301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

AP-16: Laziness, Algebraic Datatypes and Higher Order Functions

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Laziness

* Haskell is a lazy language

* Functions and data constructors (also user-defined
ones) don’t evaluate their arguments until they need

them cond True te =t
cond False t e = e
cond :: Bool -> a -> a -> a

cond True [] [1..] => []

* Programmers can write control-flow operators that
have to be built-in in eager languages

Short- (1) :: Bool -> Bool -> Bool
circuiting True X = True

A\ "

| |
or False || x = x

List Comprehensions

Notation for constructing new lists from old ones:

myData = [1,2,3,4,5,6,7]

twiceData = [2 * x | x <- myData]

-- [2,4,6,8,10,12,14]
twiceEvenData = [2 * x| x <- myData, x mod 2 == 0]
-- [4,8,12]

e Similar to “set comprehension”
{x|xeA A Xx>6}

More on List Comprehensions

ghci> [x | x <- [10..20], x /= 13, x /= 15, x /= 19]
[10,11,12,14,16,17,18,20] —- more predicates

ghci> [x*y | x <- [2,5,10], y <- [8,10,11]]
[16,20,22,40,50,55,80,100,110] ——- more lists

length xs = sum [1 | _ <- xs] —-- anonymous (don’t care) var

—- strings are lists..
removeNonUppercase st = [¢ | ¢ <- st, ¢ 'elem ['A'..'Z']]

Datatype Declarations

e Examples

data Color = Red | Yellow | Blue

elements are Red, Yellow, Blue

data Atom = Atom String | Number Int

elements are Atom “A”, Atom “B”, ..., Number O, ...

data List = Nil | Cons (Atom, List)

elements are Nil, Cons(Atom “A”, Nil), ...
Cons(Number 2, Cons(Atom(“Bill”), Nil)), ...

e General form

data <name> = <clause> | ... | <clause>
<clause> ::= <constructor> | <contructor> <type>

— Type name and constructors must be Capitalized.

Datatypes and Pattern Matching

* Recursively defined data structure
data Tree = Leaf Int | Node (Int, Tree, Tree)

Node (4, Node (3, Leaf 1, Leaf 2), °
Node (5, Leaf 6, Leaf 7))

e Constructors can be used 9

5
in Pattern Matching a a @ @

e Recursive function

sum (Leaf n) = n
sum (Node(n,tl,t2)) = n + sum(tl) + sum(t2)

Case Expression

* Datatype

data Exp = Var Int | Const Int | Plus (Exp, Exp)

* Case expression

case e of
Var n ->
Const n -> ..
Plus (el,e2) -> ..

— Indentation matters in case statements in Haskell.

Function Types in Haskell

In Haskell, £ :: A =-> B meansforeveryx € A,

f(x) = some elementy =f(x) € B
- run forever

In words, “if f(x) terminates, then f(x) € B.”

In ML, functions with type A — B can throw an exception or
have other effects, but not in Haskell

Prelude> :t not -- type of some predefined functions
not :: Bool -> Bool

Prelude> :t (+)

(+) :: Num a => a -> a -> a Note: if fis a standard
Prelude> :t (:) binary function, f is its
(:) :: a =-> [a] -> [a] infix version
Prelude> :t elem If x is an infix (binary)
elem :: Eq a => a -> [a] -> Bool operator, (x) is its prefix

version.

From loops to recursion

* In functional programming, for and while loops
are replaced by using recursion

* Recursion: subroutines call themselves directly or
indirectly (mutual recursion)

length' [] =0
length' (x:s) = 1 + length' (s)

// definition using guards and pattern matching
-— take’ n lst returns first n elements of a list
take' :: (Num i, Ord i) => i -> [a] -> [a]
take' n _

| n <=0
take' []

take' n (x:xs)

[]
[]

x : take' (n-1) xs

Higher-Order Functions

* Functions that take other functions as arguments or
return a function as a result are higher-order
functions.

e Pervasive in functional programming

applyTo5 :: Num tl1l => (t1l -> t2) -> t2 -- function as arg
applyTo5 £ = £ 5

> applyTo5 succ => 6

» applyTo5 (7 +) => 12

applyTwice :: (a -> a) -> a -> a -- function as arg and res
applyTwice f x = £ (f x)

> applyTwice (+3) 10 => 16

> applyTwice (++ " HAHA") "HEY" => "HEY HAHA HAHA"

> applyTwice (3:) [1] => [3,3,1]

applyTwice’ £ = £.f -- equivalent definition

t (.)

