301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-14: C++ Standard Template Library
Slides freely adapted from those by Antonio Cisternino

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Introduction

The C++ Standard Template Library (STL) has
become part of C++ standard

The main author of STL is Alexander Stephanov
Developed in ~1992 but based on ideas of ~1970

He chose C++ because of templates and no
requirement of using OOP!

The library is somewhat unrelated with the rest of
the standard library which is OO

The Standard Template Library

Goal: represent algorithms in as general form as possible
without compromising efficiency

Extensive use of templates and overloading

Only uses static binding (and inlining): not object oriented,
no dynamic binding — very different from Java Collection
Framework

Use of iterators for decoupling algorithms from containers
Iterators are seen as abstraction of pointers

Many generic abstractions

— Polymorphic abstract types and operations

Excellent example of generic programming

— Generated code is very efficient

3D generic world

Stephanov observed three DATA STRUCTURES
orthogonal dimensions in

algorithms: iterators allow
algorithms to iterate over data
structures.

Iterators are very similar to C
pointers and compatible with them

ALGORITHMS

ITERATORS

Main entities in STL

Container: Collection of typed objects
— Examples: array, vector, deque, list, set, map ...

Iterator: Generalization of pointer or address. used to step through the
elements of collections

— forward _iterator, reverse_iterator, istream_iterator, ...
— pointer arithmetic supported

Algorithm: initialization, sorting, searching, and transforming of the
contents of containers,

— for_each, find, transform, sort
Adaptor: Convert from one form to another
— Example: produce iterator from updatable container; or stack from list
Function object: Form of closure (class with "operator()" defined)
— plus, equal, logical _and
Allocator: encapsulation of a memory pool
— Example: GC memory, ref count memory, ...

[Containers]

|

Sequence Associative Derived
Containers Containers Containers
t
Vector >€ stack
multiset
Degue queue
ma
list P priority_queue
multimap
Algorithms
Templates [terathrs
Data Types Containers

1. Templates
make algorithms independent of the data types
2. lterators

make algorithms independent of the containters
6

JCF vs STL

extends rable :—h Interface

Class

,

implements T

i
[
A .
c
H’
n
N

iy
i

Java Collection Framework

__

Sequence
Containars

Wector
Diegue
st

[Contain ers '

AsspClative
Containers

set
muRiset
map

rmukimap

o

Diesrreed
Containers

tack
(e e
priariny_qgueue

Standard Template Library

On lterators

The JCF and the STL supports various kinds of
Collections / Containers

Access to elements of a collection depends on its
structure and on its public interface

Algorithms cannot be used directly on different kinds
of collections

Iterators provide a uniform, linear access to elements
of different collections

In Java, an iterator on a collection offers (at least) two
methods

— boolean hasNext()

— T next()

The Iterator
Design Pattern

lterators In Java

IteratorPatternDemo

uses

<<Interface>>

Container

+getiterator() : Iterator

implements

~

NameRepository

has

+main() : void

-name : String (]

+getiterator() : Iterator

<<interface>>

iterator

+hasNext() : boolean
+next() : Object

4
implements

Namelterator

+hasNext() : boolean
+next() : Object

lterators are supported in the JCF: interface Iterator<T>
They exploit generics (as collections do)

lterators are usually defined as nested classes (non-static private
member classes): each iterator instance is associated with an
instance of the collection class

Collections equipped with iterators have to implement the
Iterable<T> interface

An example: Iterators for BinTrees

class BinTree<T> implements Iterable<T> {
BinTree<T> left;
BinTree<T> right;
T val;

private class Treelterator implements Iterator<T>({
}
// other methods: insert, delete, lookup,

public Iterator<T> iterator() ({
return new Treelterator (this);

Iterators for BinTrees (cont’d)

class BinTree<T> implements Iterable<T> {

private class TreeIterator implements Iterator<T> {
private Stack<BinTree<T>> s = new Stack<BinTree<T>>() ;
Treelterator (BinTree<T> n) {
if (n.val != null) s.push(n);
}
public boolean hasNext () {
return !s.empty() ;
}
public T next() { //preorder traversal
if ('hasNext()) throw new NoSuchElementException() ;
BinTree<T> n = s.pop()
if (n.right !'= null) s.push(n.right) ;
if (n.left '= null) s.push(n.left);
return n.val;

