301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

AP-17: Lambda Calculus, Haskell, Call by need

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Summary

e Motivation: Laziness in Haskell
e Lambda Calculus

* Parameter passing mechanisms
— Call by sharing

— Call by name

— Call by need

On laziness in Haskell

* Haskell is a lazy language

e Functions and data constructors don’t evaluate their
arguments until they need them

* |n several languages there are forms of lazy evaluations
(if-then-else, shortcutting && and | |)

if (x != 0) return y/x; else return 0; //ok
if (x !'=0 && y/x > 5) return 0; else return 1; //ok
if (x !'=0 & y/x > 5) return 0; else return 1; //no

int choose (boolean el, boolean e2) {
if (el && e2) return 0; else return 1;

}

choose (x!=0, y/x>5) [/ 2?2

e Ok in Haskell, thanks to Normal Order evaluation and
Call by Need parameter passing...

A-calculus: syntax

A-terms: to=x| Mt]| tt] (t)

° X variable, name, symbol,...

* \Mx.t abstraction, defines an anonymous function
e tt' application of function t to argument t’

Terms can be represented as abstract syntax trees

Syntactic Conventions

e Applications associates to left
ttt3= (t 1)t

e The body of abstraction extends as far as possible
e AX. Ay. Xy x = (AX. (Ay. (xy) X))

A simple tutorial on lambda calculus:
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

Free vs. Bound Variables

e An occurrence of xis freeinatermtifitis notin the
body of an abstraction Ax. t

— otherwise it is bound
— AX is a binder

 Examples
— AZ. AX. AY. x (y 2)
— (Ax. x) x
 Terms without free variables are combinators
— ldentity function: id = Ax. x
— First projection: fst = Ax. Ay. X

Operational Semantics

[B-reduction] function application

redex | (Ax.t)t'| — t[t'/x]

(AX. X))y —> y
(AX.x(AXx.X))(ur)—> ur(Ax.Xx)
(Ax. (Aw. xw)) (yz) > Aw.yzw

(A X X X)(Ax. xX) = (Ax. x X) (Ax. x X)

Other relevant concepts:

* Normal Forms, a-conversion, n-reduction

A-calculus as a functional language

Despite the simplicity, we can encode in A-
calculus most concepts of functional languages:

* Functions with several arguments
* Booleans and logical connectives
* |ntegers and operations on them
* Pairs and tuples

* Recursion

Functions with several arguments

* A definition of a function with a single argument
associates a name with a A-abstraction

f x = <exp> -—- 1s equivalent to

* A function with several argument is equivalent to a
sequence of A-abstractions

f(x,y) = <exp> -- is equivalent to
f = Ax. \y.<exp>

e “Currying” and “Uncurrying”

curry :: ((a, b) > ¢) ->a ->b -> c
curry £ x y = £(x,y)

uncurry :: (a -=> b ->¢) -> (a, b) -> ¢
uncurry £ (x,y) = £ x y

Church Booleans

* T = At.Af.t —— first [g0
e FF = At.Af.f —-—- second | > (Ab.kc.bcF) T F
« and = Ab.Ac.bcF 3 e tem) E
e or = Ab.Ac.bTc 2 F
e not = Ax.xFT
e test =Al.Am.An.lmn ot T
2 (Ax.xFT) F
test Fuw - FFT
2 (AMl.Am.An.1lmn) F u w > T

2 (Am.An.Fmn) u w
-2 (An.Fun) w

-2 Fuw

2w

Pairs

palr = Af.As.Ab.b f s
fst = Ap.p T
snd = Ap.p F

t (pair u w)

(Ap.p T) (pair u w)
(pair u w) T

(AMf.As.Ab.b £ s) uwT
(As.Ab.b u s) w T
(Ab.b u w) T
T u w
u

NV 2020\ 20 20\ 2 s

10

e 0 = As.
e 1 = As.
e 2 = AsS.
e 3 = As.

Church Numerals

AZ .
AZ .
AZ .
AZ .

0 0 » N
)]

A first simple function:

* succ = An. As. Az. s 1n s|z)

Higher order functions:

n takes a function s as argument
and returns the n-th composition
of s with itself, s”

succ 2
- (An.

-2 (As.
-2 (As.
-2 (As.

