
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-26: Introduction to Python

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

2

§ Python Developed by Guido van Rossum in the early 1990s
§ In July 2018, Van Rossum stepped down as the leader in the language community after

30 years.

§ Named after Monty Python

§ Available for download from http://www.python.org

Slides freely adapted from:
“Full Python Tutorial”

http://www.python.org/

4

Language features
§ Interpreted
§ Dynamically typed
§ Object oriented (simple object system)
§ Supports imperative and functional paradigms
§ Several sequence types

§ Strings; List, mutable; Tuples, immutable; Sets
§ Dictionaries (hash maps)

§ Powerful subscripting (slicing)
§ Higher-order functions (@decorators)
§ Flexible signatures
§ Iterators and generators
§ Exceptions as in Java
§ Supports multi-threading
§ Indentation instead of braces ({…})

5

Pragmatics: Why Python?
§ Most used general purpose language
§ Better Machine Learning libraries!

§ Very good example of scripting, “glue” language
§ “Pythonic” style is very concise
§ Powerful but unobtrusive object system

§ Every value is an object

§ Powerful collection and iteration abstractions
§ Dynamic typing makes generics easy

6

Dynamic typing – the key difference
§ Java & others: statically typed

§ Variable declaration (or type inference) fixes the type
§ Python

§ Variables come into existence when first assigned to
§ Variables are not typed: Values are typed!
§ A variable can refer to an object of any type

§ Even to objects of different types in the same execution
§ Strongly typed: value type does not change in

unexpected ways
§ Type-safe: no conversion or operation can be applied to

values of wrong type
§ Really? Not proved… and Bools…

§ Clearly, type errors are only caught at runtime
§ Duck typing (vs. traits and type classes)

“Pythonic” style is very concise
Suggested reading:
§ PEP 8- Style Guide for Python Code

§ http://www.python.org/dev/peps/pep-0008/
§ The official style guide to Python, contains many helpful

programming tips

§ Concise syntax, avoid top-level declarations

§ Python 2.7 supported till 1/1/2020. Now Python 3.12
7

class Hello { // Java
 public static void main(String[] args) {
 System.out.println("Hello, world!");
 }
}

print "Hello, world!\n" # Python

http://www.python.org/dev/peps/pep-0008/

Useful commands of Python interpreter
§ Download it from https://www.python.org/
§ Current version: 3.12.0
§ help() Enters Python interactive help utility
§ help(arg) Prints documentation about arg

§ Example: help(1), help(str), help({}), help(print), help(builtins)

§ type(arg) Prints the type of arg
§ Example: type(1), type("Hello"), type(str), type(type)

§ _ : in the interpreter is the value of the last expression
§ Since "everything is an object", try "dot-completion" to

see what are the options…
§ Example: 1. <tab><tab> "hello". <tab><tab>
§ NB: the latter might not work. Try: "hello" <ret>; _. <tab><tab>

8

The dir() Function
§ The built-in function dir() returns a sorted list of

strings containing all names defined in a module,
a class, or an object

9

>>> import sys
>>> dir(sys) # Prints names defined in sys
['__displayhook__', '__doc__', '__excepthook__', '__loader__',
'__name__', '__package__', '__stderr__', '__stdin__',
 ...
>>> dir() # Prints names defined currently
 ...
>>> import builtins
>>> dir(builtins) #Prints built-in functions and variables

>>> dir(str) #Prints all members of class str

Defining Modules
§ Modules are files containing definitions and statements. A

module defines a new namespace.
§ Modules can be organized hierarchically in packages

10

File fibo.py - Fibonacci numbers module
def fib(n): # write Fibonacci series up to n
 a, b = 0, 1
 while b < n:
 print(b, end=' ')
 a, b = b, a+b
 print()

def fib2(n): # return Fibonacci series up to n
 result = []
 a, b = 0, 1
 while b < n:
 result.append(b)
 a, b = b, a+b
 return result

Importing a module

11

>>> import fibo # imports module from local file
'fibo.py'
>>> fibo.fib(6) # dot notation
[1, 1, 2, 3, 5]
>>> fibo.__name__ # special attribute __name__
'fibo'
>>> fibo.fib.__module__ # special attribute __module__
'fibo'

>>> from fibo import fib, fib2
 # or from fibo import *
>>> fib(500)
>>> fib.__module__ # special attribute __module__
'fibo'
>>> fibo.__name__ # NameError: name 'fibo' is not defined

Selective import

Executing a module as a script
§ A module can be invoked as a script from the shell as

§ Executed with __name__ set to "__main__".

