
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-22: The Java Memory Model

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Memory model
• A memory model for multithreaded systems specifies how memory

actions (e.g., reads and writes) in a program will appear to execute
to the programmer, and specifically, which value each read of a
memory location may return.

• Every hardware and software interface of a system that admits
multithreaded access to shared memory requires a memory
model.

• The model determines the transformations that the system
(compiler, virtual machine, or hardware) can apply to a program.
– For example, given a program in machine language, the memory

model for the machine language / hardware interface will determine
the optimizations the hardware can perform.

2

Memory model (2)
• For a high-level programming language such as Java, the memory model

determines
– the transformations the compiler may apply to a program when producing

bytecode,
– the transformations that a virtual machine may apply to bytecode when

producing native code, and
– the optimizations that hardware may perform on the native code.

• The model also impacts the programmer; the transformations it allows (or
disallows) determine the possible outcomes of a program, which in turn
determines which design patterns for communicating between threads
are legal.

• Without a well-specified memory model for a programming language, it is
impossible to know what the legal results are for a program in that
language.

3

JMM - Java Memory Model
• New version with Java 5 (2004)
• Specifies legal behaviour of multithreaded programs
• Provides standard guarantees for correctly synchronized

programs: sequential consistency of data-race-free
programs

• For incorrectly synchronized program the behaviour is
bounded by a well-defined notion of causality

• The causality constraints are strong enough to respect the
safety and security properties of Java and weak enough to
allow standard compiler and hardware optimizations.

• This was one of the first memory models for high level
programming languages.
– The one of C++ was introduced with C++11.

4

JVM Runtime Data Areas

5

• Local variables of methods
are allocated on thread
stack (primitive types)

• Local variables cannot be
accessed by other threads

• Objects are allocated on
the heap

• Only objects (and their
fields) can be shared
among threads

Memory Hierarchy
• In modern architectures, memory is stratified into

different levels, ranging from mass memory (hard disk)
to CPU registers, passing through different levels of
cache
– this stratification is called memory hierarchy

• Some layers, such as registers and first cache layers, are
separated between different cores

• Other layers, such as RAM, are shared between cores
For example, this is a part of the memory hierarchy in
some processors:

6

• They are orthogonal:

• Access to shared variables, possibly in different
memory areas, leads to two main problems:

Visibility of updates & Data races
• Java provides two mechanism to synchronize

accesses to shared memory: the volatile modifier
and synchronized methods / blocks

• The JMM takes them into account explicitly

JVM data areas and Memory Hierarchy

7

Visibility of updates of shared objects

• Due to caches and to policies of “flushing”

• Possible solution: the volatile modifier

8

Visibility problems

9

public class Loop {
static boolean done;
static int n;
public static void main(String args[]) {

Thread t = new Thread() {
public void run() {

n = 42;
try {

sleep(1000);
} catch (InterruptedException e) {

return;
}
done = true;
System.out.println("Fatto");

}};
t.start();
while (!done) {
}
System.out.println(n);

}}

• Note that the two threads share the variables n
and done, but do not use any synchronization
mechanism.

• The while loop of thread 1 can behave like an
infinite loop, even if thread 2 after waiting one
second executes done = true.

• In fact, in the absence of synchronization, there is
no guarantee as to when the write to the done
variable made by thread 2 will be visible to
thread 1.

• The JMM allows this behavior.
• To avoid it, the variable done can be declared

volatile.
10

The volatile modifier

• volatile is a modifier that can only be applied to
fields of a class

• Intuitively, volatile declares that that field can be
accessed or modified by multiple threads
– A volatile field cannot be final: it would be meaningless

• The JMM guarantees (see later) that the write of a
volatile variable is visible when it is read

• An implementation should guarantee that the new
value is flushed from the cache to the RAM

11

12

public class Loop {
static volatile boolean done;
static int n;

public static void main(String args[]) {
Thread t = new Thread() {

public void run() {
n = 42;
try {

sleep(1000);
} catch (InterruptedException e) {

return;
}
done = true;
System.out.println("Fatto");

}
};
t.start();
while (!done) {
}
System.out.println(n);

}
}

Each reading of the
done variable made by
the main thread makes
visible the changes to
done made by the other
thread

Therefore, the main
thread always
terminates.