AsS.
AZ .
AZ .
AZ .

AZ .

S
S
S

(s

S

(n s z))
(2 s z))
((As. Az.

(s z))

S

2

(s
3

applies the function one
more time

z)) s z))

Arithmetics with Church Numerals

Addition: sm
e plus = Am. An. As. Az.|m s| (n s z)
Multiplication: s

e times = Am. An. AS. Az. |m (E sl z (sn)m=sn*m

Exponentiation: m"
* pow = Am. An. AsS. Az.|n m|s z

Test by zero:
e 7 = AX. x F not F
. = ((0 F) not) F = not F =

/ T
* 7 = ((n F) not) F = (F* not) F =
F (F* 1 (not)) = F

—~3 O |
o

Fix-point combinator and recursion

The following fix-point combinator Y, when applied to a function
R, returns a fix-point of R, i.e. R(YR) = YR

e ¥Y = (Ay. (Ax.y(x X)) (Ax.y(x X)))
° YR = (Ax.R(x x)) (AXx.R(x x))
= R((Ax.R(x x)) (Ax.R(x x))) = R(YR)

A recursive function definition (like factorial) can be read as a
higher-order transformation having a function as first argument,
and the desired function is its fix-point.

13

Fix-point combinator and recursion

A recursive definition:
e sums(n) = (n==0 2?2 0 : n + sums(n-1))
e sums = \n -> (n == 0 2?2 0 : n + sums(n-1))

sums is the fix-point of the following higher-order function:

e R=\F > \n > (n ==0?0 :n+ F(n-1))

e R=(Ar.An.Z n 0 (n S (r (P n)))) //inA-calculus
Example of application

(Y R) 3 =R (Y R) 3 =

(3 ==020 : 3 + (Y R) (3-1)) =

3+ (Y R) 2 =

3 + R (Y R) 2 =

34 (2 ==020:2+ (¥YR) (2-1)) =
342+ (YR) 1=

. 3+ 2+ 1 + 0 =60

Applicative and Normal Order evaluation

Applicative Order evaluation
— Arguments are evaluated before applying the function -

aka Eager evaluation, parameter passing by value

Normal Order evaluation
— Function evaluated first, arguments if and when needed

— Sort of parameter passing by name

— Some evaluation can be repeated

Church-Rosser

— If evaluation terminates, the result (normal form) is

unique

— |f some evaluation terminates, normal order evaluation

terminates

Define Q = (Ax.x x)

Then

QO = (Ax.x x) (Ax.x x)
=2 X X [(Ax.x x)/X]

=2 (Ax.x x) (Ax.x x) = QQ
- ... hon-terminating

(Ax. 0) (QQ)
- { Applicative order}
... hon-terminating

(Ax. 0) (QQ)
- { Normal order}
0

B-conversion
(Ax.t) t' =t [t'/X]

Applicative order
(Ax.(+ x X)) (+ 3 2)
=2 (Ax.(+xx)) 5

- (+55)

- 10

Normal order
(Ax.(+ x X)) (+ 3 2)
2+ (+32)(+32))
2(+5 (+32))

2> (+55)

-2 10

Parameter Passing Mechanisms

* Parameter passing modes
— In
— In/out
— QOut

* Parameter passing mechanisms
— Call by value (in)
— Call by reference (in+out)
— Call by result (out)
— Call by value/result (in+out)
— Call by need (in)
— Call by sharing (in/out)
— Call by name (in+out)

L-Values vs. R-Values and
Value Model vs. Reference Model

Consider the assignment of the form: a=b

— ais an l-value, an expression denoting a location, e.g.
e anarray element a[2]
* avariable foo
* adereferenced pointer *p
* a more complex expression like (f(a)+3)->b|[c]

— bis an r-value: any syntactically valid expression with a type
compatible to that of a
Languages that adopt the value model of variables copy the
value of b into the location of a

Languages that adopt the reference model of variables copy
references, resulting in shared data values via multiple
references

Value Model vs. Reference Model
in some programming languages

Lisp/Scheme, ML, Haskell, Smalltalk adopt the reference
model. They copy the reference of b into a so thataand b
refer to the same object

Most imperative programming languages use the value model

Java uses the value model for built-in types and the reference
model for class instances

