)

<= __le__(self, other)

>= __ge__(self, other)

Binary Operators

class Point: # example  
  ...
  def __add__(self,other):
      return Point(self.x + other.x,
                   self.y + other.y)
  def __neg__(self):
      return Point(-self.x, - self.y)

• Method overloading: you can define special instance methods so that
Python's built-in operators can be used with your class



(Multiple) Inheritance, in one slide
• A class can be defined as a derived class

• No need of additional mechanisms: the namespace of derived is 
nested in the namespace of baseClass, and uses it as the next non-
local scope to resolve names

• All instance methods are automatically virtual: lookup starts from 
the instance (namespace) where they are invoked

• Python supports multiple inheritance

• Diamond problem solved by an algorithm that linearizes the set of 
all (directly or indirectly) inherited classes: the Method resolution 
order (MRO) , using the C3 algorithm è    ClassName.mro()

• https://www.python.org/download/releases/2.3/mro/
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class derived(baseClass):
     statements
     statements

class derived(base1,..., basen):
 statements
 statements

https://www.python.org/download/releases/2.3/mro/


Encapsulation (and "name mangling")
• Private instance variables (not accessible except from inside an object) 

don’t exist in Python. 

• Convention: a name prefixed with underscore (e.g. _spam) is treated as 
non-public part of the API (function, method or data member). 
It should be considered an implementation detail and subject to change 
without notice.

Name mangling ("storpiatura")

• Sometimes class-private members are needed to avoid clashes with
names defined by subclasses. Limited support for such a mechanism,
called name mangling.

• Any name with at least two leading underscores and at most one trailing
underscore like e.g. __spam is textually replaced with _Class__spam,
where Class is the current class name.
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Uses of Name Mangling
• Avoiding Name Clashes: When designing a class hierarchy, you

might define attributes that are intended to be used only within a 
specific class. Name mangling helps avoid accidental name clashes
when a subclass defines an attribute with the same name.

• Implementing Encapsulation: While Python does not have private 
variables in the strict sense, name mangling provides a way to make 
attributes less accessible from outside the class, thus enforcing
encapsulation to some extent.

• Frameworks and Libraries: When developing frameworks or 
libraries, you might use name mangling to avoid conflicts with 
attributes defined by the users of your framework or library.
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Name mangling to avoid name clashes
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class BaseClass:
    def __init__(self):
        self.__mangled_attr = "BaseClass attribute"

    def get_mangled_attr(self):
        return self.__mangled_attr

class SubClass(BaseClass):
    def __init__(self):
        super().__init__()
        self.__mangled_attr = "SubClass attribute"

    def get_subclass_attr(self):
        return self.__mangled_attr

base_obj = BaseClass()
sub_obj = SubClass()

print(base_obj.get_mangled_attr())  # “BaseClass attribute”
print(sub_obj.get_mangled_attr())   # “BaseClass attribute”
print(sub_obj.get_subclass_attr())  # “SubClass attribute”



Name mangling to avoid breaking logic
• Name mangling is helpful for letting subclasses override

methods without breaking intraclass method calls.
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class Mapping:
    def __init__(self, iterable):
        self.items_list = []
        self.update(iterable)    # comment this
#   self.__update(iterable)  # uncomment this
    def update(self, iterable):
        for item in iterable:
            self.items_list.append(item)

#  __update = update # copy of update(): uncomment

class MappingSubclass(Mapping):

    def update(self, keys, values):
        # provides new signature for update()
        # but does not break __init__()
        for item in zip(keys, values):
            self.items_list.append(item)



Limitations
• Name mangling is not foolproof: While it makes attribute names 

harder to access, it is still possible to access them if one knows the 
mangled name. For instance, _ClassName__attr can be used
to access the attribute directly.

• Readability: Overuse of name mangling can make the code harder
to read and understand. It should be used judiciously to balance 
between avoiding name clashes and maintaining code readability.

• Dynamic Class Names: If you use dynamic class names (e.g., using
type() to create classes), name mangling can become less
predictable and harder to manage.
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Static methods and class methods

• Static methods are simple functions defined in a class with no self
argument, preceded by the @staticmethod decorator

• They are defined inside a class but they cannot access instance attributes
and methods

• They can be called through both the class and any instance of that class!

• They allow subclasses to customize the static methods with inheritance.
Classes can inherit static methods without redefining them.

• Class methods are similar to static methods but they have a
first parameter which is the class name.

• Definition must be preceded by the @classmethod decorator

• Can be invoked on the class or on an instance.
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Iterators
• An iterator is an object which allows a programmer to traverse through all the

elements of a collection (iterable object), regardless of its specific implementation.
In Python they are used implicitly by the FOR loop construct.