}

public void remove () ({
throw new UnsupportedOperationException () ;

b}

Using iterators in Java

e Use of the iterator to print all the nodes of a BinTree:

for (Iterator<Integer> it = myBinTree.iterator()

it.hasNext () ;)
{ Integer i = it.next();
System.out.println (i) ;
}

e Java provides (since Java 5.0) an enhanced for statement (foreach) which exploits
iterators. The above loop can be written:

for (Integer i : myBinTree) ’
System.out .printin (i) Let’s check on godbolt.org...

* Inthe enhanced for, myBinTree must either be an array of integers, or it has to
implement ITterable<Integer>

 The enhanced for on arrays is a bounded iteration. On an arbitrary iterator it depends
on the way it is implemented.

12

From Java to C++

 |terators are conceptually the same

* Exploit different language features

* No next/hasNext: use predefined C++ operators
* Recall: accessing arrays in C/C++

int main() {
int vec[5]; // create an array of int
for(int i = 0; i < 5; i++) {
vec[i] = 1i;
}
for(int 1 = 0; i < 5; i++) { // access to element
cout << "vec [" <K 1 KK "] =" L vec[i] << endl;
}
// using pointers to access the values
int* v = vec;
for(int 1 = 0; i < 5; i++) {
cout << "value of v = " << *v << endl;
v++;

}}

13

Example of use: Vector and Forward Iterator

#include <iostream>
#include <vector>
using namespace std;
int main() {
vector<int> vec; // create a vector to store int
// push 5 values into the vector
for(int i = 0; i < 5; i++) {
vec.push back (i) ;
}
for(int i = 0; 1 < 5; i++) {// access to elements
cout << "vec [" <K 1 <K<K "] = " KL vec[i] << endl;
}
// use iterator to access the values
vector<int>::iterator v = wvec.begin();

while(v !'= vec.end()) {
cout << "value of v = " <K< *v << endl;
v++;

}

return 0O;

lterators and C++ namespaces!

STL relies on C++ namespaces

Containers expose a type named iterator in the
container's namespace

Example: std::vector<std::string>::iterator

Each class implicitly introduces a new
namespace

The iterator type name assumes Iits meaning
depending on the context!

Implementing Iiterators: small struct

lterators are implemented by containers

Usually are implemented as struct (classes with
only public members)

An iterator implements a visit of the container

An Iterator retains inside information about the
state of the visit (i.e. in a vector, the pointer to
the current element and the number of
remaining elements)

The state may be complex in the case of non
linear structures such as trees or graphs

A simple forward iterator for vectors

template <class T>
struct v_iterator {

T *v;

int sz;

v_iterator (T* v, int sz) : v(v), sz(sz) {}

// '= implicitly defined

bool operator==(v_iteratoré& p) { return v == p->v; }

T operator* () { return *v,; }

v_iteratoré& operator++() { // Pre-increment
if (sz) ++v, --sz; else v = NULL;
return *this;

}

v_iterator operator++(int) { // Post-increment!
v_iterator ret = *this;
++ (*this); // call pre-increment
return ret;

}

}s;

Where Is defined v iterator?

template <class T>
class vector {
private:
T v[];
int sz;
struct v_iterator { .. };
public:
typedef v iterator iterator;
typedef v _iterator const const iterator;
typedef T element;

iterator begin() { return v _iterator(v, sz); }
iterator end() { return v _iterator (NULL, 0); }

18

Complexity of operations
on containers

* |ltis guaranteed that inserting and erasing at the
end of the vector takes amortized constant time
whereas inserting and erasing in the middle takes
linear time.

Container insert/erase overhead
at the beginning in the middle at the end
Vector linear linear amortized constant
List constant constant constant
Deque amortized constant linear amortized constant

Complexity of use of Iterators

« Consider the following code:

std::1list<std::string> 1;

quick sort(l.begin(), l.end());

* This Is not reasonable: quick sort assumes
random access to container's elements!

