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Memory model
• A memory model for multithreaded systems specifies how memory 

actions (e.g., reads and writes) in a program will appear to execute 
to the programmer, and specifically, which value each read of a 
memory location may return. 

• Every hardware and software interface of a system that admits 
multithreaded access to shared memory requires a memory 
model. 

• The model determines the transformations that the system 
(compiler, virtual machine, or hardware) can apply to a program. 
– For example, given a program in machine language, the memory 

model for the machine language / hardware interface will determine 
the optimizations the hardware can perform.
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Memory model (2)
• For a high-level programming language such as Java, the memory model 

determines 
– the transformations the compiler may apply to a program when producing 

bytecode, 
– the transformations that a virtual machine may apply to bytecode when 

producing native code, and 
– the optimizations that hardware may perform on the native code. 

• The model also impacts the programmer; the transformations it allows (or 
disallows) determine the possible outcomes of a program, which in turn 
determines which design patterns for communicating between threads 
are legal. 

• Without a well-specified memory model for a programming language, it is 
impossible to know what the legal results are for a program in that 
language.
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JMM - Java Memory Model 
• New version with Java 5 (2004)
• Specifies legal behaviour of multithreaded programs
• Provides standard guarantees for correctly synchronized 

programs: sequential consistency of data-race-free 
programs

• For incorrectly synchronized program the behaviour is 
bounded by a well-defined notion of causality

• The causality constraints are strong enough to respect the 
safety and security properties of Java and weak enough to 
allow standard compiler and hardware optimizations.

• This was one of the first memory models for high level 
programming languages. 
– The one of C++ was introduced with C++11.
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JVM Runtime Data Areas
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• Local variables of methods 
are allocated on thread 
stack (primitive types)

• Local variables cannot be 
accessed by other threads

• Objects are allocated on 
the heap

• Only objects (and their 
fields) can be shared 
among threads  



Memory Hierarchy
• In modern architectures, memory is stratified into 

different levels, ranging from mass memory (hard disk) 
to CPU registers, passing through different levels of 
cache
– this stratification is called memory hierarchy

• Some layers, such as registers and first cache layers, are 
separated between different cores

• Other layers, such as RAM, are shared between cores
For example, this is a part of the memory hierarchy in 
some processors:
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• They are orthogonal: 

• Access to shared variables, possibly in different 
memory areas, leads to two main problems:

Visibility of updates & Data races
• Java provides two mechanism to synchronize 

accesses to shared memory: the volatile modifier 
and synchronized methods / blocks

• The JMM takes them into account explicitly 

JVM data areas and Memory Hierarchy
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Visibility of updates of shared objects

• Due to caches and to policies of “flushing”

• Possible solution: the volatile modifier
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Visibility problems
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public class Loop {
static boolean done;
static int n;
public static void main(String args[]) {

Thread t = new Thread() {
public void run() {

n = 42;
try {

sleep(1000);
} catch (InterruptedException e) {

return;
}
done = true;
System.out.println("Fatto");

}};
t.start();
while (!done) {
}
System.out.println(n);

}}



• Note that the two threads share the variables n 
and done, but do not use any synchronization 
mechanism.

• The while loop of thread 1 can behave like an 
infinite loop, even if thread 2 after waiting one 
second executes done = true.

• In fact, in the absence of synchronization, there is 
no guarantee as to when the write to the done 
variable made by thread 2 will be visible to 
thread 1.

• The JMM allows this behavior.
• To avoid it, the variable done can be declared 

volatile.
10



The volatile modifier

• volatile is a modifier that can only be applied to 
fields of a class

• Intuitively, volatile declares that that field can be 
accessed or modified by multiple threads
– A volatile field cannot be final: it would be meaningless

• The JMM guarantees (see later) that the write of a 
volatile variable is visible when it is read

• An implementation should guarantee that the new 
value is flushed from the cache to the RAM
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public class Loop {
static volatile boolean done;
static int n;

public static void main(String args[]) {
Thread t = new Thread() {

public void run() {
n = 42;
try {

sleep(1000);
} catch (InterruptedException e) {

return;
}
done = true;
System.out.println("Fatto");

}
};
t.start();
while (!done) {
}
System.out.println(n);

}
}

Each reading of the 
done variable made by 
the main thread makes 
visible the changes to 
done made by the other 
thread

Therefore, the main 
thread always 
terminates.



