301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-27: Python: Functions, Decorators, Namespaces

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Next topics

Function definition

Positional and keyword arguments of
functions

Functions as objects
Higher-order functions and decorators
Namespaces and Scopes

Functions in Python - Essentials

Functions are first-class objects

All functions return some value (possibly None)
~unction call creates a new scope

Parameters are passed by object reference
~unctions can have optional keyword arguments

~unctions can take a variable number of args and
Kwargs

Higher-order functions are supported

Function definition (1)

* Positional/keyword/default parameters

def sum(n,m) :
" adds two values """
return n+m

>>> sum(3,4)

-

>>> sum('hel', 'lo"')

'hello'

>>> sum(m='lo' ,n='hel') # keyword parameters
'hello'

def sum(n,m=5): # default parameter
""" adds two values, or increments by 5 """
return n+m

>>> sum(3)

Function definition (2)

* Arbitrary number of parameters (varargs)

def print args(*items): # arguments are put in a tuple
print (type (items))
return items

>>> print args(1l,"hello",4.5)
<class 'tuple'>
(1, 'hello', 4.5)

def print kwargs(**items): # args are put in a dict
print (type (items))
return items

>>> print kwargs (a=2,b=3,c=3)
<class 'dict'>
{'a': 2, 'b': 3, 'e¢': 3}

Functions are objects

* As everything in Python, also functions are
object, of class function

def echo(arg): return arg

type (echo) # <class 'function'>

hex (id (echo)) # 0x1003c2bfS8

print (echo) # <function echo at 0x1003c2bf8>
foo = echo

hex (id (fo0)) # '0x1003c2b£f8'

print (foo0) # <function echo at 0x1003c2bf8>

isinstance (echo, object) # => True

Function documentation

e The comment after the functions header is
bound to the __doc__ special attribute

def my function():

""TSummary line: do nothing, but document it.
Description: No, really, it doesn't do anything.

mwiiw

pass

print (my function. doc)
Summary line: Do nothing, but document it.

#
Description: No, really, it doesn't do anything.

try also ‘help(my function)’

Higher-order functions

Functions can be passed as argument and
returned as result

Main combinators (map, filter) predefined: allow
standard functional programming style in Python

Heavy use of iterators, which support laziness

Lambdas supported for use with combinators
lambda arguments: expression

— The body can only be a single expression

Map

>>> print(map. doc_) % documentation

map (func, *iterables) --> map object

Make an iterator that computes the function using
arguments from each of the iterables. Stops when the

shortest iterable is exhausted.

>>> map (lambda x:x+1, range(4)) % lazyness: returns
<map object at 0x10195b278> % an iterator

>>> list ()
[1, 2, 3, 4]
>>> list (map(lambda x, y : x+y, range(4), range(10)))

[0, 2, 4, 6] % map of a binary function
>>> z =5 % variable capture

>>> list(map(lambda x : x+z, range(4)))
[5, 6, 7, 8]

Map and List Comprehension
* List comprehension can replace uses of map

>>> list(map(lambda x:x+1, range(4)))

[1, 2, 3, 4]

>>> [x+1 for x in range(4)]

[1, 2, 3, 4]

>>> list(map(lambda x, y : x+y, range(4), range(10)))
[0, 2, 4, 6] % map of a binary function

>>> [x+y for x in range(4) for y in range(10)]

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5,... % NO!

>>> [x+y for (x,y) in zip(range(4) ,range(10))] % OK

[0, 2, 4, 6]

>>> print(zip. doc_)

zip(iterl [,iter2 [...]]) --> zip object

Return a zip object whose . next () method returns a tuple where

the i-th element comes from the i-th iterable argument. The
. _next () method continues until the shortest iterable in the

argument sequence is exhausted and then it raises StopIteration.

Filter (and list comprehension)

>>> print(filter. doc) % documentation

filter (function or None, iterable) --> filter object
Return an iterator yielding those items of iterable for
which function(item) is true. If function is None,

return the items that are true.

>>> filter(lambda x : x % == 0,[1,2,3,4,5,6])
<filter object at 0x102288a58> % lazyness

>>> list()
[2, 4, 6]
>>> [x for x in [1,2,3,4,5,6] 1if x % == 0]

[2, 4, 6] $ same using list comprehension

' ' is the last wvalue

o®

% How to say '"false" in Python
>>> list(filter (None,
[1,0,-1,"","Hello" ,None,[],[1], (), True,False]))
[1, -1, 'Hello', [1l], True]

More modules for functional
programming in Python

* functools: Higher-order functions and operations on
callable objects, including:

— reduce (fun, iterable|[, initializer])

* jtertools: Functions creating iterators for efficient
looping. Inspired by constructs from APL, Haskell, and
SML.

— count(10) --> 10 11 12 13 14

— cycle('ABCD') - ->ABCDABCD ...

— repeat (10, 3) --> 10 10 10

— takewhile (lambda x: x<5, [1,4,6,4,1]1) --> 1 4
— accumulate([1,2,3,4,5]) --> 1 3 6 10 15

Decorators

A decorator is any callable Python object that is used
to modify a function, method or class definition.

A decorator is passed the original object being defined
and returns a modified object, which is then bound to
the name in the definition.

(Function) Decorators exploit Python higher-order
features:

— Passing functions as argument

— Nested definition of functions

— Returning function

Widely used in Python (system) programming

Support several features of meta-programming

Basic idea: wrapping a function

def my decorator (func): # function as argument
def wrapper(): # defines an inner function
print ("Something happens before the function.")
func () # that calls the parameter
print ("Something happens after the function.")

return wrapper # returns the inner function

def say hello(): # a sample function

print ("Hello!")
'say hello' is bound to the result of my decorator
say hello = my decorator(say hello) # function as arg
>>> say hello() # the wrapper is called
Something happens before the function.
Hello!