Data Races
• Simplifying, there is a data race if two threads can execute

two conflicting actions on a shared variable in any order
– conflicting: at least one is a write

• Depending on the execution interleaving, different values
can be obtained, leading to logical inconsistencies

• volatile does not help: synchronized needed

13

class Counter {
 int count;
 public void incr() {
 count++;
 }
 public int getCount() {
 return count;
 }
}

static Counter sharedCounter = new Counter();
public static void main(String... args)
throws InterruptedException{

Runnable r = () -> {
for (int i = 1; i <= 10000; i++) {

sharedCounter.incr();
}};

Thread t1 = new Thread(r);
Thread t2 = new Thread(r);
t1.start(); t2.start();
t1.join(); t2.join();
System.out.println(sharedCounter.getCount());

} // prints values smaller than 20000

Mutual exclusion using monitors

• Every Java object has a monitor, offering
lock/unlock

• Only one thread at a time can hold the lock
• “synchronized” methods or blocks take the lock

at start and release it at the end
• Thus, synchronized methods / blocks are in

mutual exclusion
• Declaring the incr()

method synchronized
guarantees that the
output of the previous
program is always 20000

14

class Counter {
 int count;
 public synchronized void incr() {
 count++;
 }
 public int getCount() {
 return count;
 }
}

Back to the Java Memory Model

• The Java Memory Model has
– no explicit global ordering of all actions by time,

consistent with each thread’s perception of time
– no global store.

• Instead, executions are described in terms of
– memory related actions,
– partial orders on these actions, and
– a visibility function that assigns a write action to

each read action.

15

Actions of the JMM
Actions are memory-related operations.
Each action 𝑎 has a thread 𝑇(𝑎) and a kind:

– Volatile read of 𝑣 ∈ 𝕃
– Volatile write of 𝑣 ∈ 𝕃
– Lock on monitor 𝑚 ∈ 𝕄
– Unlock of monitor 𝑚 ∈ 𝕄
– Normal read from 𝑣 ∈ 𝕃
– Normal write to 𝑣 ∈ 𝕃
– External action

“Synchronization actions” are in red
• The JMM dictates rules to decide if a set of actions is a legal

execution of a program

16

Program order & sequential consistency

• An execution of a single-threaded program fixes a total
order ≤!" on its actions, called program order

• For a multi-threaded program, the program order is the
union of those of its threads: it does not relate actions
of different threads

• An execution of a multi-threaded program is
sequentially consistent if there is a total order of its
actions consistent with the program order (and such
that each read of v has the value of the last write to v)

• For data-race-free multi-threaded programs, the JMM
guarantees that only sequential consistent executions
are legal

17

Guarantees of the JMM

The JMM has been designed to make three guarantees:
1. A promise for programmers: sequential consistency must

be sacrificed to allow optimisations, but it will still hold
for data-race-free programs. This is the data-race-free
(DRF) guarantee.

2. A promise for security: even for programs with data races,
values should not appear “out of thin air”, preventing
unintended information leakage.

3. A promise for compilers: common hardware and software
optimizations should be allowed as far as possible without
violating the first two requirements.

The complexity of the new JMM is justified by the goal of
ensuring guarantees 2 even for non-data-race-free programs.
The previous approach considered such program erroneous,
with an unspecified semantics.

18

Why is sequential consistency too strong?
• Consider the following two threads

 (A == B == 0 initially):
• Which values can take r1 and r2?
 r1 = 0, r2 = 2 if Thread1 executes first
 r1 = 1, r2 = 0 if Thread2 executes first
 r1 = 0, r2 = 0 if scheduler stops one thread in the middle
 r1 = 1, r2 = 2 ???? Yes, in some scenarios
• Conceptually, in the absence of synchronization, the compiler/JVM/CPU is

allowed to reorder the instructions, typically to improve performance, as
long as this reordering is irrelevant from the point of view of the single
thread. Indeed, if the order of the instructions of Thread 1 and/or Thread
2 is reversed, the result r1 = 1, r2 = 2 becomes possible.

• Note that the last execution is not sequential consistent: still, the JMM
allows it for the sake of guarantee 3, as it does not conflict with 1 (because
the program has data-races)

19

// Thread1
int r1;
r1 = B;
A = 2;

// Thread2
int r2;
r2 = A;
B = 1;

“out-of-thin-air” behaviours

• x == y == 0 initially.
• Can we obtain r1 == r2 == 42 at the end?
• Not really, but in a future aggressive, speculative evaluation…
• We say that 42 comes “out-of-thin-air”
• Even if a program contains data races, there must be some security

guarantees. This is an unwanted behavior: if a value does not occur
anywhere in the program, it should not be read in any execution of
the program.

