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Summary

• Type Constructor Classes
• Functor and fmap
• Towards monads: Maybe and partial 

functions 
• Monads as containers and as computations
• Introducing side effects with the IO monad
• Control structures on monads
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Type Constructor Classes

• Type Classes are predicates over types
• [Type] Constructor Classes are predicates over type 

constructors
• Allow to define overloaded functions common to 

several type constructors
• Example: map function useful on many Haskell types
– Lists:

map:: (a -> b) -> [a] -> [b]
map f  [] = []
map f (x:xs) = f x : map f xs

> map (\x->x+1) [1,2,4]
[2,3,5] 3



More examples of map function
data Tree a = Leaf a | Node(Tree a, Tree a)
    deriving Show

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f (Leaf x) = Leaf (f x)
mapTree f (Node(l,r)) = Node (mapTree f l, mapTree f r)

> t1 = Node(Node(Leaf 3, Leaf 4), Leaf 5)
> mapTree (\x->x+1) t1
Node (Node (Leaf 4,Leaf 5),Leaf 6)
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data Maybe a = Nothing | Just a
 deriving Show

mapMaybe :: (a -> b) -> Maybe a -> Maybe b
mapMaybe f Nothing = Nothing 
mapMaybe f (Just x) = Just (f x)

> o1 = Just 10
> mapMaybe (\x->x+1) o1
Just 11



Constructor Classes

• All map functions share the same structure

• They can all be written as:

– where g is:
    [-] for lists, Tree for trees, and Maybe for options

• Note that g is a function from types to types, i.e. 
a type constructor

map     :: (a -> b) -> [a] -> [b]
mapTree :: (a -> b) -> Tree a -> Tree b
mapMaybe  :: (a -> b) -> Maybe a -> Maybe b

fmap:: (a -> b) -> g a -> g b
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Constructor Classes

• This pattern can be captured in a constructor 
class Functor:
 

• A constructor class is simply a type class where 
the predicate is over a type constructors rather 
than on a type

• Compare with the definition of a standard type 
class:

class Functor g where
  fmap :: (a -> b) -> g a -> g b
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class Eq a where
  (==) :: a -> a -> Bool



The Functor constructor class 
and some instances

class Functor f where
  fmap :: (a -> b) -> f a -> f b

instance Functor [] where // [] is an instance of Functor
  fmap f [] = []
  fmap f (x:xs) = f x : fmap f xs

instance Functor Tree where // Tree is an instance of Functor
  fmap f (Leaf x) = Leaf (f x)
  fmap f (Node(t1,t2)) = Node(fmap f t1, fmap f t2)

instance Functor Maybe where // Maybe is an instance of Functor
  fmap f (Just s) = Just(f s)
  fmap f Nothing = Nothing 
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• Or by reusing the definitions map, mapTree, and mapMaybe:

class Functor f where
  fmap :: (a -> b) -> f a -> f b

instance Functor [] where // [] is an instance of Functor
  fmap = map

instance Functor Tree where // Tree is an instance of Functor
  fmap = mapTree

instance Functor Maybe where // Maybe is an instance of Functor
  fmap = mapMaybe

8

The Functor constructor class 
and some instances (2)



Constructor Classes
• We can then use the overloaded symbol fmap to map over 

all three kinds of data structures:

• The Functor constructor class is part of the standard 
Prelude for Haskell

*Main> fmap (\x->x+1) [1,2,3]
[2,3,4]
it :: [Integer]

*Main> fmap (\x->x+1) (Node(Leaf 1, Leaf 2))
Node (Leaf 2,Leaf 3)
it :: Tree Integer

*Main> fmap (\x->x+1) (Just 1)
Just 2
it :: Maybe Integer
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Towards Monads

• Often type constructors can be thought of as 
defining “boxes” for values

• Functors with fmap allow to apply functions 
inside “boxes”

• Monad is a constructor class introducing 
operations for 
– Putting a value into a “box” (return)
– Compose functions that return “boxed” values (bind)