Data Races
• Simplifying, there is a data race if two threads can execute 

two conflicting actions on a shared variable in any order
– conflicting: at least one is a write 

• Depending on the execution interleaving, different values 
can be obtained, leading to logical inconsistencies

• volatile does not help: synchronized needed
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class Counter {
  int count;
  public void incr() {
    count++;
  }
  public int getCount() {
    return count;
  }
}

static Counter sharedCounter = new Counter();
public static void main(String... args) 
throws InterruptedException{

Runnable r = () -> {
for (int i = 1; i <= 10000; i++) {

sharedCounter.incr();
}};

Thread t1 = new Thread(r);
Thread t2 = new Thread(r);
t1.start(); t2.start();
t1.join(); t2.join();
System.out.println(sharedCounter.getCount());

}  // prints values smaller than 20000



Mutual exclusion using monitors

• Every Java object has a monitor, offering 
lock/unlock

• Only one thread at a time can hold the lock
• “synchronized” methods or blocks take the lock 

at start and release it at the end
• Thus, synchronized methods / blocks are in 

mutual exclusion
• Declaring the incr() 

method synchronized 
guarantees that the 
output of the previous 
program is always 20000
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class Counter {
  int count;
 public synchronized void incr() {
    count++;
  }
  public int getCount() {
    return count;
  }
}



Back to the Java Memory Model

• The Java Memory Model has 
– no explicit global ordering of all actions by time, 

consistent with each thread’s perception of time
– no global store. 

• Instead, executions are described in terms of
– memory related actions, 
– partial orders on these actions, and 
– a visibility function that assigns a write action to 

each read action.
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Actions of the JMM
Actions are memory-related operations.
Each action 𝑎 has a thread 𝑇(𝑎) and a kind:

– Volatile read of 𝑣 ∈ 𝕃
– Volatile write of 𝑣 ∈ 𝕃
– Lock on monitor 𝑚 ∈ 𝕄
– Unlock of monitor 𝑚 ∈ 𝕄
– Normal read from 𝑣 ∈ 𝕃
– Normal write to 𝑣 ∈ 𝕃
– External action

“Synchronization actions” are in red
• The JMM dictates rules to decide if a set of actions is a legal 

execution of a program
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Program order & sequential consistency

• An execution of a single-threaded program fixes a total 
order ≤!" on its actions, called program order

• For a multi-threaded program, the program order is the 
union of those of its threads: it does not relate actions 
of different threads

• An execution of a multi-threaded program is 
sequentially consistent if there is a total order of its 
actions consistent with the program order (and such 
that each read of v has the value of the last write to v) 

• For data-race-free multi-threaded programs, the JMM 
guarantees that only sequential consistent executions 
are legal 
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Guarantees of the JMM

The JMM has been designed to make three guarantees:
1. A promise for programmers: sequential consistency must 

be sacrificed to allow optimisations, but it will still hold 
for data-race-free programs. This is the data-race-free 
(DRF) guarantee.

2. A promise for security: even for programs with data races, 
values should not appear “out of thin air”, preventing 
unintended information leakage.

3. A promise for compilers: common hardware and software 
optimizations should be allowed as far as possible without 
violating the first two requirements.

The complexity of the new JMM is justified by the goal of 
ensuring guarantees 2 even for non-data-race-free programs. 
The previous approach considered such program erroneous, 
with an unspecified semantics.  
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Why is sequential consistency too strong? 
• Consider the following two threads

 (A == B == 0 initially):
• Which values can take r1 and r2?
 r1 = 0, r2 = 2  if Thread1 executes first
 r1 = 1, r2 = 0  if Thread2 executes first
 r1 = 0, r2 = 0  if scheduler stops one thread in the middle
 r1 = 1, r2 = 2        ????         Yes, in some scenarios
• Conceptually, in the absence of synchronization, the compiler/JVM/CPU is 

allowed to reorder the instructions, typically to improve performance, as 
long as this reordering is irrelevant from the point of view of the single 
thread. Indeed, if the order of the instructions of Thread 1 and/or Thread 
2 is reversed, the result  r1 = 1, r2 = 2   becomes possible.

• Note that the last execution is not sequential consistent: still, the JMM 
allows it for the sake of guarantee 3, as it does not conflict with 1 (because 
the program has data-races)
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// Thread1
int r1;
r1 = B;
A = 2;

// Thread2
int r2;
r2 = A;
B = 1;



“out-of-thin-air” behaviours

• x == y == 0 initially.
• Can we obtain  r1 == r2 == 42  at the end?
• Not really, but in a future aggressive, speculative evaluation…
• We say that 42 comes “out-of-thin-air”
• Even if a program contains data races, there must be some security 

guarantees. This is an unwanted behavior: if a value does not occur 
anywhere in the program, it should not be read in any execution of 
the program. 

