
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-14: C++ Standard Template Library
Slides freely adapted from those by Antonio Cisternino

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Introduction

• The C++ Standard Template Library (STL) has

become part of C++ standard

• The main author of STL is Alexander Stephanov

• Developed in ~1992 but based on ideas of ~1970

• He chose C++ because of templates and no

requirement of using OOP!

• The library is somewhat unrelated with the rest of

the standard library which is OO

2

The Standard Template Library

• Goal: represent algorithms in as general form as possible
without compromising efficiency

• Extensive use of templates and overloading
• Only uses static binding (and inlining): not object oriented,

no dynamic binding – very different from Java Collection
Framework

• Use of iterators for decoupling algorithms from containers
• Iterators are seen as abstraction of pointers
• Many generic abstractions

– Polymorphic abstract types and operations
• Excellent example of generic programming

– Generated code is very efficient

3

3D generic world

ALGORITHMS

DATA STRUCTURES

ITERATORS

Stephanov observed three
orthogonal dimensions in
algorithms: iterators allow
algorithms to iterate over data
structures.
Iterators are very similar to C
pointers and compatible with them

4

Main entities in STL

• Container: Collection of typed objects
– Examples: array, vector, deque, list, set, map ...

• Iterator: Generalization of pointer or address. used to step through the
elements of collections
– forward_iterator, reverse_iterator, istream_iterator, …
– pointer arithmetic supported

• Algorithm: initialization, sorting, searching, and transforming of the
contents of containers,
– for_each, find, transform, sort

• Adaptor: Convert from one form to another
– Example: produce iterator from updatable container; or stack from list

• Function object: Form of closure (class with "operator()" defined)
– plus, equal, logical_and

• Allocator: encapsulation of a memory pool
– Example: GC memory, ref count memory, ...

5

6
6

JCF vs STL

7

Java Collection Framework

Standard Template Library

On Iterators
• The JCF and the STL supports various kinds of

Collections / Containers
• Access to elements of a collection depends on its

structure and on its public interface
• Algorithms cannot be used directly on different kinds

of collections
• Iterators provide a uniform, linear access to elements

of different collections
• In Java, an iterator on a collection offers (at least) two

methods
– boolean hasNext()
– T next()

8

Iterators in Java

• Iterators are supported in the JCF: interface Iterator<T>
• They exploit generics (as collections do)
• Iterators are usually defined as nested classes (non-static private

member classes): each iterator instance is associated with an
instance of the collection class

• Collections equipped with iterators have to implement the
Iterable<T> interface

9

The Iterator
Design Pattern

An example: Iterators for BinTrees

10

class BinTree<T> implements Iterable<T> {

 BinTree<T> left;

 BinTree<T> right;

 T val;

 private class TreeIterator implements Iterator<T>{

 ...

 }

 // other methods: insert, delete, lookup, ...

 public Iterator<T> iterator() {

 return new TreeIterator(this);

 }

11

class BinTree<T> implements Iterable<T> {

 …

 private class TreeIterator implements Iterator<T> {

 private Stack<BinTree<T>> s = new Stack<BinTree<T>>();

 TreeIterator(BinTree<T> n) {

 if (n.val != null) s.push(n);

 }

 public boolean hasNext() {

 return !s.empty();

 }

 public T next() { //preorder traversal

 if (!hasNext()) throw new NoSuchElementException();

BinTree<T> n = s.pop();

 if (n.right != null) s.push(n.right);

 if (n.left != null) s.push(n.left);

return n.val;

}

 public void remove() {

 throw new UnsupportedOperationException();

 } }

}

Iterators for BinTrees (cont’d)

Using iterators in Java

• Use of the iterator to print all the nodes of a BinTree:

for (Iterator<Integer> it = myBinTree.iterator();

 it.hasNext();)
 { Integer i = it.next();
 System.out.println(i);
 }

• Java provides (since Java 5.0) an enhanced for statement (foreach) which exploits
iterators. The above loop can be written:

for (Integer i : myBinTree)
 System.out.println(i);

• In the enhanced for, myBinTree must either be an array of integers, or it has to
implement Iterable<Integer>

• The enhanced for on arrays is a bounded iteration. On an arbitrary iterator it depends
on the way it is implemented.