• The out-of-thin-air behaviours could cause security leaks, because
references to objects from possibly confidential parts of program
could suddenly appear as a result of a self-justifying data race.

• The JMM forbids such an execution.
21

// Thread1
r1 = x;
y = r1;

// Thread2
r2 = y;
x = r2;

Synchronization order, synchronizes-with
and happens-before order

• Each execution of a program is associated with a
synchronization order ≤!", which is a total order over all
synchronization actions satisfying:
– consistency with program order
– read to a volatile variable v returns the value of the write to v that is ordered last

before the read by the synchronization order

• 𝑎 ≤!# 𝑏 is read “action 𝑎 synchronizes-with action 𝑏”. This
holds if 𝑎 ≤!" 𝑏 and
– 𝑎 unlocks a monitor and 𝑏 locks it
– 𝑎 writes a volatile variable and 𝑏 reads it

• Relation happens-before ≤$% is the transitive closure of the
program order≤&" and of the synchronizes-with relation ≤!#

22

Data Races

• Two accesses 𝑥 and 𝑦 form a data race if they are from
different threads, they conflict, and they are not ordered by
happens-before in a sequential consistent execution

• A program is said to be correctly synchronized or data-race-
free if and only if all sequentially consistent executions of the
program are free of data races

• The first requirement for the Java model is to ensure
sequential consistency for correctly synchronized or data-
race-free programs.

• Programmers then need only worry about code
transformations having an impact on their programs’ results if
those programs contain data races.

23

Executions, formally
𝐸 = (𝑃, 𝐴, ≤&" , ≤!" ,𝑊, 𝑉, ≤!# , ≤$%), where
• 𝑃 is a program
• 𝐴 is a set of actions
• ≤&" program order, total on actions of each thread
• ≤!" synchronization order, total on synchronization actions

in 𝐴
• 𝑊 - a write-seen function, which for each read 𝑟 in 𝐴, gives
𝑊(𝑟), the write action seen by 𝑟 in 𝐸.

• 𝑉 - a value-written function, which for each write 𝑤 in 𝐴,
gives 𝑉(𝑤), the value written by 𝑤 in 𝐸.

• ≤!# , synchronizes-with partial order
• ≤$% happen-before partial order

24

Well-formed executions

𝐸 = (𝑃, 𝐴,≤&', ≤(',𝑊, 𝑉,≤(), ≤*+), is well-
formed if
• Each read of a variable 𝑥 sees a write to 𝑥. All

reads and writes of volatile variables are volatile
actions.

• Synchronization order is consistent with program
order and mutual exclusion.

• The execution obeys inter-thread consistency.
• The execution obeys intra-thread and happens-

before consistency (each read of 𝑣 sees the last
preceding write to 𝑣)

25

Legal executions

• Legal executions are built iteratively. In each
iteration, it commits a set of memory actions; actions
can be committed if they occur in some well-
behaved execution that also contains the actions
committed in previous iterations.

• A careful definition of “well-behaved executions”
ensures that the appropriate executions are
prohibited (e.g. those creating values out-of-thin-air)
while standard compiler transformations are
allowed.

26

Causality requirements for executions

A well-formed execution 𝐸 = (𝑃, 𝐴, ≤&" , ≤!" ,𝑊, 𝑉, ≤!# , ≤$%)
is validated by committing actions in 𝐴. If all actions of 𝐴 are
committed, 𝐸 is legal.
• There must exist a sequence of subsets of A

𝐶' ⊂ 𝐶(⊂ ⋯ ⊂ 𝐶) = 𝐴
and one 𝐸* *+) of well-formed executions such that each 𝐸*
“witnesses” the actions in 𝐶*
• Complex definition articulated in 9 points. See either the

JLS Chapter 7.4 or [Manson05]

27

The intuition

• Start with the possible
sequential consistent
executions of the program

• Identify the data races
• Choose how to resolve one

(or some) of them (“commit”)
• Start again with executions,

using the committed choices

28

Properties of the formal JMM

The formal model allows to prove results like (see
[Manson05]
• “Reordering two adiacent ‘independent’ statements in

a program is a ‘legal’ program transformation”
• “Correctly synchronized programs exhibit only

sequentially consistent behaviors”
• Correctness of other program transformations like
– Redundant synchronizations can be removed
– Volatile fields of thread local objects can be treated as

normal fields

29

JMM from the
programmer perspective

• As shown, the JMM describes which executions of a
Java program are legal with respect to memory
accesses

• Even disregarding the technicalities of the model, its
impact can be translated to a set of useful rules for
Java programmers

• Rules are of three types:
– Atomicity Which operations are naturally atomic?
– Visibility When does a memory write become

 visible to other threads?
– Reordering In what order can the operations be

 rearranged?