• “Monads” are type constructors that are 
instances of Monad

10



The Maybe type constructor
• Type constructor: a generic type with one or more 

type variables

• A value of type Maybe a is a possibly undefined 
value of type a

• A function  f :: a -> Maybe b is a partial function from 
a to b
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data Maybe a = Nothing | Just a 

max [] = Nothing
max (x:xs) = Just 
    (foldr (\y z -> if y > z then y else z) x xs) 
max :: Ord a => [a] -> Maybe a



Composing partial function
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father :: Person -> Maybe Person  -- partial function
mother :: Person -> Maybe Person  -- (lookup in a DB)

maternalGrandfather :: Person -> Maybe Person
maternalGrandfather p =
    case mother p of
        Nothing -> Nothing
        Just mom -> father mom   -- Nothing or a Person

bothGrandfathers :: Person -> Maybe (Person, Person)
    bothGrandfathers p =
        case father p of
            Nothing -> Nothing
            Just dad ->
                case father dad of
                    Nothing -> Nothing
                    Just gf1 ->                         -- found first grandfather
                        case mother p of
                            Nothing -> Nothing
                            Just mom ->
                                case father mom of
                                    Nothing -> Nothing
                                    Just gf2 ->         -- found second grandfather
                                        Just (gf1, gf2)



Composing partial functions
• We introduce a higher order operator to 

compose partial functions in order to 
“propagate” undefinedness automatically
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y >>= g  = case  y of   -- y “bind” g
                Nothing -> Nothing        
                Just x -> g x

(>>=)  :: Maybe a -> (a -> Maybe b) -> Maybe b

• The bind operator will be part of the definition 
of a monad.



Use of bind of the Maybe monad to 
compose partial functions
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(>>=)  :: Maybe a -> (a -> Maybe b) -> Maybe b
maternalGrandfather p = mother p >>= father

bothGrandfathers :: Person -> Maybe(Person, Person)
bothGrandfathers p =
       father p >>=
           (\dad -> father dad >>=
               (\gf1 -> mother p >>=
                   (\mom -> father mom >>=
                       (\gf2 -> return (gf1,gf2) ))))

father :: Person -> Maybe Person  -- partial function
mother :: Person -> Maybe Person  -- (lookup in a DB)

maternalGrandfather :: Person -> Maybe Person
maternalGrandfather p =
    case mother p of
        Nothing -> Nothing
        Just mom -> father mom   



The Monad constructor class and the Maybe monad

• m is a type constructor
• m a is the type of monadic values
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class Monad m where
        return :: a -> m a
        (>>=)  :: m a -> (a -> m b) -> m b –- "bind"
   ... -- + something more

instance Monad Maybe where
    return :: a -> Maybe a
    return x = Just x
    (>>=)  :: Maybe a -> (a -> Maybe b) -> Maybe b
    y >>= g  = case  y of 
                     Nothing -> Nothing        
                     Just x -> g x

• bind (>>=) shows how to “propagate” undefinedness



Alternative, imperative-style syntax: do

• do syntax is just syntactic sugar for >>=
16

bothGrandfathers p =
       father p >>=
           (\dad -> father dad >>=
               (\gf1 -> mother p >>=
                   (\mom -> father mom >>=
                       (\gf2 -> return (gf1,gf2) ))))

bothGrandfathers p = do {
        dad <- father p;
        gf1 <- father dad;
        mom <- mother p;
        gf2 <- father mom;
        return (gf1, gf2);
      }

bothGrandfathers p = do 
        dad <- father p
        gf1 <- father dad
        mom <- mother p
        gf2 <- father mom
        return (gf1, gf2)



Some Haskell Monads
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Monad Imperative semantics
Maybe Exception (Anonymous)
Error Exception (with error 

description)
State Global state

IO Input/output
[] (lists) Non-determinism
Reader Environment
Writer Logger



Understanding Monads as containers

• The monadic constructor can be seen as a container: let’s see 
this for lists

• Getting bind from more basic operations

class Monad m where  -- definition of Monad type class
        return :: a -> m a
        (>>=)  :: m a -> (a -> m b) -> m b –- "bind”
   ... -- + something more + a few axioms

map :: (a -> b) -> [a] -> [b] -- seen. “fmap” for Functors

return  :: a -> [a] -- container with single element
return x = [x]

concat :: [[a]] -> [a] -- flattens two-level containers
Example: concat [[1,2],[],[4]] = [1,2,4]