12

Let’s check on godbolt.org…

From Java to C++
• Iterators are conceptually the same
• Exploit different language features
• No next/hasNext: use predefined C++ operators
• Recall: accessing arrays in C/C++

13

int main() {

 int vec[5]; // create an array of int

 for(int i = 0; i < 5; i++) {

 vec[i] = i;

 }

 for(int i = 0; i < 5; i++) { // access to element

 cout << "vec [" << i << "] = " << vec[i] << endl;

 }

 // using pointers to access the values

 int* v = vec;

 for(int i = 0; i < 5; i++) {

 cout << "value of v = " << *v << endl;

 v++;

 }}

14

#include <iostream>

#include <vector>

using namespace std;

int main() {

 vector<int> vec; // create a vector to store int

 // push 5 values into the vector

 for(int i = 0; i < 5; i++) {

 vec.push_back(i);

 }

 for(int i = 0; i < 5; i++) {// access to elements

 cout << "vec [" << i << "] = " << vec[i] << endl;

 }

 // use iterator to access the values

 vector<int>::iterator v = vec.begin();

 while(v != vec.end()) {

 cout << "value of v = " << *v << endl;

 v++;

 }

 return 0;

}

Example of use: Vector and Forward Iterator

Iterators and C++ namespaces!

• STL relies on C++ namespaces

• Containers expose a type named iterator in the

container's namespace

• Example: std::vector<std::string>::iterator

• Each class implicitly introduces a new

namespace

• The iterator type name assumes its meaning

depending on the context!

15

Implementing iterators: small struct

• Iterators are implemented by containers

• Usually are implemented as struct (classes with
only public members)

• An iterator implements a visit of the container

• An iterator retains inside information about the
state of the visit (i.e. in a vector, the pointer to
the current element and the number of
remaining elements)

• The state may be complex in the case of non
linear structures such as trees or graphs

16

A simple forward iterator for vectors

template <class T>

struct v_iterator {

 T *v;

 int sz;

 v_iterator(T* v, int sz) : v(v), sz(sz) {}

 // != implicitly defined

 bool operator==(v_iterator& p) { return v == p->v; }

 T operator*() { return *v; }

 v_iterator& operator++() { // Pre-increment

 if (sz) ++v, --sz; else v = NULL;

 return *this;

 }

 v_iterator operator++(int) { // Post-increment!

 v_iterator ret = *this;

 ++(*this); // call pre-increment

 return ret;

 }

};

17

Where is defined v_iterator?

template <class T>

class vector {

private:

 T v[];

 int sz;

 struct v_iterator { … };

public:

 typedef v_iterator iterator;

 typedef v_iterator const const_iterator;

 typedef T element;

 …

 iterator begin() { return v_iterator(v, sz); }

 iterator end() { return v_iterator(NULL, 0); }

};

18

Complexity of operations
on containers

• It is guaranteed that inserting and erasing at the
end of the vector takes amortized constant time
whereas inserting and erasing in the middle takes
linear time.

19

Complexity of use of Iterators

• Consider the following code:

std::list<std::string> l;

…

quick_sort(l.begin(), l.end());

• This is not reasonable: quick_sort assumes
random access to container's elements!

• How can we control complexity of algorithms
and guarantee that code behaves as expected?

20

Classifying iterators
• The solution proposed by STL is assume that iterators

implement all operations in constant time

• Containers may support different iterators depending on
their structure:
– Forward iterators: only dereference (operator*), and pre/post-

increment operators (operator++)

– Input and Output iterators: like forward iterators but with
possible issues in dereferencing the iterator (due to I/O
operations)

– Bidirectional iterators: like forward iterators with pre/post-
decrement (operator--)

– Random access iterators: like bidirectional iterators but with
integer sum (p + n) and difference (p – q)

• Iterators heavily rely on operator overloading provided by
C++

21

Categories of iterators
• Five categories, with decreasing requirements

22

STL Tutorial page 27 Johannes Weidl

element is always inserted before a specified iterator-position and that this insertion

doesn’t affect all the other iterators defined when using a list.

Exercise 4.1.3: Refine Exercise 4.1.2 and print the original bit sequence and the "bit-stuffed"

bit sequence to cout. Use the hint from Exercise 4.1.2 to form a loop for the output

procedure.