 How can we control complexity of algorithms
and guarantee that code behaves as expected?

20

Classifying iterators

 The solution proposed by STL is assume that iterators
Implement all operations in constant time

« Containers may support different iterators depending on
their structure:

— Forward iterators: only dereference (operator*), and pre/post-
Increment operators (operator++)

— Input and Output iterators: like forward iterators but with

possible issues in dereferencing the iterator (due to I/O
operations)

— Bidirectional iterators: like forward iterators with pre/post-
decrement (operator--)

— Random access iterators: like bidirectional iterators but with
Integer sum (p + n) and difference (p — Q)

* lterators heavily rely on operator overloading provided by
C++

Categories of iterators

* Five categories, with decreasing requirements

Random Access J Bidirectional Forward /

Input
Iterators

Iterators Iterators Iterators \

Output
Iterators

e Each category has only those functions
defined that are realizable in constant

time. [Efficiency concern of STL!]
 Not all iterators are defined for all

categories: since random access takes

linear time on lists, random access
iterators cannot be used with lists.

Container

Iterator Category

vector

random access iterators

list

bidirectional iterators

deque

random access iterators

C++ operators and iterators (1)

 Forward iterators provide for one-directional traversal
of a sequence, expressed with ++:

Operator ==, I=, *, ++

e Input iterators and output iterators are like forward
iterators but do not guaratee these properties of forward
iterators:

that an input or output iterator can be saved and used to start
advancing from the position it holds a second time

That it is possible to assign to the object obtained by applying *
to an input iterator

That it is possible to read from the object obtained by applying *
to an output iterator

That it is possible to test two output iterators for equality or
iInequality (== and != may not be defined)

C++ operators and iterators (2)

* Bidirectional iterators provide for traversal in both
directions, expressed with ++ and --:
— Same operators as forward iterator
— QOperator --

« Random access iterators provide for bidirectional
traversal, plus bidirectional “long jumps”:
— Same operators as bidirectional iterator
— Operator +=n and -= n with n of type int

— Addition and subtraction of an integer through operator + and
operator —

— Comparisons through operator <, operator >, operator <=,
operator >=

« Any C++ pointer type, T*, obeys all the laws of the
random access iterator category.

24

Iterator validity

 When a container is modified, iterators to it
can become invalid: the result of operations
on them is not defined

* Which iterators become invalid depends on
the operation and on the container type

Container | operation | iterator validity
vector inserting reallocation necessary - all iterators get invalid
no reallocation - all iterators before insert point remain valid
erasing all iterators after erasee point get invalid
list inserting | all iterators remain valid
erasing only iterators to erased elements get invalid
deque inserting | all iterators get invalid
erasing all iterators get invalid

Limits of the model

lterators provide a linear view of a container

Thus we can define only algorithms operating on
single dimension containers

If it IS needed to access the organization of the
container (i.e. to visit a tree in a custom fashion)
the only way Is to define a new iterator

Nonetheless the model Is expressive enough to
define a large number of algorithms!

An algorithm of STL: inner product

€ It will print 12: A

#include <iostream>
#include <numeric> O0=0+1*4+2*1+3*2

)
int main() { %;ZZ?////,

int Al[] = {1, 2, 3};
int A2[] = {4, 1, 2};
const int N1 = sizeof(Al) / sizeof (Al1l[0]);

Initial value
for the
accumulator

std: :cout << std::inner product(Al, Al + N1, A2,
<< std::endl;
return O;

} Start of Al End of Al Start of A2

int std::inner product<int*, int*, int>(int*, int*, int*, int)

With strings?

We have strings in two vectors: labels and values to display
Can we exploit inner product algorithm?