• Iterable objects must support method __iter__(), returing the iterator

• Iterators must support methods:

• __iter__() returning the iterator object itself

• __next__() returning the next value. It raises a StopIteration
exception if there are no more items to return

• An iterator object can be used only once. After it raises StopIteration once, it
will keep raising the same exception.

• Example:
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for element in [1, 2, 3]:
print(element)

>>> list = [1,2,3]
>>> it = iter(list)
>>> it
<listiterator object at 0x00A1DB50>
>>> it.__next__()
1
>>> it.__next__()
2
>>> it.__next__()
3
>>> it.__next__() -> raises StopIteration



Generators and coroutines

• Generators are a simple and powerful tool for creating iterators.

• They are written like regular functions but use the yield statement
whenever they want to return data.

• Each time the next() is called, the generator resumes where it left-off (it
remembers all the data values and which statement was last executed).

• Anything that can be done with generators can also be done with class
based iterators (not vice-versa).

• What makes generators so compact is that the __iter__() and
next() methods are created automatically.

• Another key feature is that the local variables and execution state are 
automatically saved between calls. 

22



Generators (2)
• In addition to automatic method creation and saving program state, when

generators terminate, they automatically raise StopIteration.

• In combination, these features make it easy to create iterators with no
more effort than writing a regular function.
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def reverse(data):
    for index in range(len(data)-1, -1, -1):
        yield data[index]

#-----------------

>>> for char in reverse('golf'):
...     print(char)
...
f
l
o
g



Typing in Python

• Dynamic, strong duck typing
• Code can be annotated with types

• Module typing provides runtime support for 
type hints

• Type hints can be checked statically by 
external tools, like mypy

• They are ignored by CPython
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def greetings(name: str) -> str:
    return 'Hello ' + name.



On Polymorphism in Python

• Overloading: forbidden, but its absence
alleviated by:
– Default parameters for functions
– Dynamic typing
– Duck typing

• Overriding: ok, thanks to nesting of 
namespaces

• Generics: type hints (module typing + mypy
support generics)
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Garbage collection in Python

CPython manages memory with a reference counting + a 
mark&sweep cycle collector scheme
• Reference counting: each object has a counter storing the 

number of references to it. When it becomes 0, memory can 
be reclaimed.

• Pros: simple implementation, memory is reclaimed as soon as 
possible, no need to freeze execution passing control to a 
garbage collector

• Cons: additional memory needed for each object; cyclic 
structures in garbage cannot be identified (thus the need of 
mark&sweep)
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Memory safety in Python

No explicit deallocation on the heap
• del removes entries from the namespace
Therefore:
• No dangling pointers in Python
• No double free in Python
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import ctypes 

my_list = [1, 2, 3]

# finding the id of list object
my_list_address = id(my_list)

# finds reference count of my_list
ref_count = ctypes.c_long.from_address(my_list_address).value

print(f"Ref count for my_list is: {ref_count}")

Getting the reference count:



Race conditions in Python?
Example: Shared counter incremented 10k times in 
parallel by two threads.
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# counter in closure
def counter_factory():
  counter = 0
  def counter_increaser():
      nonlocal counter        
      counter = counter + 1
  return counter_increaser 

# Runs fun() in parallel
def thread_fun(nthreads, fun):
    threads = []
    for _ in range(nthreads):
        threads.append(Thread(target = fun))
        threads[-1].start()
    for t in threads:
        t.join()

# decorator: repeats fun ntimes
def times(ntimes):  
 """Usage: 
times(ntimes)(fun)(args,kwargs)"""
    def times_dec(fun):
        def wrapper(*args,**kwargs):
            for i in range(ntimes):
                fun(*args,**kwargs)
            return
        return wrapper
    return times_dec

inc = counter_factory()
thread_fun(2,times(10000)(inc))
inc.__closure__[0].cell_contents

NO



Handling reference counters

• Updating the refcount of an object has to be done atomically
• In case of multi-threading you need to synchronize all the 

times you modify refcounts, or else you can have wrong 
values

• Synchronization primitives are quite expensive on 
contemporary hardware

• Since almost every operation in CPython can cause a refcount 
to change somewhere, handling refcounts with some kind of 
synchronization would cause spending almost all the time on 
synchronization

• As a consequence…
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Concurrency in Python…
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The Global Interpreter Lock (GIL)

• The CPython interpreter assures that only one native thread 
executes Python bytecodes at a time, thanks to the Global 
Interpreter Lock, which is a mutex on the Python interpreter

• The current thread must hold the GIL before it can safely 
access Python objects

• This simplifies the CPython implementation by making the 
object model (including critical built-in types such as dict) 
implicitly safe against concurrent access: no race conditions

• Locking the entire interpreter makes it easier for the 
interpreter to be multi-threaded, at the expense of much of 
the parallelism afforded by multi-processor machines.
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More on the GIL
• However the GIL can degrade performance even when it is 

not a bottleneck. The system call overhead is significant, 
especially on multicore hardware. 