12

File fibo.py - Fibonacci numbers module
def fib(n): # write Fibonacci series up to n
 ...
def fib2(n): # return Fibonacci series up to n
 ...
if __name__ == "__main__": # added code

import sys
fib(int(sys.argv[1]))

> python fibo.py 60

> python fibo.py 60
1 1 2 3 5 8 13 21 34
>

Basics of Python

§ Don’t bother with a class unless you actually want to make an
object

§ Functions don't need return or parameter types
§ Indentations matter, not { }.
§ Begin functions with : and end by unindenting
§ Strings can be " " or ' ', comments begin with #
§ No semicolons needed 13

public class Hello { // Java
public static void main(String[] args) {

// print to the console
System.out.println("Hello, world");

}
}

def main(args): # Python
print to the console
print('Hello, world')

14

Basic data types and operators
§ Unbounded integers
§ Floating point numbers: 64 bits
§ For numbers + - * / % as expected. // int division.

§ Special use of % for string formatting (as with printf in C)
§ Logical operators are words (and, or, not), not

symbols
§ Strings enclosed in '_', "_", """_"""

§ + also for string concatenation.
§ EOL-comments: # …
§ Docstrings:

def my_function(x, y):
 """This is the docstring. This
 function does blah blah blah. """
The code would go here...

15

Assignment
§ Assignment in Python does not create a copy
§ It sets the name to hold a reference to some object.
§ A variable is created the first time it appears on the

left side of an assignment expression:
 x = 3

§ An object is deleted (by the garbage collector) once it
becomes unreachable.

§ CPython uses Reference Counting + Mark & Sweep
for garbage collection

§ Multiple assignment:
>>> x, y = 2, 3
>>> x
2
>>> y
3

16

Sequence Types
1. Tuples: immutable, ordered, heterogeneous

• Syntax: (), (2, 3.14, False),
((2,3), [], "ljshdb")

2. Strings (str): immutable, ordered, only chars (UTF-8
Unicode)

3. Lists : mutable, ordered, heterogeneous
§ Syntax: [], [2, 3.14, False],

[[2,3], (), "ljshdb"]

§ Use list(_) and tuple(_) for conversion
§ Element selector: <seq>[<index>]

§ 0 based
§ Negative index start from right (-1)

§ [1,2,3][0] == 1 [1,2,3][-2] == 2

17

Operators on sequences
§ Slicing: returns a subsequence of the original sequence, a copy. Start copying

at the first index, and stop copying before the second index.

>>> t = (23, 'abc', 4.56, (2,3), 'def')
>>> t[1:4] # ('abc', 4.56, (2,3))
>>> t[1:-1] # negative indices ('abc', 4.56, (2,3))
>>> t[1:-1:2] # optional argument: step ('abc', (2,3))
>>> t[:2] # no first index: from beginning (23, 'abc’)
>>> t[2:] # no second index: to end (4.56, (2,3), 'def')
>>> t[:] # no indexes: creates a copy (23, 'abc', 4.56, (2,3), 'def’)

§ Concatenation: + also for tuples and lists: new sequence
§ Membership: in operator

>>> t = [1, 2, 4, 5]
>>> 3 in t
False
>>> 4 in t
True
>>> 4 not in t
False

>>> a = 'abcde'
>>> 'c' in a
True
>>> 'cd' in a
True
>>> 'ac' in a
False

18

Operators on lists only
§ Only lists are mutable: we can change them in place.

