
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-28: Python: OOP, iterators and the GIL

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Next topics

• OO Programming in Python, multiple
inheritance

• Iterators and generators
• Garbage Collection, multi-threading and the

GIL

3

OOP in Python
Typical ingredients of the Object Oriented Paradigm:
• Encapsulation: dividing the code into a public interface, and a

private implementation of that interface;
• Inheritance: the ability to create subclasses that contain

specializations of their parent classes.
• Polymorphism: The ability to override methods of a Class by

extending it with a subclass (inheritance) with a more specific
implementation (inclusion polymorphism)

From https://docs.python.org/3/tutorial/classes.html:
"Python classes provide all the standard features of Object Oriented
Programming: the class inheritance mechanism allows multiple base classes,
a derived class can override any methods of its base class or classes, and a
method can call the method of a base class with the same name. Objects can
contain arbitrary amounts and kinds of data. As is true for modules, classes
partake of the dynamic nature of Python: they are created at runtime, and
can be modified further after creation."

4

https://docs.python.org/3/tutorial/classes.html

Defining a class (object)
• A class is a blueprint for a new data type with specific internal attributes

(like a struct in C) and internal functions (methods).
• To declare a class in Python the syntax is the following:

• statements are assignments or function definitions
• A new namespace is created, where all names introduced in the

statements will go.
• When the class definition is left, a class object is created, bound to

className, on which two operations are defined: attribute reference and
class instantiation.

• Attribute reference allows to access the names in the namespace in the
usual way

5

class className:
 <statement-1>
 …
 <statement-n>

Example: Attribute reference on a class object

6

class Point:
 x = 0
 y = 0
 def str(): # no capture: needs qualified names to refer to x and y
 return "x = " + (str) (Point.x) + ", y = " + (str) (Point.y)
#--------
import ...
>>> Point.x
0
>>> Point.y = 3
>>> Point.z = 5 # adding new name
>>> Point.z
5

>>> def add(m,n):
 return m+n
>>> Point.sum = add # adding new function
>>> Point.sum(3,4)
7

Point
x = 0
y = 0
str()
y = 3
z = 5
sum = add(m,n)

Creating a class instance
• A class instance introduces a new namespace nested in the class

namespace: by visibility rules all names of the class are visible
• If no constructor is present, the syntax of class instantiation is

className(): the new namespace is empty

7

class Point:
 x = 0
 y = 0
 def str():
 return "x = " + str(Point.x) + ", y = " + str(Point.y)
#--------
>>> p1 = Point()
>>> p2 = Point()
>>> p1.x
0
>>> Point.y = 3
>>> p2.y
3

>>> p1.y = 5
>>> p2.y
3

 Point
x = 0
y = 0
str()
y = 3

p1
y = 5

p2

Instance methods

• A class can define a set of instance methods, which are just functions:

• The first argument, usually called self, represents the implicit parameter
(this in Java)

• A method must access the object's attributes through the self reference
(eg. self.x) and the class attributes using className.<attrName> (or
self.__class__.<attrName>)

• The first parameter must not be passed when the method is called with
dot-notation on an object. It is bound to the target object. Syntax:

• But it can be passed explicitly. Alternative syntax:

8

def methodname(self, parameter1, ..., parametern):
 statements

obj.methodname(arg1, ..., argn):

className.methodname(obj, arg1, ..., argn):

"Instance methods"

• Any function with at least one parameter defined in a class can be
invoked on an instance of the class with the dot notation.

• Since the instance obj is bound to the first parameter, par-0 is usually
called self.

• A name x defined in the (namespace of the) instance is accessed as
par-0.x (i.e., usually self.x)

• A name x defined in the class is accessed as className.x (or
self.__class__.x)

9

class Foo
 def fun(par-0, par-1, ..., par-n):
 statements
#----
>>> obj = Foo()
>>> obj.fun(arg-1,...,arg-n)
is syntactic sugar for
>>> obj.__class__.fun(obj,arg-1,...,arg-n)

Constructors
• A constructor is a special instance method with name __init__.
Syntax:

• Invocation: obj = className(arg1, …, argn)

• The first parameter self is bound to the new object.

