
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

h-p://pages.di.unipi.it/corradini/

AP-24: RUST #2

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

The RUST programming language

• Brief history
• Memory safety
• Avoiding Aliases + Mutable
• Ownership and borrowing
• Life6mes
• Enums, Structs, Generics, Traits…
• Unsafe
• Smart Pointers
• Concurrency

2

Ownership System
• Rust has an ownership system, which supports

RAII in a strict way
• Based on the concepts of ownership and

borrowing
• Ownership can be summarized by three rules:
[O1] Every value is owned by a variable, identified
by a name (possiby a path);
[O2] Each value has at most one owner at a time;
[O3] When the owner goes out-of-scope, the
value is reclaimed / destroyed.

3

RECAP

Borrowing
• Ownership rules are too restrictive.
• A resource can be borrowed from its owner (via

assignment or parameter passing).
• To guarantee memory safety, borrowing rules ensure

that ALIASING and MUTABILITY cannot coexist
• Values can be passed
– by immutable reference (with x = &y)
– by mutable reference (with x = &mut y)
– or by value (with x = y)

5

Borrowing Rules
[B1] At most one mutable reference to a resource can
exist at any time
[B2] If there is a mutable reference, no immutable
references can exist
[B3] If there is no mutable reference, several
immutable references to the same resource can exist
• During borrowing, ownership is reduced or

suspended:
[B4] Owner cannot free or mutate its resource while it
is immutably borrowed
[B5] Owner cannot even read its resource while it is
mutably borrowed 6

Borrowing: examples
[B1] At most one mutable reference to a resource can exist at any 7me
[B2] If there is a mutable reference, no immutable references can exist
[B3] If there is no mutable reference, several immutable references to
the same resource can exist

7

let mut s = String::from("example");
let r1 = &mut s;
let r2 = &mut s;
println!("{} {}", r1, r2); // does not compile by rule B1

let mut s = String::from("example");
let r1 = &s;
let r2 = &mut s;
println!("{} {}", r1, r2); // does not compile by rule B2

let s = String::from("example");
let r1 = &s;
let r2 = &s;
println!("{} {}", r1, r2); // ok by rule B3

Strings in Rust
Two main types for strings:
• String: does not require to know the length at compilation

time, thus allocated on heap
• &str: size must be known statically, allocated on the stack
Method String::from() allocates memory on the heap: it takes
an argument of type &str and returns a String.
A String object has three components: a reference to the heap
location containing the character sequence, a capacity and a
length unsigned integer values.
String does not implement Copy, thus assignment has move
semantics.
Assignment creates a copy of length, capacity and reference,
but not of the char sequence in the heap.

8

Dangling pointers: not in Rust
Transla-on of C++ code does not compile by rule [B4]

10

string *s; // C++ code
{
 string s1 = "scope 1";
 s = &s1;
}
{
 string s2 = "scope 2";
}
cout << *s << endl;

Prints "scope 1" if compiled with x86-64 clang 13.0.1, but it
prints "scope 2" if compiled with x86-64 gcc 11.2 (see
hCps://godbolt.org/)

fn main() { // Rust code
 let s;
 {
 let s1 = String::from("scope 1");
 s = &s1;
 }
 {
 let _s2 = String::from("scope 2");
 }
 println!("s == {}", s);
}

error[E0597]: `s1` does not live long enough
 --> src\main.rs:7:13
 |
7 | s = &s1;
 | ^^^ borrowed value does not live long enough
8 | }
 | - `s1` dropped here while still borrowed
...
12 | println!("s == {}", s);
 | - borrow later used here

Lifetimes
• A life%me is a construct that the borrow checker uses to

ensure the validity of the above rules
• LifeBmes are associated with each individual ownership

and borrowing
• A lifeBme begins when the ownership starts, and ends

when it is moved / destroyed.
• For borrowings, it ends where the borrowed value is

accessed the last =me
• LifeBmes are mostly inferred. SomeBmes must be made

explicit using the same syntax of generics
• Using lifeBmes, the compiler checks the validity of the

rules of ownership and borrowing in the expected way
• In parBcular, it ensures that (the owner of) every

borrowed variable/reference has a lifeBme that is longer
than the borrower [B4,B5]