§ append and insert

§ extend: like +, but it adds elements in place
§ index, count: first occurrence / number of occs [also tuples]
§ remove, reverse, sort, …

>>> li = ['abc', 23, 4.34, 23]
>>> li[1] = 45
>>> li
['abc', 45, 4.34, 23]

>>> li = [1, 11, 3, 4, 5]
>>> li.append('a') # Note the method syntax
>>> li
[1, 11, 3, 4, 5, 'a']
>>> li.insert(2, 'i')
>>> li
[1, 11, 'i', 3, 4, 5, 'a']

List Comprehensions

[expression for name in list]
§ Where expression is some calculation or operation acting upon

the variable name.
§ For each member of the list, the list comprehension

1. sets name equal to that member, and
2. calculates a new value using expression,

§ It then collects these new values into a list which is the return
value of the list comprehension.

19

>>> li = [3, 6, 2, 7]
>>> [elem*2 for elem in li]
[6, 12, 4, 14]

List Comprehensions 2
§ If the elements of list are other collections, then name

can be replaced by a collection of names that match the
“shape” of the list members.

§ Sort of pattern matching, also possible for plain assignment…
§ Try:

[expression for name in list]

20

>>> li = [('a', 1), ('b', 2), ('c', 7)]
>>> [n * 3 for (x, n) in li]
[3, 6, 21]

>>> (x, y)= (2, 3)
>>> [x, y]= [2, 3]
>>> (x, y)= [2, 3]
>>> (x, y)= "23"

Filtered List Comprehension

§ Filter determines whether expression is performed on each
member of the list.

§ When processing each element of list, first check if it
sacsfies the filter condicon.

§ If the filter condicon returns False, that element is omided
from the list before the list comprehension is evaluated.

§ Only 6, 7, and 9 sacsfy the filter condicon.
§ So, only 12, 14, and 18 are produced.

[expression for name in list if filter]

21

>>> li = [3, 6, 2, 7, 1, 9]
>>> [elem * 2 for elem in li if elem > 4]
[12, 14, 18]

§ Since list comprehensions take a list as input and produce
a list as output, they are easily nested:

§ The inner comprehension produces: [4, 3, 5, 2].
§ So, the outer one produces: [8, 6, 10, 4].

Nested List Comprehensions

22

>>> li = [3, 2, 4, 1]
>>> [elem*2 for elem in
 [item+1 for item in li]]
[8, 6, 10, 4]

Sets

23

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange',
'banana'}
>>> print(basket) # show that duplicates have been removed
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket # fast membership testing
True
>>> 'crabgrass' in basket
False
>>> # Demonstrate set operations on unique letters from two words
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a # unique letters in a
{'a', 'r', 'b', 'c', 'd'}
>>> a - b # letters in a but not in b
{'r', 'd', 'b'}
>>> a | b # letters in a or b or both
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b # letters in both a and b
{'a', 'c'}
>>> a ^ b # letters in a or b but not both
{'r', 'd', 'b', 'm', 'z', 'l'}

• Empty set: set()
• Indexing not supported
• Mixed types

Dictionaries: Like maps in Java
§ Dictionaries store a mapping between a set of keys and a set

of values.
§ Keys can be of any immutable hashable type

§ cannot contain mutable components
§ Values can be any type
§ Values and keys can be of different types in a single dictionary

§ You can
§ define
§ modify
§ view
§ lookup
§ delete

 the key-value pairs in the dictionary.
24

CreaRng and accessing dicRonaries

§ Keys must be unique.

25

>>> d = {'user':'bozo', 'pswd':1234}

>>> d['user']
'bozo'

>>> d['pswd']
1234

>>> d['bozo']

Traceback (innermost last):
 File ‘<interactive input>’ line 1, in ?
KeyError: bozo

>>> d1 = {1:7,1:5}
>>> d1
{1: 5}

§ Assigning to an existing key changes the value.

Updating Dictionaries

26

>>> d = {'user':'bozo', 'pswd':1234}

>>> d['user'] = 'clown'
>>> d
{'user':'clown', 'pswd':1234}

>>> d['id'] = 45
>>> d
{'user':'clown’, 'id':45, 'pswd':1234}

§ Assigning to a non-existing key adds a new pair.

§ Dictionaries are unordered
§ New entry might appear anywhere in the output.