• statements typically initialize (thus create) "instance variables", i.e.
names in the new object namespace.

S Note: at most ONE constructor (no overloading in Python!)

10

def __init__(self, parameter1, ..., parametern):
 statements

class Point:
 instances = []
 def __init__(self, x=0, y=0):
 self.x = x
 self.y = y
 Point.instances.append(self)
#--------
>>> p1 = Point(3,4)

Point
instances = [<Point
object at ...>]

p1
x = 3
y = 4

What about "methods in instances?"
• Instances are themselves namespaces: we can add functions to them.

• Applying the usual rules, they can hide "instance methods"

11

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y
 def move(z,t):
 self.x -= z
 self.y -= t
 self.move = move
 def move(self,dx,dy):
 self.x += dx
 self.y += dy

>>> p = Point(1,1)
>>> p.x
1
>>> p.move(1,1)
>>> p.x
0
>>> p.__class__.move(p,2,2)
>>> p.x
2

Point
__init__(...)
move(...)

p
x = 1
y = 1
move(...)
__class__

String representation

• It is often useful to have a textual representation of an object
with the values of its attributes. This is possible with the
following instance method:

• This is equivalent to Java's toString (converts object to a
string) and it is invoked automatically when str or print is
called.

12

def __str__(self) :
 return <string>

Special methods

• Analogous to C++
overloading mechanism:
• Pros: very compact syntax
• Cons: may be more difficult

to read if not used with care

13

Operator Class Method
- __sub__(self, other)

+ __add__(self, other)

* __mul__(self, other)

/ __truediv__(self,
other)

Unary Operators
- __neg__(self)

+ __pos__(self)

Operator Class Method
== __eq__(self, other)

!= __ne__(self, other)

< __lt__(self, other)

> __gt__(self, other)

<= __le__(self, other)

>= __ge__(self, other)

Binary Operators

class Point: # example
 ...
 def __add__(self,other):
 return Point(self.x + other.x,
 self.y + other.y)
 def __neg__(self):
 return Point(-self.x, - self.y)

• Method overloading: you can define special instance methods so that
Python's built-in operators can be used with your class

(Multiple) Inheritance, in one slide
• A class can be defined as a derived class

• No need of additional mechanisms: the namespace of derived is
nested in the namespace of baseClass, and uses it as the next non-
local scope to resolve names

• All instance methods are automatically virtual: lookup starts from
the instance (namespace) where they are invoked

• Python supports multiple inheritance

• Diamond problem solved by an algorithm that linearizes the set of
all (directly or indirectly) inherited classes: the Method resolution
order (MRO) , using the C3 algorithm è ClassName.mro()

• https://www.python.org/download/releases/2.3/mro/
14

class derived(baseClass):
 statements
 statements

class derived(base1,..., basen):
 statements
 statements

https://www.python.org/download/releases/2.3/mro/

Encapsulation (and "name mangling")
• Private instance variables (not accessible except from inside an object)

don’t exist in Python.

• Convention: a name prefixed with underscore (e.g. _spam) is treated as
non-public part of the API (function, method or data member).
It should be considered an implementation detail and subject to change
without notice.

Name mangling ("storpiatura")

• Sometimes class-private members are needed to avoid clashes with
names defined by subclasses. Limited support for such a mechanism,
called name mangling.

• Any name with at least two leading underscores and at most one trailing
underscore like e.g. __spam is textually replaced with _Class__spam,
where Class is the current class name.

15

Uses of Name Mangling
• Avoiding Name Clashes: When designing a class hierarchy, you

might define attributes that are intended to be used only within a
specific class. Name mangling helps avoid accidental name clashes
when a subclass defines an attribute with the same name.

