
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-21: Streams in Java 8

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Java 8: language extensions

Java 8 is the biggest change to Java since the
inception of the language. Main new features:
• Lambda expressions
– A big challenge was to introduce lambdas without

requiring recompilation of existing binaries
• Stream API
– Conceptually, working with streams in Java is very

much like working with lists in Haskell using higher
order combinators (not recursion)

2

Streams in Java 8

The java.util.stream package provides utilities to
support functional-style operations on streams of
values. Streams differ from collections in several
ways:
• No storage. A stream is not a data structure that

stores elements; instead, it conveys elements
from a source (a data structure, an array, a
generator function, an I/O channel,…) through a
pipeline of computational operations.

• Functional in nature. An operation on a stream
produces a result, but does not modify its source.

3

Streams in Java 8 (cont’d)
• Laziness-seeking. Many stream operations, can be

implemented lazily, exposing opportunities for optimization.
Stream operations are divided into intermediate (stream-
producing) operations and terminal (value- or side-effect-
producing) operations. Intermediate operations are always
lazy.

• Possibly unbounded. Collections have a finite size, streams
need not. Short-circuiting operations such as limit(n) or
findFirst() can allow computations on infinite streams to
complete in finite time.

• Consumable. The elements of a stream are only visited once
during the life of a stream. Like an Iterator, a new stream
must be generated to revisit the same elements of the source.

4

Pipelines

• A typical pipeline contains
– A source, producing (by need) the elements of the stream
– Zero or more intermediate operations, producing streams
– A terminal operation, producing side-effects or non-

stream values
• Example of typical pattern: filter / map / reduce:

“Compute the average age of males in a collection of people”

5

double average = listing // collection of Person
 .stream() // stream wrapper over a collection
 .filter(p -> p.getGender() == Person.Sex.MALE) // filter
 .mapToInt(Person::getAge) // extracts stream of ages
 .average() // computes average (reduce/fold)
 .getAsDouble(); // extracts result from OptionalDouble

Anatomy of the Stream Pipeline
• A Stream is processed through a pipeline of operations
• A Stream starts with a source
• Intermediate methods are performed on the Stream

elements. These methods produce Streams and are not
processed until the terminal method is called.

• The Stream is considered consumed when a terminal
operation is invoked. No other operation can be performed on
the Stream elements afterwards

• Some intermediate or terminal methods can be short-circuit
methods: they cause the earlier intermediate methods to be
processed only until the short-circuit method can be
evaluated.

Stream sources
Streams can be obtained in a number of ways:
• From a Collection via the stream() and parallelStream() methods;
• From an array via Arrays.stream(Object[]);
• From static factory methods on the stream classes, such as

Stream.of(Object[]), IntStream.range(int, int) or
Stream.iterate(Object, UnaryOperator);

• The lines of a file can be obtained from BufferedReader.lines();
• Streams of file paths can be obtained from methods in Files;
• Streams of random numbers can be obtained from Random.ints();
• Generators, like generate or iterate;
• Several other methods in the JDK…

7

Intermediate Operations
• An intermediate operation keeps a stream open for further operations.

Intermediate operations are lazy.
• Several intermediate operations are conceptually higher-order: have

arguments of functional interfaces, thus lambdas can be used

8

interface Stream<T>{...
Stream<T> filter(Predicate<? super T> predicate) // filter

IntStream mapToInt(ToIntFunction<? super T> mapper) // map f:T -> int

<R> Stream<R> map(Function<? super T,? extends R> mapper) // map f:T->R

Stream<T> peek(Consumer<? super T> action) //performs action on elements

Stream<T> distinct() // remove duplicates – stateful

Stream<T> sorted() // sort elements of the stream – stateful

Stream<T> limit(long maxSize) // truncate

Stream<T> skip(long n) // skips first n elements
}

Using peek…

• peek does not affect the stream
• A typical use is for debugging

• What does it print?

9

IntStream.of(1, 2, 3, 4)
 .filter(e -> e > 2)
 .peek(e -> System.out.println("Filtered value: " + e))
 .map(e -> e * e)
 .peek(e -> System.out.println("Mapped value: " + e))
 .sum();

Terminal Operations
• A terminal operation is the final operation on a stream. Once a

terminal operation is invoked, the stream is consumed and is no
longer usable.

• Typical use: collect values in a data structure, reduce to a value,
print or other side effects.