§ (Dictionaries work by hashing)

Removing dictionary entries
>>> d = {'user':'bozo', 'p':1234, 'i':34}

>>> del d['user'] # Remove one. Note that del is
 # a function.

>>> d
{'p':1234, 'i':34}

>>> d.clear() # Remove all.
>>> d
{}

>>> a=[1,2]
>>> del a[1] # (del also works on lists)
>>> a
[1]

27

Useful Accessor Methods
>>> d = {'user':'bozo', 'p':1234, 'i':34}

>>> list(d.keys()) # List of current keys
['user', 'p', 'i']

>>> list(d.values()) # List of current values.
['bozo', 1234, 34]

>>> list(d.items()) # List of item tuples.
[('user','bozo'), ('p',1234), ('i',34)]

>>> list(d) # When accessing a dictionary as
 # a list, the keys are returned
['user', 'p', 'i’]

28

Using dictionaries

29

Write a program to compute the frequency of the words
of a string read from the input. The output should print
the words in increasing alphanumerical order.

freq = {} # frequency of words in tex
line = input()
for word in line.split():
 freq[word] = freq.get(word,0)+1

words = list(freq.keys())
words.sort()

for w in words:
 print ("%s:%d" % (w,freq[w]))

Boolean expressions
§ True and False only constants
§ Other values are treated as equivalent to either True or
False when used in conditionals:
§ False: zero, None, empty containers
§ True: non-zero numbers, non-empty objects
§ See PEP 8 for the most Pythonic ways to compare

§ Comparison operators: ==, !=, <, <=, etc.
§ X == Y # X and Y have same value (like Java equals method)
§ X is Y # X and Y refer to the exact same object (like Java ==)

§ Logical connectives
§ a and b a or b not a

§ Conditional expressions
§ x = <true_value> if <condition> else <false_value>

 # lazy
30

Control statements: conditional

Note:
§ Use of indentation for blocks
§ Colon (:) after boolean expression

31

if x == 3:
 print("X equals 3.")
elif x == 2:
 print("X equals 2.")
else:
 print("X equals something else.")
print ("This is outside the 'if'.")

while Loops

32

>>> x = 3
>>> while x < 5:
 print (x, "still in the loop")
 x = x + 1
3 still in the loop
4 still in the loop
>>> x = 6
>>> while x < 5:
>>> print (x, "still in the loop")

>>>

§ break inside a loop to leave the while loop encrely.
§ continue inside a loop stops processing the current

iteracon and immediately go on to the next one.

assert
§ An assert statement will check to make sure that

something is true during the course of a program.
§ If the condition if false, the program throws an exception

(AssertionError)

 assert(number_of_players < 5)

33

For Loops 1
§ For-each is Python’s only form of for loop
§ A for loop steps through each of the items in a collection type, or any

other type of object which is “iterable”

§ If <collection> is a list or a tuple, then the loop steps through each
element of the sequence.

§ If <collection> is a string, then the loop steps through each character
of the string.

34

for <item> in <collection>:
 <statements>

for someChar in "Hello World":
 print(someChar)

For Loops 2

§ <item> can be more complex than a single variable name
§ In that case it is matched against the structure of the

elements of <collection>

35

for (x, y) in [('a',1), ('b',2), ('c',3), ('d',4)]:
 print(x)

for <item> in <collection>:
 <statements>

For loops and the range() function
§ We often want to write a loop where the variables ranges over some

sequence of numbers. The range() function returns an iterator
producing numbers from 0 up to but not including the number we
pass to it.

§ range(5) returns an iterator producing 0, 1, 2, 3, 4.
§ So we can write:

§ Variant: range(start, stop[,step])

36

for x in range(5):
 print(x)

Abuse of the range() function
§ Don't use range() to iterate over a sequence solely to

have the index and elements available at the same time
§ Avoid:

§ Instead:

§ This is an example of an anti-pattern in Python
§ For more, see: http://lignos.org/py_antipatterns/

37

for (i, item) in enumerate(mylist):
 print(i, item)

for i in range(len(mylist)):
 print(i, mylist[i])

http://lignos.org/py_antipatterns/