It would be enough to use string concatenation with a tab
separator instead of “*” and with a new line instead of ‘+’

But overloading of ‘+’ and “*’ operators make no sense: we
don’t want just string cat and we may interfere with already
defined overloads

Fortunately, there is another version of inner_product that
allow specifying function objects to use instead of ‘“*’ and ‘+’

Column printing with C++ std::string

#include <iostream>
#include <numeric>
#include <string.h>
#include <string>
#include <vector>
using namespace std;
struct CatS {

string sep;

CatS(string s) : sep(s) ({}

string operator () (string t, string s) {return t + sep + s;}

};

Functional object (closure) defining
concatenation of strings with separator

int main() {
vector<string> s, v;
s.push back(string("Hello")); s.push back(string("Antonio")) ;
v.push back(string("World")); v.push back(string("Cisternino")) ;

vector<string>: :const iterator Al = s.begin(), A2 = v.begin();

int N1 = s.size();

cout << inner product(Al, Al + N1, A2, string(""), CatS(string("\n")),
CatS(string("\t"))) << endl;

return O;

Al and A2 now are iterators to
vector<string>

The two calls

std: :cout << inner product(Al, Al + N1, A2, 0)
<< std::endl;

std: :cout <<
inner product(Al, Al + N1, A2,
std: :string(""), CatS(std::string("\n")),
CatS(std::string("\t"))) << std::endl;

For the code of innerproduct see
https://en.cppreference.com/w/cpp/algorithm/inner product

https://en.cppreference.com/w/cpp/algorithm/inner_product

Inheritance? No thanks!

STL relies on typedefs combined with namespaces to
implement genericity

The programmer always refers to container::iterator to know
the type of the iterator

There is no relation among iterators for different containers!
The reason for this is PERFORMANCE

Without inheritance types are resolved at compile time and
the compiler may produce better code!

This is an extreme position: sacrificing inheritance may lead to
lower expressivity and lack of type-checking

STL relies only on coding conventions: when the programmer
uses a wrong iterator the compiler complains of a bug in the
library!

Inlining

STL relies also on the compiler

C++ standard has the notion of inlining which is a
form of semantic macros

A method invocation is type-checked then it is
replaced by the method body

Inline methods should be available in header files
and can be labelled inline or defined within class
definition

Inlining isn't always used: the compiler tends to

inline methods with small bodies and without
iteration

The compiler is able to determine types at compile
time and usually does inlining of function objects

Memory management

e STL abstracts from the specific memory model used by a
concept named allocators.

e All the information about the memory model is
encapsulated in the Allocator class.

* Each container is parametrized by such an allocator to let
the implementation be unchanged when switching
memory models.

template <class T,

template <class U> class Allocator = allocator>
class vector {

-}

* The second template argument is a default argument that
uses the pre-defined allocator "allocator" (implementing
STL's own memory management strategies), when no other
allocator is specified by the user.

Potential problems

The main problem with STL is error checking

Almost all facilities of the compiler fail with STL

resulting in lengthy error messages that ends with
error within the library

The generative approach taken by C++ compiler also
leads to possible code bloat

Code bloat can be a problem if the working set of a
process becomes too large!

	Slide 1: 301AA - Advanced Programming
	Slide 2: Introduction
	Slide 3: The Standard Template Library
	Slide 4: 3D generic world
	Slide 5: Main entities in STL
	Slide 6
	Slide 7: JCF vs STL
	Slide 8: On Iterators
	Slide 9: Iterators in Java
	Slide 10: An example: Iterators for BinTrees
	Slide 11: Iterators for BinTrees (cont’d)
	Slide 12: Using iterators in Java
	Slide 13: From Java to C++
	Slide 14: Example of use: Vector and Forward Iterator
	Slide 15: Iterators and C++ namespaces!
	Slide 16: Implementing iterators: small struct
	Slide 17: A simple forward iterator for vectors
	Slide 18: Where is defined v_iterator?
	Slide 19: Complexity of operations on containers
	Slide 20: Complexity of use of Iterators
	Slide 21: Classifying iterators
	Slide 22: Categories of iterators
	Slide 23: C++ operators and iterators (1)
	Slide 24: C++ operators and iterators (2)
	Slide 25: Iterator validity
	Slide 26: Limits of the model
	Slide 28: An algorithm of STL: inner product
	Slide 29: With strings?
	Slide 31: Column printing with C++ std::string
	Slide 32: The two calls
	Slide 34: Inheritance? No thanks!
	Slide 35: Inlining
	Slide 36: Memory management
	Slide 37: Potential problems