10

interface Stream<T>{...
void forEach(Consumer<? super T> action)

Object[] toArray()

T reduce(T identity, BinaryOperator<T> accumulator) // fold

Optional<T> reduce(BinaryOperator<T> accumulator) // fold

Optional<T> min(Comparator<? super T> comparator)

boolean allMatch(Predicate<? super T> predicate) // short-circuiting

boolean anyMatch(Predicate<? super T> predicate) // short-circuiting

Optional<T> findAny() // short-circuiting
}

Types of Streams

• Streams only for reference types, int, long and
double
– Minor primitive types are missing

11

"Hello world!".chars()
 .forEach(System.out::print);

// prints
721011081081113211911111410810033

// fixing it:
"Hello world!".chars()
 .forEach(x -> System.out.print((char) x));

From Reduce to Collect: Mutable Reduction

• Suppose we want to concatenate a stream of strings.
• The following works:

12

String concatenated = listOfStrings
 .stream()
 .reduce("", String::concat)

• …but is highly inefficient (it builds one new string for each element)
• Better to “accumulate” the elements in a mutable object (a

StringBuilder, a collection, …)
• The mutable reduction operation is called collect(). It requires

three functions:
– a supplier function to construct new instances of the result container,
– an accumulator function to incorporate an input element into a result

container,
– a combining function to merge the contents of one result container

into another.
<R> R collect(Supplier<R> supplier,
 BiConsumer<R, ? super T> accumulator,
 BiConsumer<R, R> combiner);

Mutable reductions: examples
• Collecting the String representations of the

elements of a stream into an ArrayList:

13

// no streams
ArrayList<String> strings = new ArrayList<>();
for (T element : stream) {
 strings.add(element.toString());
}

// with streams and lambdas
ArrayList<String> strings =
 stream.collect(() -> new ArrayList<>(), //Supplier
 (c, e) -> c.add(e.toString()), // Accumulator
 (c1, c2) -> c1.addAll(c2)); //Combining

// with streams and method references
ArrayList<String> strings = stream.map(Object::toString)
 .collect(ArrayList::new, ArrayList::add, ArrayList::addAll);

Mutable reductions: Collectors
• Method collect can also be invoked with a Collector

argument:

• A Collector encapsulates the functions used as
arguments to collect(Supplier, BiConsumer,
BiConsumer), allowing for reuse of collection strategies
and composition of collect operations.

14

<R,A> R collect(Collector<? super T,A,R> collector)

// The following will accumulate strings into an ArrayList:

List<String> asList = stringStream.collect(Collectors.toList());

// The following will classify Person objects by city:

Map<String, List<Person>> peopleByCity =
personStream.collect(Collectors.groupingBy(Person::getCity));

Infinite Streams
• Streams wrapping collections are finite
• Infinite streams can be generated with:
– iterate
– generate

15

static <T> Stream<T> iterate(T seed, UnaryOperator<T> f)

// Example: summing first 10 elements of an infinite stream
int sum = Stream.iterate(0,x -> x+1).limit(10).reduce(0,(x,s) -> x+s);

static <T> Stream<T> generate(Supplier<T> s)

// Example: printing 10 random mumbers
Stream.generate(Math::random).limit(10).forEach(System.out::println);

Parallelism

• Streams facilitate parallel execution
• Stream operations can execute either in serial

(default) or in parallel

16

double average = persons //average age of all male
 .parallelStream() // members in parallel
 .filter(p -> p.getGender() == Person.Sex.MALE)
 .mapToInt(Person::getAge)
 .average()
 .getAsDouble();

• The runtime support takes care of using multithreading
for parallel execution, in a transparent way

• If operations don’t have side-effects, thread-safety is
guaranteed even if non-thread-safe collections are
used (e.g.: ArrayList)

Parallelism (2)
• Concurrent mutable reduction supported for parallel

streams
– Suitable methods of Collector

• Order of processing stream elements depends on
serial/parallel execution and intermediate operations

17

Integer[] intArray = {1, 2, 3, 4, 5, 6, 7, 8 };
List<Integer> listOfIntegers = new ArrayList<>(Arrays.asList(intArray));
 listOfIntegers .stream()
 .forEach(e -> System.out.print(e + " "));

// prints: 1 2 3 4 5 6 7 8
listOfIntegers .parallelStream()