(>>=) :: [a] -> (a -> [b]) -> [b]
xs >>= f = concat(map f xs)

Exercise: define map and concat using bind and return 18



Understanding Monads as computations

• A value of type   m a   is a “computation returning a value of type a”
• For any value, there is a computation which “does nothing” and 

produces that result. This is given by function return
• Given two computations x and y, one can form the computation 

x >> y which intuitively “runs” x, throws away its result, then runs 
y returning its result

• Given computation x, we can use its result to decide what to do next. 
Given  f: a -> m b,  computation x >>= f  runs x, then applies 
f to its result, and runs the resulting computation.

class Monad m where  -- definition of Monad type class
        return :: a -> m a
        (>>=)  :: m a -> (a -> m b) -> m b –- "bind"
     (>>)   :: m a -> m b -> m b        –- "then"
   ... -- + something more + a few axioms
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Note that we can define then using bind:
x >> y = x >>= (\_ -> y)



Understanding Monads as computations (2)

• return, bind and then define basic ways to compose computations
• They are used in Haskell libraries to define more complex composition 

operators and control structures (sequence, for-each loops, …)
• If a type constructor defining a library of computations is monadic, one 

gets automatically benefit of such libraries
Example: MAYBE
• f:a -> Maybe b   is a partial function
• bind applies a partial function to a possibly undefined value, propagating 

undefinedness
Example: LISTS
• f:a -> [b]  is a non-deterministic function
• bind applies a non-deterministic function to a list of values, collecting all 

possible results
Example: Parsing, handling errors, IO, backtracking…. 

class Monad m where  -- definition of Monad type class
        return :: a -> m a
        (>>=)  :: m a -> (a -> m b) -> m b –- "bind"
     (>>)   :: m a -> m b -> m b        –- "then"
   ... -- + something more + a few axioms

20



Contaminating Haskell with side 
effects: Towards the IO monad
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Pros of Functional Programming
• Functional programming is beautiful:

– Concise and powerful abstractions
• higher-order functions, algebraic data types, parametric 

polymorphism, principled overloading, ...
– Close correspondence with mathematics

• Semantics of a code function is the mathematical function
• Equational reasoning: if x = y, then f x = f y
• Independence of order-of-evaluation (Confluence, aka Church-Rosser)

e1 * e2

e1’ * e2 e1 * e2’

result

The compiler can 
choose the best 

sequential or parallel 
evaluation order

22



Problems…

• But to be useful, a language must be able to manage 
“impure features”:
– Input/Output
– Imperative update
– Error recovery  (eg, timeout, divide by zero, etc.)
– Foreign-language interfaces 
– Concurrency control

The whole point of a running a program is to 
interact with the external environment and 
affect it

23



The Direct Approach
• Just add imperative constructs “the usual way”
– I/O via “functions” with side effects:

– Imperative operations via assignable reference cells:

– Error recovery via exceptions
– Foreign language procedures mapped to “functions”
– Concurrency via operating system threads

• Can work if language determines evaluation order
– Ocaml, Standard ML are good examples of this approach

putchar 'x' + putchar 'y' 

z = ref 0; z := !z + 1;
f(z);
w = !z    (* What is the value of w? *)

24



But what if we are “lazy”?

• Example:
– Output depends upon the evaluation order of (+).

• Example:
– Output depends on how list is used
– If only used in length ls, nothing will be 

printed because length does not evaluate 
elements of list

In a lazy functional language, like Haskell, the order of 
evaluation is undefined.

res = putchar 'x' + putchar 'y' 

ls = [putchar 'x', putchar 'y'] 

25



Fundamental question

• Is it possible to add imperative features 
without changing the meaning of pure Haskell 
expressions?