(.) :: (b ->c¢c) -=> (a > b) > a -> c

Higher-Order Functions

* Can be used to support alternative syntax
 Example: From functional to stream-like

(1>) :: €1 -> (t1 -> t2) -> t2
(|>) a £ =£f a

> length (tail (reverse [1,2,3])) => 2

> [1,2,3]

|> reverse |> tail |> length => 2

Higher-Order Functions... everywhere

Any curried function with more than one
argument is higher-order: applied to one
argument it returns a function

(+) :: Num a => a -> a -> a

> let £ = (+) 5 // partial application
>:t £ ==> £f :: Num a => a -> a

> £ 4 ==> 9

elem :: (Eq a, Foldable t) => a -> t a -> Bool
> let isUpper = ('elem ['A'..'Z'])

>:t isUpper ==> isUpper :: Char -> Bool

> isUpper 'A' ==> True

> isUpper '0' ==> False

Higher-Order Functions:
the map combinator

map: applies argument function to each element in
a collection.

map :: (a -> b) -> [a] -> [Db]
map _ [] = []
map £ (x:xs) = £ x : map £ xs

> map (+3) [1,5,3,1,6]

[4,8,6,4,9]

> map (++ "!") ["BIFF", "BANG", "POW"]
["BIFF!","BANG!'" ,"POW!"]

> map (replicate 3) [3..6]
[[3,3,3]1,[4,4,4],[5,5,5],[6,6,61]

> map (map (*2)) [[1,2],[3,4,5,6]1,[7,81]
[[1,4]1,[9,16,25,36],[49,64]]

> map fst [(1,2),(3,5),(6,3),(2,6),(2,5)]
[1,3,6,2,2]

Higher-Order Functions:
the filter combinator

filter: takes a collection and a boolean predicate, and
returns the collection of the elements satisfying the
predicate

filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x:xs)

| p x
| otherwise

x : filter p =xs
filter p xs

> filter (>3) [1,5,3,2,1,6,4,3,2,1]
[5,6,4]
> filter (==3) [1,2,3,4,5]
[3]
> filter even [1l..10]
[2,4,6,8,10]
> let notNull x = not (null x)
in filter notNull [[1,2,3]1,1[1,[3,4,51,1[2,2]1,I11,I11,11]
[[1,2,3],[3,4,5]1,1[2,2]]

Higher-Order Functions:
the reduce combinator

reduce (foldl, foldr): takes a collection, an initial value, Binary

and a function, and combines the elements in the function
collection accordlng to the function.

(Initial

-- folds wvalues from end to be ng of 1lSt value

|

foldr :: Foldable t => (a -> b ->b) ->b -> t a -> b

foldr £ z [] = z

ion

foldr £ z (x:xs) = £ x (foldr £ z xs) List/collect

|

-- folds values from beginning to end of list
foldl :: Foldable t => (b -> a ->b) ->b ->t a ->b
foldl £ z [] = z

foldl £ z (x:xs) foldl £ (f z x) xs

-- variants for non-empty lists
foldrl :: Foldable t => (a -=> a -> a) -> t a -> a
foldll :: Foldable t => (a -=> a -> a) -> t a -> a

foldr :: Foldable t => (a -=> b ->b) ->b ->t a ->b

foldl :: Foldable t => (b -> a ->b) ->b ->t a ->b
Examples foldrl :: Foldable t => (a -> a -> a) -> t a -> a

sum' :: (Num a) => [a] -> a

sum' xs = foldl (\acc x -> acc + x) 0 xs

maximum' :: (Ord a) => [a] -> a

maximum' = foldrl (\x acc -> if x > acc then x else acc)
reverse' :: [a] -> [a]

reverse' = foldl (\acc x -> x : acc) []

product' :: (Num a) => [a] -> a

product' = foldrl (¥*)

filter' :: (a -> Bool) -> [a] -> [a]

filter' p = foldr (\x acc -> if p x then x : acc else acc)[]
head' :: [a] -> a

head' = foldrl (\x _ -> x)
last' :: [a] -> a
last' = foldll (_ x -> x)

From imperative to functional programming
Searching a substring: Java code

static int indexOf (char[] source, int sourceOffset, int sourceCount,
char[] target, int targetOffset, int targetCount,
int fromIndex) {

char first = target[targetOffset];
int max = sourceOffset + (sourceCount - targetCount) ;

for (int i1 = sourceOffset + fromIndex; i <= max; i++) {
/* Look for first character. */
if (source[i] '= first) {
while (++i <= max && source[i] '= first);