11

LifeEme and borrowing: example

12

fn main() {
 let mut s= String::from("ex-1");
 println!("s-0 == {}", s);
 let t = &mut s;
 *t = String::from("ex-2");
// println!("s-1 == {}", s); // what happens if uncommented?
 println!("t == {}", t);
 println!("s-2 == {}", s);
 let z = &s;
 println!("s-3 == {}", s);
 let w = z;
 println!("{},{},{}",z,w,s);
}

s-0 == ex-1
t == ex-2
s-2 == ex-2
s-3 == ex-2
ex-2,ex-2,ex-2

Lifetimes and function calls
• Borrowed (reference) formal parameters of a func7on have a

life7me.
• If borrowed values are returned, each must have a life7me. The

compiled tries to infer life7mes according to some rules:
[R1] The life7mes of the borrowed paramers are, by default, all dis7nct
[R2] If there is exactly one input life7me, it will be assigned to each
output life7me
[R3] If a method has more than one input life7me, but one of them is
&self or &mut self, then this life7me is assigned to all output life7mes
• Otherwise explicit life7mes are necessary

13

fn longest(s1: &str, s2: &str) -> &str { //does not compile
 if s1.len() > s2.len() { s1 }
 else { s2 }
 }

fn longest<'a>(s1: &'a str, s2: &'a str) -> &'a str {
if s1.len() > s2.len() { s1 }
else { s2 }

Explicit LifeEmes in funcEon calls

14

// `print_refs` takes two references to `i32` which have different
// lifetimes `'a` and `'b` (passed as generic parameters).
fn print_refs<'a, 'b>(x: &'a i32, y: &'b i32) {
 println!("x is {} and y is {}", x, y);
}

// A function whith no arguments but with a lifetime parameter `'a`.
fn failed_borrow<'a>() {
 let _x = 12;
 // ERROR: `_x` does not live long enough
 // let y: &'a i32 = &_x; // uncomment this!
 // The lifetime of `&_x` is shorter than that of `y`.
 // A short lifetime cannot be coerced into a longer one.
}

fn main() {
 let (four, nine) = (4, 9); // Create variables to be borrowed
 print_refs(&four, &nine); //Borrows of both variables are passed
 // The lifetime of `four` and `nine` must
 // be longer than that of `print_refs`.
 failed_borrow();
}

Enums: algebraic data types
• Like in Haskell
• Replace unions in C/C++

16

enum RetInt {
 Fail(u32),
 Succ(u32)
}

fn foo_may_fail(arg: u32) -> RetInt {
 let fail = false;
 let errno: u32;
 let result: u32;
 ...
 if fail {
 RetInt::Fail(errno)
 } else {
 RetInt::Succ(result)
 }
}

enum std::option::Option<T> {
 None,
 Some(T)
}

Enums: Trees as ADT, generic

17

#[derive(Debug)] // needed to print
enum Tree<T> {
 Empty,
 Node(T, Box<Tree<T>>, Box<Tree<T>>)
}

fn main() {
 let tree = Tree::Node(
 42,
 Box::new(Tree::Node(
 0,
 Box::new(Tree::Empty),
 Box::new(Tree::Empty)
)),
 Box::new(Tree::Empty));

 println!("{:?}", tree);
 // prints Node(42, Node(0, Empty, Empty), Empty)
}

Pattern matching

• Compiler enforces that matching is complete
• Useful for Enums, but also for integral types

18

fn main() {
 let x = 5; // try others…

 match x {
 1 => println!("one"),
 2 => println!("two"),
 3|4 => println!("three or four"),
 5..=10 => println!("five to ten"),
 e @ 11..=20 => println!("{}", e),
 i32::MIN..=0 => println!("less than zero"),
 21.. => println!("large"),
 _ => println!("???"),
 }
}