• Yes! Exploiting the concept of monad
– The IO monad defines monadic values which are 

called actions, and prescribes how to compose 
them sequentially

26



Problem

A functional program 
defines a pure function, 
with no side effects

The whole point of 
running a program is to 
have some side effect

The term “side effect” itself is misleading

Monadic Input and Output
The IO Monad

27



Before Monads

• Streams
– A program sends stream of requests to OS, 

receives stream of responses

• Continuations
– User supplies continuations to I/O routines 

to specify how to process results

• Haskell 1.0 Report adopted Stream model
– Stream and Continuation models were 

proved to be inter-definable
28



Stream Model: Basic Idea

• Move “side effects” outside of functional program
• Haskell  main :: String -> String

• But what if you need to read more than one file? 
Or delete files? Or communicate over a socket? 
...

Haskell main 
program

standard 
input 

location 
(file or 
stdin)

standard 
output 
location 
(file or 
stdout)

Wrapper Program, written in some other language

29



Stream Model
• Enrich argument and return type of main to 

include all input and output events. 

• Wrapper program interprets requests and adds 
responses to input. 

• Move side effects outside of functional program

main :: [Response] -> [Request]
data Request =  ReadFile Filename
  |  WriteFile FileName String
  | …
data Response =  RequestFailed
  |  ReadOK String
  |  WriteOk
  |  Success  | …

30



Stream Model: main::[Response] -> [Request]
 

• Problem: Laziness allows program to generate requests prior 
to processing any responses. 

• Hard to extend
– New I/O operations require adding new constructors to Request 

and Response types, modifying wrapper
• Does not associate Request with Response

– easy to get “out-of-step,” which can lead to deadlock
• Not composable

– no easy way to combine two “main” programs
• ... and other problems!!!

Haskell
program

[Response] [Request]

31



Monadic I/O: The Key Ideas

• IO is a type constructor, instance of Monad
• A value of type (IO t) is a computation or 

“action” that, when performed, may do some 
input/output before delivering a result of type t 

• return returns the value without making I/O
• then (>>) [and also bind (>>=)] composes two 

actions sequentially into a larger action
• The only way to perform an action is to call it at 

some point, directly or indirectly, from 
Main.main

32



A Helpful Picture

type IO t = World -> (t, World)

IO t

result :: t

A value of type (IO t) is an “action.”  When performed, it may 
do some input/output before delivering a result of type t.

33

• An action is a first-class value
• Evaluating an action has no effect;   performing the 

action has the effect



Implementation of the IO monad
• GHC uses “world-passing semantics” for the IO monad     

• It represents the “world” by an un-forgeable token of 
type World, and implements bind and return as:

• Using this form, the compiler can do its normal 
optimizations.  The dependence on the world ensures 
the resulting code will still be single-threaded.

• The code generator then converts the code to modify 
the world “in-place.”

type IO t = World -> (t, World)

return :: a -> IO a 
return a = \w -> (a,w) 
(>>=) :: IO a -> (a -> IO b) -> IO b 
(>>=) m k = \w -> case m w of (r,w’) -> k r w’ 

34



Simple I/O actions

getChar

Char

putChar

()Char

getChar :: IO Char
putChar :: Char -> IO ()

main :: IO ()
main = putChar ‘x’

Main program is an 
action of type IO ()

35



The Bind Combinator (>>=) 

• We have connected two actions to make a new, 
bigger action.

putChar

()

Char

getChar

(>>=) :: IO a -> (a -> IO b) -> IO b

echo :: IO ()
echo = getChar >>= putChar

36

getChar :: IO Char
putChar :: Char -> IO ()

echo 



The (>>=) Combinator

• Operator is called bind because it binds the result 
of the left-hand action in the action on the right

• Performing compound action a >>= \x->b : 
– performs action a, to yield value r 
– applies function \x->b to r
– performs the resulting action  b{x <- r}
– returns the resulting value  v

b

v

a
xr

(>>=) :: IO a -> (a -> IO b) -> IO b

37



The (>>) Combinator

• The “then” combinator (>>) does sequencing 
when there is no value to pass:

(>>) :: IO a -> IO b -> IO b
-- defined from bind
(>>=) :: IO a -> (a -> IO b) -> IO b
m >> n  =  m >>= (\_ -> n)

echoDup :: IO ()
echoDup = getChar  >>= \c  ->
          putChar c  >>
          putChar c  

echoTwice :: IO ()
echoTwice = echo >> echo 38



The return Combinator

• The action (return v) does no IO and 
immediately returns v:

return :: a -> IO a

return

getTwoChars :: IO (Char,Char)
getTwoChars = getChar >>= \c1 ->
              getChar >>= \c2 ->
              return (c1,c2)

39



The “do” Notation
• The “do” notation adds syntactic sugar to make 

monadic code easier to read.