}

/* Found first character, now look at the rest of v2 */
if (i <= max) {
int § = i + 1;
int end = j + targetCount - 1;
for (int k = targetOffset + 1; j < end && source[j] ==
target[k];, j++, k++);

if (j == end) {
/* Found whole string. */
return i - sourceOffset;

|

return -1;

Searching a Substring:
Exploiting Laziness

isPrefixOf :: Eq a => [a] -> [a] -> Bool
-—- returns True if first list is prefix of the second
isPrefixOf [] x = True
isPrefixOf (y:ys) [] = False
isPrefixOf (y:ys) (x:xs) =
if (x == y) then isPrefixOf ys xs else False

suffixes:: [a]-> [[a]l]
-— All suffixes of s

suffixes|] = [[1]
suffixes(x:xs) = (x:xs) : suffixes xs
or :: [Bool] -> Bool

-- (or bs) returns True if any of the bs is True
or [] = False
or (b:bs) = b || or bs

isSubString :: [a] -> [a] -> Bool
X isSubString s = or [x "isPrefixOf t
| £t <- suffixes s]

On efficiency

Iteration and recursion are equally powerful in theoretical sense:
Iteration can be expressed by recursion and vice versa

Recursion is the natural solution when the solution of a problem is
defined in terms of simpler versions of the same problem, as for
tree traversal

In general a procedure call is much more expensive than a
conditional branch

Thus recursion is in general less efficient, but good compilers for
functional languages can perform good code optimization

Use of combinators, like map, reduce (foldl, foldr), filter, foreach,...
strongly encouraged, because they are highly optimized by the
compiler.

Tail-Recursive Functions

* Tail-recursive functions are functions in which no operation follows the
recursive call(s) in the function, thus the function returns immediately
after the recursive call:

tail-recursive not tail-recursive
int trfun() int rfun()
{ . { ..
return trfun() ; return l+rfun() ;
} }

* A tail-recursive call could reuse the subroutine's frame on the run-time
stack, since the current subroutine state is no longer needed

— Simply eliminating the push (and pop) of the next frame will do

* In addition, we can do more for tail-recursion optimization: the compiler
replaces tail-recursive calls by jumps to the beginning of the function

Tail-Recursion Optimization: Example

int ged(int a, int b) // tail recursive
{ 1f (a==b) return a;
else if (a>b) return gcd(a-b, b);
else return gecd(a, b-a);

}

int ged(int a, int b) // possible optimization
{ start:
if (a==b) return a;
else if (a>b) { a = a-b; goto start; }
else { b = b-a; goto start; }

}

int ged(int a, int b) // comparable efficiency
{ while (a'=b)
if (a>b) a = a-b;
else b = b-a;
return a;

22

Converting Recursive Functions to
Tail-Recursive Functions

« Remove the work after the recursive call and include it in some other
form as a computation that is passed to the recursive call

 For example

reverse [] = [] -- quadratic
reverse (x:xs) = (reverse xs) ++ [x]

can be rewritten into a tail-recursive function:

reverse xs = -- linear, tail recursive
let rev ([], accum) = accum
rev (y:ys, accum) = rev (ys, y:accum)
in rev (xs, [])

Equivalently, using the where syntax:

reverse xs = -- linear, tail recursive
rev (xs, [])
where rev ([], accum) = accum
rev (y:ys, accum) = rev (ys, y:accum) 23

Converting recursion into
tail recursion: Fibonacci

« The Fibonacci function implemented as a recursive function is very
inefficient as it takes exponential time to compute:

fib = \n -> if n == 0 then 1
else if n == 1 then 1
else fib (n - 1) + fib (n - 2)

with a tail-recursive helper function, we can run it in O(n) time:

fibTR = \n -> 1let fibhelper (f1, £f2, i) =
if (n == i) then f£f2
else fibhelper (f2, f1 + £2, i + 1)
in fibhelper(0,1,0)

Comparing foldl and foldr

-—- folds values from end to beginning of list

foldr :: Foldable t => (a -=> b ->b) ->b ->t a ->Db
foldr £ z [] = z

foldr £ z (x:xs) = £ x (foldr £ z xs)

-—- folds values from beginning to end of list

foldl :: Foldable t => (b -> a ->b) ->b ->t a ->b
foldl £ z [] = z
foldl £ z (x:xs)

foldl £ (f z x) =xs

« foldl is tail-recursive, foldr is not. But because of
laziness Haskell has no tail-recursion optimization.

e foldl' is a variant of foldl where £ is evaluated
strictly. It is more efficient.

See
https://wiki.haskell.org/Foldr Foldl Foldl'