C# uses value model for value types, reference model for
reference types

Assignment in
Value Model vs. Reference Model

al 4
Value model i
b :=2;
C =b; C 2
a:=b+c

Reference model b\
c /

References and pointers

Most implementations of PLs have as target architecture a Von
Neumann one, where memory is made of cells with addresses

Thus implementations use the value model of the target
architecture

Assumption: every data structure is stored in memory cells
We “define”:
— Areference to X is the address of the (base) cell where X is stored
— A pointer to X is a location containing the address of X
Value model based implementations can mimic the reference
model using pointers and standard assignment
— Each variable is associated with a location

— To let variable y refer to data X, the address of (reference to) X is written in
the location of y, which becomes a pointer.

Parameter Passing by Sharing

« Call by sharing: parameter passing of data in the
reference model

* The value of the variable is passed as actual
argument, which in fact is a reference to the
(shared) data

— Essentially this is call by value of the variable!

» Java uses both pass by value and pass by sharing

— Variables of primitive built-in types are passed by
value
— Class instances are passed by sharing

— The implementation is identical

Parameter Passing in Algol 60

Algol 60 uses call by name by default, but also call by value

Effect of call by name is like B-reduction in A-calculus: the
actual parameter is copied wherever the formal parameter
appears in the body, then the resulting code is executed

Thus the actual parameter is evaluated a number of times (0O,
1, ...) that depends on the logic of the program

Since the actual parameter can contain names, it is passed in

a closure with the environment at invocation time (called a
thunk)

Call by name is powerful but makes programs difficult to read
and to debug (think to A-calculus...): dismissed in subsequent
versions of Algol

An example of Call by Name:
Jensen’s device

 What does the following Algol 60 procedure compute?

real procedure sum(expr, i, low, high);
value low, high; low and high are passed by value
real expr; expr and i are passed by name

integer i, low, high;
begin

real rtn;

rtn := 0;

for 1 :

rtn

sum := rtn

end sum

low step 1 until high do

rtn + expr;
return value by assigning to function name

 Apparently, (high-low+l) * expr

An example of Call by Name:
Jensen’s device

But: y := sum(3*x*x-5*x+2,x,1,10)

real procedure sum(expr, i, low, high);
value low, high; low and high are passed by value
real expr; expr and i are passed by name

integer i, low, high;
begin

real rtn;

rtn := 0;

for x :

rtn

sum := rtn

end sum

low step 1 until high do
rtn + 3*x*x-5%*x+2;
return value by assigning to function name

10
It computes _ Z 3x2-5x+2
Y x=1

Call by name & Lazy evaluation (call by need)

In call by name parameter passing (default in Algol 60)
arguments (like expressions) are passed as a closure
(“thunk”) to the subroutine

The argument is (re)evaluated each time it is used in the
body

Haskell realizes lazy evaluation by using call by need
parameter passing, which is similar: an expression passed
as argument is evaluated only if its value is needed.

Unlike call by name, the argument is evaluated only the
first time, using memoization: the result is saved and
further uses of the argument do not need to re-evaluate
it

Call by name & Lazy evaluation (call by need)

Combined with lazy data constructors, this allows to
construct potentially infinite data structures and to call
infinitely recursive functions without necessarily causing
non-termination

Note: lazy evaluation works fine with purely functional
languages

Side effects require that the programmer reasons about
the order that things happen, not predictable in lazy
languages.

We will address this fact when introducing Hakell's 10-
Monad

Summary of Parameter Passing Modes

parameter
mode

value

in, const
out
value/result
var, ref

sharing

in out
name

need

representative
languages

C/C++, Pascal,

Java/C# (value types)
Ada, C/C++, Modula-3
Ada

Algol W

Fortran, Pascal, C++

Lisp/Scheme, ML,
Java/C# (reference types)

Ada
Algol 60, Simula
Haskell, R

implementation
mechanism

value
value or reference
value or reference
value

reference

value or reference

value or reference
closure (thunk)
closure (thunk) with

memoization

permissible
operations

read, write
read only

write only
read, write

read, write

read, write
read, write
read, write

read, write"

change to
actual?

no
no
yes
yes

yes

yes
yes
yes

yes”

alias?

no
maybe
maybe

no

yes

yes
maybe
yes
yes”

30