• do syntax designed to look imperative.

-- Do Notation
getTwoCharsDo :: IO(Char,Char)
getTwoCharsDo = do { c1 <- getChar ;
                     c2 <- getChar ;
                     return (c1,c2) }

-- Plain Syntax
getTwoChars :: IO (Char,Char)
getTwoChars = getChar >>= \c1 ->
              getChar >>= \c2 ->
              return (c1,c2)

40



Desugaring “do” Notation
• The “do” notation only adds syntactic sugar:

do { x }       = x
do { x; stmts } = x >> do { stmts }
do { v<-x; stmts } = x >>=  \v -> do { stmts }
do {let ds; stmts }   =     let ds in do { stmts } 

The scope of variables bound in a generator is the rest of 
the “do” expression.
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do { x1 <- p1; ...; xn <- pn; q }
do x1 <- p1
   ...
   xn <- pn
   qdo   x1 <- p1; ...; xn <- pn; q

• The following are equivalent:



Bigger Example

• The getLine function reads a line of input:
getLine :: IO [Char]
getLine = do { c <- getChar ;
               if c == '\n' then 
                    return []
               else 
                    do { cs <- getLine;
                         return (c:cs) }}

Note the “regular” code mixed with the monadic operations 
and the nested “do” expression.
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Control Structures on Monads
• Exploiting the monadic combinators, we can define 

control structures that work for any monad
repeatN 0 x = return ()
repeatN n x = x >> repeatN (n-1) x
repeatN :: (Num a, Monad m, Eq a) => a -> m a1 -> m ()

Main> repeatN 5 (putChar 'h')

43

for []     fa = return ()
for (x:xs) fa = fa x  >>  for xs fa
for :: Monad m => [t] -> (t -> m a) -> m ()

Main> for [1..10] (\x -> putStr (show x))



Sequencing

• Example use:

-- sequence :: [IO a] -> IO [a]
sequence [] = return []
sequence (a:as) = do { r  <- a;
                       rs <- sequence as;
                       return (r:rs) }
sequence :: Monad m => [m a] -> m [a]

Main> sequence [getChar, getChar, getChar]

A list of IO 
actions.

An IO action 
returning a list.
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IO Provides Access to Files
• The IO Monad provides a large collection of 

operations for interacting with the “World.”
• For example, it provides a direct analogy to the 

Standard C library functions for files:

openFile :: FilePath -> IOMode -> IO Handle 
hPutStr  :: Handle -> String -> IO ()
hGetLine :: Handle -> IO String
hClose   :: Handle -> IO () 
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References
• The IO operations let us write programs that do I/O in a 

strictly sequential, imperative fashion.  
• Idea: We can leverage the sequential nature of the IO 

monad to do other imperative things

• A value of type IORef a is a reference to a mutable cell 
holding a value of type a.

data IORef a   -- Abstract type
newIORef   :: a -> IO (IORef a)
readIORef  :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()
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Example Using References

This is terrible:  Contrast with: sum [1..n].  

import Data.IORef  -- import reference functions
-- Compute the sum of the first n integers
count :: Int -> IO Int
count n = do 
   { r <- newIORef 0;
     addToN r 1 }
  where 
    addToN :: IORef Int -> Int -> IO Int
    addToN r i | i > n     = readIORef r
               | otherwise = do 
                  { v <- readIORef r
                  ; writeIORef r (v + i)
                  ; addToN r (i+1)}
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The IO Monad as ADT

• All operatons return an IO action, but only bind (>>=) 
takes one as an argument. 