Classes: Struct + Impl

19

#[derive(Debug)]
struct Rectangle { // class
 width: u32, // instance variable
 height: u32,
}

impl Rectangle { // methods
 fn area(&self) -> u32 { // first argument is this
 self.width * self.height // try to change width...
 }
}

fn main() {
 let rect1 = Rectangle {
 width: 30,
 height: 50,
 };
 println!(
 "The area of the rectangle is {} square pixels.", rect1.area()
);
}

No inheritance in RUST! è Pushing
composition over inheritance

Traits

• Equivalent to Type Classes in Haskell and to Concepts in
C++20, similar to Interfaces in Java

• A trait can include abstract and concrete (default)
methods. It cannot contain fields / variables.

• A struct can implement a trait providing an
implementaHon for at least its abstract methods

impl <TraitName> for <StructName>{ … }
• The #[derive] clause can be used to derive

automaHcally an implementaHon of a trait, if possible
• Support for bounded universal explicit polymorphism

with generics, as in Java, where bounds are one or
more traits.

20

Trait example: Stack of Slots of <T>

21

trait Stack<T> {
 fn new() -> Self;
 fn is_empty(&self) -> bool;
 fn push(&mut self, data: Box<T>);
 fn pop(&mut self) -> Option<Box<T>>;
}

impl<T> Stack<T> for SLStack<T> {
 fn new() -> SLStack<T> {
 SLStack{ top: None }
 }
 ...
 fn is_empty(&self) -> bool {
 match self.top {
 None => true,
 Some(..) => false,
 }
 }
}

struct Slot<T> {
 data: Box<T>,
 prev: Option<Box<Slot<T>>>
}

struct SLStack<T> {
 top: Option<Box<Slot<T>>>
}

Generic func4ons: Bounded
polymorphism

• Generic funcBons may have the generic type of parameter
bound by one or more traits. Within such a funcBon, the
generic value can only be used through those traits.

• Therefore a generic funcBon can be type-checked when
defined (as in Java, unlike C++ templates).

• However, implementa/on of Rust generics similar to typical
implementaBon of C++ templates: a separate copy of the
code is generated for each instanBaBon.

• Thus Rust uses monomorphiza=on and contrasts with the
type erasure scheme of Java.
– Pros: op7mized code for each specific use case
– Cons: increased compile 7me and size of the resul7ng binaries.

22

Using Traits for Bounded
Polymorphism

23

trait Stack<T> {
 fn new() -> Self;
 fn is_empty(&self) -> bool;
 fn push(&mut self, data: Box<T>);
 fn pop(&mut self) -> Option<Box<T>>;
}

fn generic_push<T, S: Stack<T>>(stk: &mut S,
 data: Box<T>) {
 stk.push(data);
}

fn main() {
 let mut stk = SLStack::<u32>::new();
 let data = Box::new(2048);
 generic_push(&mut stk, data);
}

Multiple Traits as bounds

24

trait Clone {
 fn clone(&self) -> Self;
}

impl<T> Clone for SLStack<T> {
 ...
}

fn immut_push<T, S: Stack<T>+Clone>(stk: &S, data: Box<T>) -> S {
 let mut dup = stk.clone();
 dup.push(data);
 dup
}

fn main() {
 let stk = SLStack::<u32>::new();
 let data = Box::new(2048);
 let stk = immut_push(&stk, data);
}

System Traits
• Traits are widely used as predicates/annotations on data types,

useful for the compiler
• Clone: allows to create a deep copy of a value using the method

clone(). The duplication process might involve running arbitrary
code

• Copy: allows to duplicate a value by only copying bits stored on the
stack; no arbitrary code is necessary. Marker trait

• Debug: support default conversion to text, for printing (marker)
• Display: programmable conversion to text, fmt()
• Deref and Drop: implemented by Smart Pointers
• Synch and Send: declare if a data type can be moved to another

thread (marker)

25