• Two threads calling a function may take twice as much time as 
a single thread calling the function twice. 

• The GIL can cause I/O-bound threads to be scheduled ahead 
of CPU-bound threads. And it prevents signals from being 
delivered. 

• Some extension modules, either standard or third-party, are 
designed so as to release the GIL when doing 
computationally-intensive tasks such as compression or 
hashing. 

• Also, the GIL is always released when doing I/O.
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Alternatives to the GIL?
• Past efforts to create a “free-threaded” interpreter (one which locks 

shared data at a much finer granularity) have not been successful because 
performance suffered in the common single-processor case. 

• It is believed that overcoming this performance issue would make the 
implementation much more complicated and therefore costlier to 
maintain.

• Guido van Rossum has said he will reject any proposal in this direction that 
slows down single-threaded programs.

• Jython (on JVM, -> 2017, Python 2.7) and IronPython (on .NET) have no 
GIL and can fully exploit multiprocessor systems

• PyPy (Python in Python, supporting JIT) currently has a GIL like CPython
• in Cython (compiled, for CPython extension modules) the GIL exists, but 

can be released temporarily using a "with" statement 
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Criticisms to Python: syntax of tuples

• Tuples are made by the commas, not by ( )
• With the exception of the empty tuple…
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>>> type((1,2,3))
<class 'tuple'>
>>> type(())
<class 'tuple'>
>>> type((1))
<class 'int'>
>>> type((1,))
<class 'tuple'>



Experimental feature:
GIL optional in Python 3.13 (Oct. 2024)
• Experimental Support for Free-Threaded Mode where the GIL is disabled. This is aimed at

improving multi-threading capabilities and enabling better performance in CPU-bound tasks.

• Specializing Interpreter Enhancements: The specializing interpreter (interpreter with some 
ad hoc optimizations) has undergone modifications to ensure thread safety without the GIL.

• New Py_mod_gil Slot: Extensions can now define a new PEP 489-style Py_mod_gil slot to 
manage GIL behavior when loading modules. If this slot is not properly set, the interpreter
will enable the GIL and pause all threads, providing warnings to users.

• PYTHONGIL Environment Variable: Users can control GIL behavior at runtime using
the PYTHONGIL environment variable. Setting it to 0 forces the GIL to remain disabled, while
setting it to 1 forces it to be enabled.

• Non-Generational Garbage Collection: The GIL changes support a shift from generational
cyclic garbage collection to a non-generational model, aimed at reducing thread pauses
during garbage collection cycles and improving multi-threading efficiency.

• The feature is potentially reversible if it breaks more of the current implementation of 
Cpython than expected.
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Criticisms to Python: indentation

• Lack of brackets makes the syntax "weaker" than 
in other languages: accidental changes of 
indentation may change the semantics, leaving 
the program syntactically correct.

• Mixed use of tabs and blanks may cause bugs 
almost impossible to detect 36

def foo(x):
    if x == 0:
        bar()
        baz()
    else:
        qux(x)
        foo(x - 1)

def foo(x):
    if x == 0:
        bar()
        baz()
    else:
        qux(x)
    foo(x – 1)



Criticisms to Python: indentation
• Lack of brackets makes it harder to refactor the code or 

insert new one
• "When I want to refactor a bulk of code in Python, I need to 

be very careful. Because if lost, I’m not sure what I’m 
editing belongs to which part of the code. Python depends 
on indentation, so if I have mistakenly removed some 
indentation, I totally have no idea whether the correct code 
should belong to that if clause or this while clause."

• Will Python change in the future?
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>>> from __future__ import braces
  File "<stdin>", line 1
SyntaxError: not a chance
>>> 



Builtins & Libraries
• The Python ecosystem is extremely rich and in fast evolution
• For available functions, classes and modules browse:

– Builtin Functions
• https://docs.python.org/3.13/library/functions.html

– Standard library
• https://docs.python.org/3.13/tutorial/stdlib.html

• There are dozens of other libraries, mainly for scientific computing, 
machine learning, computational biology, data manipulation and 
analysis, natural language processing, statistics, symbolic 
computation, etc. 
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https://docs.python.org/3.13/library/functions.html
https://docs.python.org/3.13/tutorial/stdlib.html


Python libraries…
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