• The out-of-thin-air behaviours could cause security leaks, because 
references to objects from possibly confidential parts of program 
could suddenly appear as a result of a self-justifying data race. 

• The JMM forbids such an execution.
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// Thread1
r1 = x;
y = r1;

// Thread2
r2 = y;
x = r2;



Synchronization order, synchronizes-with  
and happens-before order

• Each execution of a program is associated with a 
synchronization order ≤!", which is a total order over all 
synchronization actions satisfying:
– consistency with program order
– read to a volatile variable v returns the value of the write to v that is ordered last 

before the read by the synchronization order

• 𝑎 ≤!# 𝑏   is read   “action 𝑎 synchronizes-with action 𝑏”. This 
holds if 𝑎 ≤!" 𝑏 and
– 𝑎 unlocks a monitor and 𝑏 locks it 
– 𝑎 writes a volatile variable and 𝑏 reads it

• Relation happens-before ≤$% is the transitive closure of the 
program order≤&" and of the synchronizes-with relation ≤!#
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Data Races

• Two accesses 𝑥 and 𝑦 form a data race if they are from 
different threads, they conflict, and they are not ordered by 
happens-before in a sequential consistent execution

• A program is said to be correctly synchronized or data-race-
free if and only if all sequentially consistent executions of the 
program are free of data races

• The first requirement for the Java model is to ensure 
sequential consistency for correctly synchronized or data-
race-free programs. 

• Programmers then need only worry about code 
transformations having an impact on their programs’ results if 
those programs contain data races.
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Executions, formally
𝐸 = (𝑃, 𝐴, ≤&" , ≤!" ,𝑊, 𝑉, ≤!# , ≤$%), where
• 𝑃 is a program
• 𝐴 is a set of actions
• ≤&" program order, total on actions of each thread
• ≤!" synchronization order, total on synchronization actions 

in 𝐴
• 𝑊 - a write-seen function, which for each read 𝑟 in 𝐴, gives 
𝑊(𝑟), the write action seen by 𝑟 in 𝐸.

• 𝑉 - a value-written function, which for each write 𝑤 in 𝐴, 
gives 𝑉(𝑤), the value written by 𝑤 in 𝐸.

• ≤!# , synchronizes-with partial order
• ≤$%  happen-before partial order
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Well-formed executions

𝐸 = (𝑃, 𝐴,≤&', ≤(',𝑊, 𝑉,≤(), ≤*+), is well-
formed if
• Each read of a variable 𝑥 sees a write to 𝑥. All 

reads and writes of volatile variables are volatile 
actions.

• Synchronization order is consistent with program 
order and mutual exclusion.

• The execution obeys inter-thread consistency.
• The execution obeys intra-thread and happens-

before consistency (each read of 𝑣 sees the last 
preceding write to 𝑣)
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Legal executions

• Legal executions are built iteratively. In each 
iteration, it commits a set of memory actions; actions 
can be committed if they occur in some well-
behaved execution that also contains the actions 
committed in previous iterations. 

• A careful definition of “well-behaved executions” 
ensures that the appropriate executions are 
prohibited (e.g. those creating values out-of-thin-air) 
while standard compiler transformations are 
allowed. 
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Causality requirements for executions

A well-formed execution 𝐸 = (𝑃, 𝐴, ≤&" , ≤!" ,𝑊, 𝑉, ≤!# , ≤$%) 
is validated by committing actions in 𝐴. If all actions of 𝐴 are 
committed, 𝐸 is legal.
• There must exist a sequence of subsets of A

𝐶' ⊂ 𝐶( ⊂ ⋯ ⊂ 𝐶) = 𝐴
and one 𝐸* *+) of well-formed executions such that each 𝐸*  
“witnesses” the actions in 𝐶*
• Complex definition articulated in 9 points. See either the 

JLS Chapter 7.4 or [Manson05]
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The intuition

• Start with the possible 
sequential consistent 
executions of the program

• Identify the data races
• Choose how to resolve one 

(or some) of them (“commit”)
•  Start again with executions, 

using the committed choices
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Properties of the formal JMM