Something happens after the function.

Syntactic sugar: the "pie" syntax

def my decorator (func): # function as argument
def wrapper(): # defines an inner function
as before

return wrapper # returns the inner function

def say hello(): ## HEAVY! 'say hello' typed 3x
print ("Hello!")

say hello = my decorator(say hello)

* Alternative, equivalent syntax

@my decorator
def say hello():
print ("Hello!")

16

Another decorator: do twice

def do_ twice (func):
def wrapper do twice():
func () # the wrapper calls the
func () # argument twice

return wrapper do twice

@do_twice # decorate the following

def say hello(): # a sample function
print ("Hello!")

>>> say hello() # the wrapper is called

Hello!

Hello!

@do_ twice # does not work with parameters!!

def echo(str): # a function with one parameter
print (str)

>>> echo("Hi...") # the wrapper is called

TypErr: wrapper do_ twice() takes 0 pos args but 1 was given
>>> echo()

TypErr: echo() missing 1 required positional argument: 'str'

do_twice for functions with parameters

* Decorators for functions with parameters can
be defined exploiting *args and **kwargs

def do twice args(func):
def wrapper do twice(*args, **kwargs):
func (*args, **kwargs)
func (*args, **kwargs)

return wrapper do twice

@do twice args @do twice args

def say hello(): def echo(str):
print ("Hello!") print (str)

>>> say hello() >>> echo("Hi... ")

Hello! Hi...

Hello! Hi...

General structure of a decorator

* Besides passing arguments, the wrapper also
forwards the result of the decorated function

* Supports introspection redefining name
and _ doc

import functools
def decorator (func) :
@functools.wraps (func) #supports introspection
def wrapper decorator (*args, **kwargs):
Do something before
value = func(*args, **kwargs)
Do something after
return value

return wrapper decorator

Example: Measuring running time

import functools

import time

def timer (func):
"""Print the runtime of the decorated function"""
@functools.wraps (func)
def wrapper timer (*args, **kwargs):
start time = time.perf counter()
value = func(*args, **kwargs)
end time = time.perf counter()
run time = end time - start time
print (f"Finished {func. name_ !'r} in {run time:.4f} secs")
return value

return wrapper timer

@Qtimer
def waste some time (num_ times):
for in range(num_ times):
sum([i**2 for i in range(10000)])

Other uses of decorators

Debugging: prints argument list and result of calls
to decorated function

Registering plugins: adds a reference to the
decorated function, without changing it

In a web application, can wrap some code to
check that the user is logged in

@staticmethod and @classmethod make a
function invocable on the class name or on an
object of the class

More: decorators can be nested, can have
arguments, can be defined as classes...

Example: Caching Return Values

import functools
from decorators import count calls

def cache (func):

"""Keep a cache of previous function calls"""
@functools.wraps (func)
def wrapper cache(*args, **kwargs):
cache key = args + tuple(kwargs.items())
if cache key not in wrapper cache.cache:
wrapper cache.cache[cache key] = func(*args,
return wrapper cache.cache[cache key]
wrapper cache.cache = dict()

return wrapper cache

@cache
@count_calls # decorator that counts the invocations

def fibonacci (num) :

if num < 2:
return num
return fibonacci(num - 1) + fibonacci(num - 2)

**kwargs)

Namespaces and Scopes

A namespace is a mapping from names to objects: typically
implemented as a dictionary. Examples:
— builtins: pre-defined functions, exception names,...
* Created at intepreter's start-up
— global names of a module

* Created when the module definition is read
* Note: names created in interpreter are in module __main__

— local names of a function invocation
* Created when function is called, deleted when it completes

— and also names of a class, names of an object... see later
Name x of a module m is an attribute of m

— accessible (read/write) with “qualified name” m.x

— if writable, it can be deleted with del

Namespaces and Scopes (2)

A scope is a textual region of a Python program where a
namespace is directly accessible, i.e. reference to a name
attempts to find the name in the namespace.

Scopes are determined statically, but are used dynamically.

During execution at least three namespaces are directly
accessible, searched in the following order:

the scope containing the local names

the scopes of any enclosing functions, containing non-local, but
also non-global names

the next-to-last scope containing the current module’s global
names

the outermost scope is the namespace containing built-in
names

Assignments to names go in the local scope

Non-local variables can be accessed using nonlocal or
global

Scoping rules

spam

global

def scope test():

def do_local(): S

spam = "local spam"

def do_nonlocal():
nonlocal spam
spam = '"nonlocal spam"

def do_global() :

global spam
spam = '"global spam"

spam = '"test spam”

scope test

do local ()
spam

do nonlocal ()

do global ()

do local()

print ("After local assignment:", spam)

do nonlocal ()

print ("After nonlocal assignment:", spam)
do global ()

print ("After global assignment:", spam)

scope test()
print ("In global scope:", spam)

not affected

affected

not affected

After local assignment: test spam

After nonlocal assignment: nonlocal spam
After global assignment: nonlocal spam
In global scope: global spam

Criticisms to Python: scopes

e Control structures don’t introduce a new

scope

def test () :
for a in range(5):
b=a5%2
print (b)
print (b)

>>> test()

def test(x):
print (x)
for x in range(5):
print (x)
print (x)

>>> test("Hello!'")

Closures in Python

* Python supports closures: Even if the scope of the
outer function is reclaimed on return, the non-local
variables referred to by the nested function are saved
in its attribute closure

def counter factory():
counter = 0
def counter increaser():
nonlocal counter
counter = counter + 1
return counter

return counter_increaser

>>> £ = counter factory()

>>> £()

1

>>> £()

2

>>> f. closure

(<cell at 0x1033ace88: int object at 0x10096dce0>,)