• Implementing Encapsulation: While Python does not have private
variables in the strict sense, name mangling provides a way to make
attributes less accessible from outside the class, thus enforcing
encapsulation to some extent.

• Frameworks and Libraries: When developing frameworks or
libraries, you might use name mangling to avoid conflicts with
attributes defined by the users of your framework or library.

16

Name mangling to avoid name clashes

17

class BaseClass:
 def __init__(self):
 self.__mangled_attr = "BaseClass attribute"

 def get_mangled_attr(self):
 return self.__mangled_attr

class SubClass(BaseClass):
 def __init__(self):
 super().__init__()
 self.__mangled_attr = "SubClass attribute"

 def get_subclass_attr(self):
 return self.__mangled_attr

base_obj = BaseClass()
sub_obj = SubClass()

print(base_obj.get_mangled_attr()) # “BaseClass attribute”
print(sub_obj.get_mangled_attr()) # “BaseClass attribute”
print(sub_obj.get_subclass_attr()) # “SubClass attribute”

Name mangling to avoid breaking logic
• Name mangling is helpful for letting subclasses override

methods without breaking intraclass method calls.

18

class Mapping:
 def __init__(self, iterable):
 self.items_list = []
 self.update(iterable) # comment this
self.__update(iterable) # uncomment this
 def update(self, iterable):
 for item in iterable:
 self.items_list.append(item)

__update = update # copy of update(): uncomment

class MappingSubclass(Mapping):

 def update(self, keys, values):
 # provides new signature for update()
 # but does not break __init__()
 for item in zip(keys, values):
 self.items_list.append(item)

Limitations
• Name mangling is not foolproof: While it makes attribute names

harder to access, it is still possible to access them if one knows the
mangled name. For instance, _ClassName__attr can be used
to access the attribute directly.

• Readability: Overuse of name mangling can make the code harder
to read and understand. It should be used judiciously to balance
between avoiding name clashes and maintaining code readability.

• Dynamic Class Names: If you use dynamic class names (e.g., using
type() to create classes), name mangling can become less
predictable and harder to manage.

19

Static methods and class methods

• Static methods are simple functions defined in a class with no self
argument, preceded by the @staticmethod decorator

• They are defined inside a class but they cannot access instance attributes
and methods

• They can be called through both the class and any instance of that class!

• They allow subclasses to customize the static methods with inheritance.
Classes can inherit static methods without redefining them.

• Class methods are similar to static methods but they have a
first parameter which is the class name.

• Definition must be preceded by the @classmethod decorator

• Can be invoked on the class or on an instance.

20

Iterators
• An iterator is an object which allows a programmer to traverse through all the

elements of a collection (iterable object), regardless of its specific implementation.
In Python they are used implicitly by the FOR loop construct.

• Iterable objects must support method __iter__(), returing the iterator

• Iterators must support methods:

• __iter__() returning the iterator object itself

• __next__() returning the next value. It raises a StopIteration
exception if there are no more items to return

• An iterator object can be used only once. After it raises StopIteration once, it
will keep raising the same exception.

• Example:

21

for element in [1, 2, 3]:
print(element)

>>> list = [1,2,3]
>>> it = iter(list)
>>> it
<listiterator object at 0x00A1DB50>
>>> it.__next__()
1
>>> it.__next__()
2
>>> it.__next__()
3
>>> it.__next__() -> raises StopIteration

Generators and coroutines

• Generators are a simple and powerful tool for creating iterators.

• They are written like regular functions but use the yield statement
whenever they want to return data.

• Each time the next() is called, the generator resumes where it left-off (it
remembers all the data values and which statement was last executed).

• Anything that can be done with generators can also be done with class
based iterators (not vice-versa).

• What makes generators so compact is that the __iter__() and
next() methods are created automatically.

• Another key feature is that the local variables and execution state are
automatically saved between calls.

22

Generators (2)
• In addition to automatic method creation and saving program state, when

generators terminate, they automatically raise StopIteration.