 .forEach(e -> System.out.print(e + " "));
// may print: 3 4 1 6 2 5 7 8

18
3115-214

A	simple	parallel	stream	example

• Consider	this	for-loop	(.96	s	runtime;	dual-core	laptop)
long sum = 0;
for (long j = 0; j < Integer.MAX_VALUE; j++) sum += j;

• Equivalent	stream	computation	(1.5	s)
long sum = LongStream.range(0, Integer.MAX_VALUE).sum();

• Equivalent	parallel	computation	(.77	s)
long sum = LongStream.range(0,Integer.MAX_VALUE)

.parallel().sum();

• Fastest	handcrafted	parallel	code	I	could	write	(.48	s)
– You	don't	want	to	see	the	code.	It	took	hours.

Slide by Josh Bloch

20

Slide by Josh Bloch

3215-214

When	to	use	a	parallel	stream	–
loosely	speaking
• When	operations	are	independent,	and	
• Either	or	both:
– Operations	are	computationally	expensive
– Operations	are	applied	to	many	elements	of	
efficiently	splittable data	structures

• Always	measure	before	and	after	parallelizing!
– Jackson’s	third	law	of	optimization

Slide by Josh Bloch

SplitIterator: Streams from collections

• A stream wrapping a collection uses a Splititerator over the
collection

• This is the parallel analogue of an Iterator: it describes a
(possibly infinite) collection of elements with support for
– applying an action to the next element

– applying an action to all remaining elements

– splitting off some portion of the input into another spliterator
which can be processed in parallel.

• At the lowest level, all streams are driven by a spliterator.
21

boolean tryAdvance(Consumer<? Super T> action)

void forEachRemaining(Consumer <? super T> action)

Spliterator<T> trySplit()

23

3315-214

When	to	use	a	parallel	stream	– in	detail

• Consider	s.parallelStream().operation(f) if
– f, the	per-element	function,	is	independent

• i.e.,	computation	for	each	element	doesn't	rely	on	or	impact	any	other
– s,	the	source	collection,	is	efficiently	splittable

• Most	collections,	and	java.util.SplittableRandom
• NOT	most	I/O-based	sources

– Total	time	to	execute	sequential	version roughly	>	100µs
• “Multiply	N (number	of	elements)	by	Q (cost	per	element	of	f),	
guestimatingQas	the	number	of	operations	or	lines	of	code,	and	then	
checking	that	N*Q is	at	least	10,000.
If	you're	feeling	cowardly,	add	another	zero	or	two.”—DL

• For	details:	http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html

Slide by Josh Bloch

Critical issues
• Non-interference
– Behavioural parameters (like lambdas) of stream

operations should not affect the source (non-interfering
behaviour)

– Risk of ConcurrentModificationExceptions, even if in
single thread

• Stateless behaviours
– Statless behaviour for intermediate operations is

encouraged, as it facilitates parallelism, and functional
style, thus maintenance

• Parallelism and thread safety
– For parallel streams with side-effects, ensuring thread

safety is the programmers’ responsibility

24

Interference: an example

25

try {
 List<String> listOfStrings =
 new ArrayList<>(Arrays.asList("one", "two"));

 String concatenatedString = listOfStrings
 .stream()
// Don't do this! Interference occurs here.
 .peek(s -> listOfStrings.add("three"))
 .reduce((a, b) -> a + " " + b)
 .get();
 System.out.println("Concatenated string: " + concatenatedString);
} catch (Exception e) {
 System.out.println("Exception caught: " + e.toString());
}

MONADS IN JAVA….

26

Monads in Java: Optional and Stream

27

static <T> Stream<T> of(T t)
// Returns a sequential Stream containing a single element.

<R> Stream<R> flatMap(
 Function<? super T,? extends Stream<? extends R>> mapper)
/* Returns a stream consisting of the results of replacing each element
of this stream with the contents of a mapped stream produced by applying
the provided mapping function to each element. */

public static <T> Optional<T> of(T value)
// Returns an Optional with the specified present non-null value.

<U> Optional<U> flatMap(Function<? super T,Optional<U>> mapper)
/* If a value is present, apply the provided Optional-bearing mapping
function to it, return that result, otherwise return an empty
Optional. */

Functional programming and
monads in Java

• About the way monads entered the Java
landscape I suggest reading the slides on
Monadic Java by Mario Fusco.

• More on functional
programming in Java
in the book Java 8 in action

28