30

Atomicity rules
An operation is atomic if, from the point of view of any other thread,
its effects are seen in full, or not at all (but never “half”)
Which operations are naturally atomic (even in the absence of mutual
exclusion mechanisms)?
The JLS, together with the JMM, guarantee that:
1. Reading and writing variables of primitive type (excluding the long

and double types) and of reference type are atomic operations
2. Reading and writing volatile variables are atomic operations
Note:
• Modification of a long variable can occur in two distinct operations,

which separately modify the 32 most significant bits and the 32
least significant bits

• These two operations may be interrupted by the scheduler
31

Examples of atomicity
Given these variables, are the following
assignments atomic or not?

32

1. x = 8; Atomic operation.
2. x = y; Non-atomic operation, because it includes a read and a

 write. If the operation is interrupted, another thread can
 modify y and x could still take on the old value of y.

3. n = 0x1122334455667788; //long constant expressed in hexadecimal
 Non-atomic operation. If the operation is interrupted, a
 thread may observe n == 0x1122334400000000 and
 another thread n == 0x0000000055667788.

4. m = 0x1122334455667788; Atomic operation.
5. m++; Non-atomic operation, because it includes a

 read and a write.
6. a = null; Atomic operation.
7. a = b; Non-atomic operation, like 2. above
8. c = d; Non-atomic operation, like 2. and 7.

int x, y;
long n;
volatile long m;
Object a, b;
volatile Object c, d;

Rule for visibility
• In absence of synchronization, the operations (writes to memory)

performed by a thread can remain hidden from other threads indefinitely
• In particular, some operations may remain hidden, and others may be

visible
Visibility is guaranteed by the following operations:
1. Acquiring a monitor (i.e., entering a synchronized method or block)

makes visible the operations performed by the last thread that owned
that monitor, up until the moment it released it

2. Reading the value of a volatile variable makes visible the operations
carried out by the last thread that modified that variable, up to the
moment in which it modified it

3. Invoking t.start() makes visible to the new thread t all the operations
carried out by the calling thread, up to the invocation of start

4. Returning from a t.join() invocation makes visible all the operations
carried out by thread t until its termination 34

A comparison between
synchronized and volatile

Both synchronized and volatile offer guarantees of
atomicity and visibility
However, volatile modifier makes only a single write to
the variable in question atomic
Even if a and b are both volatile, “a = b” is not atomic
Similarly, “n++” is not atomic even if n is volatile
A synchronized block or method is the only option to
make a sequence of instructions mutually atomic
The volatile modifier is indicated if visibility of changes is
required, but not mutual atomicity

35

Reordering Rules
• As said, the compiler, the JVM and the CPU can reorder any

sequence of instructions as long as the result does not change for
the single thread.

• The synchronized and volatile constructs reduce the possibility of
reordering.

• Let's consider two subsequent instructions having no dependencies
from a single thread perspective:

 x1
 x2
• In which cases can x1 and x2 be executed in reverse order?
• We must distinguish three categories of instructions:

1. Readings of a volatile variable, or start of a synchronized block or
method

2. Writes of a volatile variable, or end of a synchronized block or method
3. All the others (“normal” instructions)

36

Thus:
1. Normal instructions can always be interchanged
2. Normal instructions can be brought into a synchronized block
3. The normal instructions that precede the reading of a volatile can

be moved after the reading
4. The normal instructions that follow the writing of a volatile can be

moved before the writing
37

Type of x2
Type of x1

Normal Volatile read /
Synchronized start

Volatile write /
Synchronized end

Normal
Yes Yes No

Volatile read /
Synchronized start No No No

Volatile write /
Synchronized end Yes No No

Can instructions x1 and x2 be swapped?

References

The reading material for the JMM is:
• [Manson05] Jeremy Manson, William Pugh, and

Sarita V. Adve. The Java memory model. In POPL
’05: 378–391

Additional material:
• Jaroslav Sevcík, David Aspinall: On Validity of

Program Transformations in the Java Memory
Model. ECOOP 2008: 27-51

• JLS Chapter 17 – Section 17.4 – Memory Model

38