• In combination, these features make it easy to create iterators with no
more effort than writing a regular function.

23

def reverse(data):
 for index in range(len(data)-1, -1, -1):
 yield data[index]

#-----------------

>>> for char in reverse('golf'):
... print(char)
...
f
l
o
g

Typing in Python

• Dynamic, strong duck typing
• Code can be annotated with types

• Module typing provides runtime support for
type hints

• Type hints can be checked statically by
external tools, like mypy

• They are ignored by CPython

24

def greetings(name: str) -> str:
 return 'Hello ' + name.

On Polymorphism in Python

• Overloading: forbidden, but its absence
alleviated by:
– Default parameters for functions
– Dynamic typing
– Duck typing

• Overriding: ok, thanks to nesting of
namespaces

• Generics: type hints (module typing + mypy
support generics)

25

Garbage collection in Python

CPython manages memory with a reference counting + a
mark&sweep cycle collector scheme
• Reference counting: each object has a counter storing the

number of references to it. When it becomes 0, memory can
be reclaimed.

• Pros: simple implementation, memory is reclaimed as soon as
possible, no need to freeze execution passing control to a
garbage collector

• Cons: additional memory needed for each object; cyclic
structures in garbage cannot be identified (thus the need of
mark&sweep)

26

Memory safety in Python

No explicit deallocation on the heap
• del removes entries from the namespace
Therefore:
• No dangling pointers in Python
• No double free in Python

27

import ctypes

my_list = [1, 2, 3]

finding the id of list object
my_list_address = id(my_list)

finds reference count of my_list
ref_count = ctypes.c_long.from_address(my_list_address).value

print(f"Ref count for my_list is: {ref_count}")

Getting the reference count:

Race conditions in Python?
Example: Shared counter incremented 10k times in
parallel by two threads.

28

counter in closure
def counter_factory():
 counter = 0
 def counter_increaser():
 nonlocal counter
 counter = counter + 1
 return counter_increaser

Runs fun() in parallel
def thread_fun(nthreads, fun):
 threads = []
 for _ in range(nthreads):
 threads.append(Thread(target = fun))
 threads[-1].start()
 for t in threads:
 t.join()

decorator: repeats fun ntimes
def times(ntimes):
 """Usage:
times(ntimes)(fun)(args,kwargs)"""
 def times_dec(fun):
 def wrapper(*args,**kwargs):
 for i in range(ntimes):
 fun(*args,**kwargs)
 return
 return wrapper
 return times_dec

inc = counter_factory()
thread_fun(2,times(10000)(inc))
inc.__closure__[0].cell_contents

NO

Handling reference counters

• Updating the refcount of an object has to be done atomically
• In case of multi-threading you need to synchronize all the

times you modify refcounts, or else you can have wrong
values

• Synchronization primitives are quite expensive on
contemporary hardware

• Since almost every operation in CPython can cause a refcount
to change somewhere, handling refcounts with some kind of
synchronization would cause spending almost all the time on
synchronization

• As a consequence…

29

Concurrency in Python…

30

The Global Interpreter Lock (GIL)

• The CPython interpreter assures that only one native thread
executes Python bytecodes at a time, thanks to the Global
Interpreter Lock, which is a mutex on the Python interpreter

• The current thread must hold the GIL before it can safely
access Python objects

• This simplifies the CPython implementation by making the
object model (including critical built-in types such as dict)
implicitly safe against concurrent access: no race conditions

• Locking the entire interpreter makes it easier for the
interpreter to be multi-threaded, at the expense of much of
the parallelism afforded by multi-processor machines.

31

More on the GIL
• However the GIL can degrade performance even when it is

not a bottleneck. The system call overhead is significant,
especially on multicore hardware.

• Two threads calling a function may take twice as much time as
a single thread calling the function twice.

• The GIL can cause I/O-bound threads to be scheduled ahead
of CPU-bound threads. And it prevents signals from being
delivered.