Exercise 4.1.4: Refine Exercise 4.1.3 and print out the absolute and relative expansion of the

bit sequence. The absolute expansion is the expasion measured in bits (e.g. the bit-

stuffed sequence has increased by 5 bits), the relative expansion is the percentage of the

expansion (e.g. the relative expansion between the "new" and "old" sequence is 5.12%).

Exercise 4.1.5: Refine Exercise 4.1.4 and write the inverse algorithm to the one in Exercise

4.1.2 that the receiver has to perform to get the initial binary data representation. After

the bit-stuffing and bit-unstuffing compare your list with the original one using the

equality operator==. If the lists are equal, you did a fine job. Note: It is advisable to

include a plausibility test in your unstuff algorithm. After a sequence of five consecutive

ones there must be a zero, otherwise something went wrong in the stuffing algorithm.

"Iterators are a generalization of pointers that allow a programmer to work with different data structures

(containers) in a uniform manner", [2]. From the short survey in section 4.1.1 we know that iterators are

objects that have operator* returning a value of a type called the value type of the iterator.

Since iterators are a generalization of pointers it is assumed that every template function that takes

iterators as arguments also works with regular pointers.

There are five categories of iterators. Iterators differ in the operations defined on them. Each iterator is

designed to satisfy a well-defined set of requirements. These requirements define what operations can be

applied to the iterator. According to these requirements the iterators can be assigned to the five

categories. Iterator categories can be arranged from left to right to express that the iterator category on

the left satisfies the requirements of all the iterator categories on the right (and so could be called more

powerful).

Figure 7: Iterator categories

Random Access

Iterators

Bidirectional

Iterators

Forward

Iterators

Input

Iterators

Output

Iterators

means, iterator category on the left satisfies the requirements of all iterator categories

on the right

• Each category has only those functions
defined that are realizable in constant
time. [Efficiency concern of STL!]

• Not all iterators are defined for all
categories: since random access takes
linear time on lists, random access
iterators cannot be used with lists.

STL Tutorial page 28 Johannes Weidl

This arrangement means that a template function wich expects for example a bidirectional iterator can

be provided with a random access iterator, but never with a forward iterator. Imagine an algorithm that

needs random access to fulfil his task, but is provided with a method that only allows to pass through

the elements successively from one to the next. It simply won ’t work.

Iterators that point past the last element of a range are called past-the-end iterators. Iterators for which

the operator* is defined are called dereferenceable. It is never assumed that past-the-end iterators are

dereferenceable. An iterator value (i.e. an iterator of a specific iterator type) that isn’t associated with a

container is called singular (iterator) value. Pointers can also be singular. After the declaration of an

uninitialized pointer with

int* x;

x is assumed to be singular. Dereferenceable and past-the-end iterators are always non-singular.

All the categories of iterators have only those functions defined that are realizeable for that category in

(amortized) constant time. This underlines the efficiency concern of the library.

Because random access in a linked list doesn ’t take constant time (but linear time), random access

iterators cannot be used with lists. Only input/output iterators up to bidirectional iterators are valid for

the use with the container list. The following table shows the iterators that can be used with the

containers vector, list and deque (of course all iterators that satisfy the requirements of the listed

iterators can be used as well):

Container Iterator Category

vector random access iterators

list bidirectional iterators

deque random access iterators

Table 5: Most powerful iterator categories that can be used with vector, list and deque

Iterators of these categories are returned when using the member functions begin or end or declaring an

iterator with e.g. vector<int>::iterator i;

The iterator categories will be explained starting with the input iterators and output iterators.

An input iterator has the fewest requirements. It has to be possible to declare an input iterator.

It also has to provide a constructor. The assignment operator has to be defined, too. Two input

iterators have to be comparable for equality and inequality. operator* has to be defined and

it must be possible to increment an input iterator.