• Bind is the only operation that combines IO actions, 
which forces sequentiality. 

• In pure Haskell, there is no way to transform a value of 
type   IO a  into a value of type a

return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

getChar :: IO Char
putChar :: Char -> IO ()
... more operations on characters ...
openFile :: [Char] -> IOMode -> IO Handle
... more operations on files ...
newIORef :: a -> IO (IORef a)
... more operations on references …
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Unreasonable Restriction?
• In pure Haskell, there is no way to transform a value of type   
IO a  into a value of type a

• Suppose you wanted to read a configuration file at the 
beginning of your program:

• The problem is that readFile returns an IO String, not a 
String.

• Option 1: Write entire program in IO monad.  But then we 
lose the simplicity of pure code.

• Option 2: Escape from the IO Monad using a function from 
IO String -> String. But this is disallowed!

configFileContents :: [String] 
configFileContents = lines (readFile "config") -- WRONG! 
useOptimisation :: Bool                
useOptimisation = "optimise" ‘elem‘ configFileContents 



Type-Unsafe Haskell Programming

• Reading a file is an I/O action, so in general it matters 
when we read the file. 

• But we know the configuration file will not change 
during the program, so it doesn’t matter when we 
read it.  

• This situation arises sufficiently often that Haskell 
implementations offer one last unsafe I/O primitive: 
unsafePerformIO. 

unsafePerformIO :: IO a -> a
configFileContents :: [String] 
configFileContents = lines(unsafePerformIO(readFile "config"))



unsafePerformIO

• The operator has a deliberately long name to 
discourage its use.

• Its use comes with a proof obligation: a promise 
to the compiler that the timing of this operation 
relative to all other operations doesn’t matter.

unsafePerformIO :: IO a -> a

Result

actInvent
World

Discard
World



unsafePerformIO
• Warning: As its name suggests, unsafePerformIO breaks the 

soundness of the type system.

• So claims that Haskell is type safe only apply to programs that don’t 
use unsafePerformIO.

• Similar examples are what caused difficulties in integrating 
references with Hindley/Milner type inference in ML.

r =  unsafePerformIO (newIORef (error "urk")) 
r :: IORef a   -- Type of the stored value is generic

cast x = unsafePerformIO (do {writeIORef r x;
                              readIORef r     })
> :t (\x -> cast x)
(\x -> cast x) :: a1 -> a2
> cast 65:: Char
'A'



Summary on Mondas
• A complete Haskell program is a single IO action called 
main.  Inside IO, code is single-threaded.

• Big IO actions are built by gluing together smaller ones with 
bind (>>=) and by converting pure code into actions with 
return.

• IO actions are first-class.  
– They can be passed to functions, returned from functions, and 

stored in data structures.
– So it is easy to define new “glue” combinators.

• The IO Monad allows Haskell to be pure while efficiently 
supporting side effects.

• The type system separates the pure from the effectful code. 
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Comparison

• In languages like ML or Java, the fact that the 
language is in the IO monad is baked into the 
language.  There is no need to mark anything in the 
type system because it is everywhere.  

• In Haskell, the programmer can choose when to live 
in the IO monad and when to live in the realm of 
pure functional programming.

• So it is not Haskell that lacks imperative features, but 
rather the other languages that lack the ability to 
have a statically distinguishable pure subset.
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Appendix: Monad Laws
1) return x  >>=  f  =  f x
2) m  >>=  return    =  m
3) (x >>= f) >>= g = x >>= (\v -> f v >>= g)

3) do { x <- m1;
        y <- m2;
        m3 }

do { y <- do { x <- m1;
               m2 }
     m3}

=

x not in free vars of m3 55

1) do { w <- return v; f w }
= do { f v }

2) do { v <- x; return v }
= do { x }

• In do-notation:



Derived Laws for (>>) and done

done >>  m         = m
m  >>  done        = m
m1 >> (m2 >> m3)  = (m1 >> m2) >> m3

(>>) :: IO a -> IO b -> IO b
m >> n  =  m >>= (\_ -> n)

done :: IO ()
done = return ()
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