• Some extension modules, either standard or third-party, are
designed so as to release the GIL when doing
computationally-intensive tasks such as compression or
hashing.

• Also, the GIL is always released when doing I/O.
32

Alternatives to the GIL?
• Past efforts to create a “free-threaded” interpreter (one which locks

shared data at a much finer granularity) have not been successful because
performance suffered in the common single-processor case.

• It is believed that overcoming this performance issue would make the
implementation much more complicated and therefore costlier to
maintain.

• Guido van Rossum has said he will reject any proposal in this direction that
slows down single-threaded programs.

• Jython (on JVM, -> 2017, Python 2.7) and IronPython (on .NET) have no
GIL and can fully exploit multiprocessor systems

• PyPy (Python in Python, supporting JIT) currently has a GIL like CPython
• in Cython (compiled, for CPython extension modules) the GIL exists, but

can be released temporarily using a "with" statement

33

Criticisms to Python: syntax of tuples

• Tuples are made by the commas, not by ()
• With the exception of the empty tuple…

34

>>> type((1,2,3))
<class 'tuple'>
>>> type(())
<class 'tuple'>
>>> type((1))
<class 'int'>
>>> type((1,))
<class 'tuple'>

Experimental feature:
GIL optional in Python 3.13 (Oct. 2024)
• Experimental Support for Free-Threaded Mode where the GIL is disabled. This is aimed at

improving multi-threading capabilities and enabling better performance in CPU-bound tasks.

• Specializing Interpreter Enhancements: The specializing interpreter (interpreter with some
ad hoc optimizations) has undergone modifications to ensure thread safety without the GIL.

• New Py_mod_gil Slot: Extensions can now define a new PEP 489-style Py_mod_gil slot to
manage GIL behavior when loading modules. If this slot is not properly set, the interpreter
will enable the GIL and pause all threads, providing warnings to users.

• PYTHONGIL Environment Variable: Users can control GIL behavior at runtime using
the PYTHONGIL environment variable. Setting it to 0 forces the GIL to remain disabled, while
setting it to 1 forces it to be enabled.

• Non-Generational Garbage Collection: The GIL changes support a shift from generational
cyclic garbage collection to a non-generational model, aimed at reducing thread pauses
during garbage collection cycles and improving multi-threading efficiency.

• The feature is potentially reversible if it breaks more of the current implementation of
Cpython than expected.

35

Criticisms to Python: indentation

• Lack of brackets makes the syntax "weaker" than
in other languages: accidental changes of
indentation may change the semantics, leaving
the program syntactically correct.

• Mixed use of tabs and blanks may cause bugs
almost impossible to detect 36

def foo(x):
 if x == 0:
 bar()
 baz()
 else:
 qux(x)
 foo(x - 1)

def foo(x):
 if x == 0:
 bar()
 baz()
 else:
 qux(x)
 foo(x – 1)

Criticisms to Python: indentation
• Lack of brackets makes it harder to refactor the code or

insert new one
• "When I want to refactor a bulk of code in Python, I need to

be very careful. Because if lost, I’m not sure what I’m
editing belongs to which part of the code. Python depends
on indentation, so if I have mistakenly removed some
indentation, I totally have no idea whether the correct code
should belong to that if clause or this while clause."

• Will Python change in the future?

37

>>> from __future__ import braces
 File "<stdin>", line 1
SyntaxError: not a chance
>>>

Builtins & Libraries
• The Python ecosystem is extremely rich and in fast evolution
• For available functions, classes and modules browse:

– Builtin Functions
• https://docs.python.org/3.13/library/functions.html

– Standard library
• https://docs.python.org/3.13/tutorial/stdlib.html

• There are dozens of other libraries, mainly for scientific computing,
machine learning, computational biology, data manipulation and
analysis, natural language processing, statistics, symbolic
computation, etc.

38

https://docs.python.org/3.13/library/functions.html
https://docs.python.org/3.13/tutorial/stdlib.html

Python libraries…

39