The formal model allows to prove results like (see 
[Manson05]
• “Reordering two adiacent ‘independent’ statements in 

a program is a ‘legal’ program transformation”
• “Correctly synchronized programs exhibit only 

sequentially consistent behaviors”
• Correctness of other program transformations like
– Redundant synchronizations can be removed
– Volatile fields of thread local objects can be treated as 

normal fields
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JMM from the 
programmer perspective

• As shown, the JMM describes which executions of a 
Java program are legal with respect to memory 
accesses

• Even disregarding the technicalities of the model, its 
impact can be translated to a set of useful rules for 
Java programmers

• Rules are of three types:
– Atomicity  Which operations are naturally atomic?
– Visibility  When does a memory write become 

     visible to other threads?
– Reordering  In what order can the operations be  

     rearranged?
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Atomicity rules
An operation is atomic if, from the point of view of any other thread, 
its effects are seen in full, or not at all (but never “half”)
Which operations are naturally atomic (even in the absence of mutual 
exclusion mechanisms)?
The JLS, together with the JMM, guarantee that:
1. Reading and writing variables of primitive type (excluding the long 

and double types) and of reference type are atomic operations
2. Reading and writing volatile variables are atomic operations
Note:
• Modification of a long variable can occur in two distinct operations, 

which separately modify the 32 most significant bits and the 32 
least significant bits

• These two operations may be interrupted by the scheduler
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Examples of atomicity
Given these variables, are the following 
assignments atomic or not?
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1. x = 8; Atomic operation.
2. x = y; Non-atomic operation, because it includes a read and a 

   write. If the operation is interrupted, another thread can 
   modify y and x could still take on the old value of y.

3. n = 0x1122334455667788; //long constant expressed in hexadecimal
   Non-atomic operation. If the operation is interrupted, a 
   thread may observe n == 0x1122334400000000 and 
   another thread n == 0x0000000055667788.

4. m = 0x1122334455667788;   Atomic operation.
5. m++;  Non-atomic operation, because it includes a 

   read and a write.
6. a = null;  Atomic operation.
7. a = b;   Non-atomic operation, like 2. above
8. c = d;   Non-atomic operation, like 2. and 7. 

int x, y;
long n;
volatile long m;
Object a, b;
volatile Object c, d;



Rule for visibility
• In absence of synchronization, the operations (writes to memory) 

performed by a thread can remain hidden from other threads indefinitely
• In particular, some operations may remain hidden, and others may be 

visible
Visibility is guaranteed by the following operations:
1. Acquiring a monitor (i.e., entering a synchronized method or block) 

makes visible the operations performed by the last thread that owned 
that monitor, up until the moment it released it

2. Reading the value of a volatile variable makes visible the operations 
carried out by the last thread that modified that variable, up to the 
moment in which it modified it

3. Invoking t.start() makes visible to the new thread t all the operations 
carried out by the calling thread, up to the invocation of start

4. Returning from a t.join() invocation makes visible all the operations 
carried out by thread t until its termination 34



A comparison between 
synchronized and volatile

Both synchronized and volatile offer guarantees of 
atomicity and visibility
However, volatile modifier makes only a single write to 
the variable in question atomic
Even if a and b are both volatile, “a = b” is not atomic
Similarly, “n++” is not atomic even if n is volatile
A synchronized block or method is the only option to 
make a sequence of instructions mutually atomic
The volatile modifier is indicated if visibility of changes is 
required, but not mutual atomicity
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Reordering Rules
• As said, the compiler, the JVM and the CPU can reorder any 

sequence of instructions as long as the result does not change for 
the single thread.

• The synchronized and volatile constructs reduce the possibility of 
reordering.

• Let's consider two subsequent instructions having no dependencies 
from a single thread perspective:

  x1
  x2
• In which cases can x1 and x2 be executed in reverse order?
• We must distinguish three categories of instructions:

1. Readings of a volatile variable, or start of a synchronized block or 
method

2. Writes of a volatile variable, or end of a synchronized block or method
3. All the others (“normal” instructions)
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Thus:
1. Normal instructions can always be interchanged
2. Normal instructions can be brought into a synchronized block
3. The normal instructions that precede the reading of a volatile can 

be moved after the reading
4. The normal instructions that follow the writing of a volatile can be 

moved before the writing
37

Type of x2
Type of x1

Normal Volatile read /
Synchronized start 

Volatile write /
Synchronized end

Normal
Yes Yes No

Volatile read /
Synchronized start No No No

Volatile write /
Synchronized end Yes No No

Can instructions x1 and x2 be swapped?
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