Input Iterator Requirements:

· constructor

· assignment operator

· equality/inequality operator

· dereference operator

· pre/post increment operator

C++ operators and iterators (1)
• Forward iterators provide for one-directional traversal

of a sequence, expressed with ++:

– Operator ==, !=, *, ++

• input iterators and output iterators are like forward

iterators but do not guaratee these properties of forward

iterators:

– that an input or output iterator can be saved and used to start

advancing from the position it holds a second time

– That it is possible to assign to the object obtained by applying *

to an input iterator

– That it is possible to read from the object obtained by applying *

to an output iterator

– That it is possible to test two output iterators for equality or

inequality (== and != may not be defined)

23

C++ operators and iterators (2)
• Bidirectional iterators provide for traversal in both

directions, expressed with ++ and --:

– Same operators as forward iterator

– Operator --

• Random access iterators provide for bidirectional

traversal, plus bidirectional “long jumps”:
– Same operators as bidirectional iterator

– Operator += n and -= n with n of type int

– Addition and subtraction of an integer through operator + and

operator –

– Comparisons through operator <, operator >, operator <=,

operator >=

• Any C++ pointer type, T*, obeys all the laws of the

random access iterator category.
24

Iterator validity

• When a container is modified, iterators to it
can become invalid: the result of operations
on them is not defined

• Which iterators become invalid depends on
the operation and on the container type

25

STL Tutorial page 26 Johannes Weidl

The first version erases the first vector element. The second version erases all remaining

elements so the vector gets empty.

When inserting in or erasing from a container, there is something to take into consideration. If

you have an iterator pointing e.g. to the end of a vector and you insert an element at its

beginning, the iterator to the end gets invalid. Only iterators before the insertion point remain

valid. If no place is left and expansion takes place, all iterators get invalid. This is clear,

because new memory is allocated, the elements are copied and the old memory is freed.

Iterators aren’t automatically updated and get invalid, that means the result of operations

using such iterators is undefined. Take this into consideration when inserting or erasing and

then using iterators earlier defined on this container. The following table shows the validity of

the containers vector, list and deque after inserting and erasing an element, respectively.

Table 4: Iterator validity after inserting or erasing

Now we are able to store objects in a container (at least in the vector) that provides several

means to administer and maintain it. To apply algorithms to the elements in the vector we have

to understand the iterator concept which is described in detail in the next section.

This section contains specifications for exercises dealing with the topics in section 4.1.

Solving these tasks should give you the possibility to apply your lections learned and compare

your solutions with the ones given in the solutions part of this tutorial.

Exercise 4.1.1: Write a STL program that declares a vector of integer values, stores five

arbitrary values in the vector and then prints the single vector elements to cout. Be sure

to have read section 3.3 on how to compile STL programs.

Exercise 4.1.2: Write a STL program that takes an arbitrary sequence of binary digits (integer

values 0 and 1) from cin and stores them into a container. When receiving a value

different from 0 or 1 from cin stop reading. Now, you should have a container storing a

sequence of 0’s and 1’s. After finishing the read-process, apply a "bit-stuffing" algorithm

to the container. Bit-stuffing is used to transmit data from a sender to a receiver. To

avoid bit sequences in the data, which would erroneously be interpreted as the stop flag

(here: 01111110), it is necessary to ensure that six consecutive 1’s in the data are splitted

by inserting a 0 after each consecutive five 1’s. Hint: Complexity considerations

(inserting in the middle of a vector takes linear time!) and the fact, that inserting into a

vector can make all iterators to elements invalid should make you choose the STL

container list. A list of integers is defined like a vector by list<int> l; All

operations explained in the vector section are provided for the list, too. Get an iterator to

the first list element. As long as this iterator is different from the end() iterator

increment the iterator and dereference it to get the appropriate binary value. Note that an

Container operation iterator validity

vector inserting reallocation necessary - all iterators get invalid

no reallocation - all iterators before insert point remain valid

erasing all iterators after erasee point get invalid

list inserting all iterators remain valid

erasing only iterators to erased elements get invalid

deque inserting all iterators get invalid

erasing all iterators get invalid

Limits of the model

• Iterators provide a linear view of a container

• Thus we can define only algorithms operating on

single dimension containers

• If it is needed to access the organization of the

container (i.e. to visit a tree in a custom fashion)

the only way is to define a new iterator

• Nonetheless the model is expressive enough to

define a large number of algorithms!

26

An algorithm of STL: inner product

#include <iostream>

#include <numeric>

int main() {

 int A1[] = {1, 2, 3};

 int A2[] = {4, 1, 2};

 const int N1 = sizeof(A1) / sizeof(A1[0]);

 std::cout << std::inner_product(A1, A1 + N1, A2, 0)

 << std::endl;

 return 0;

}

It will print 12:

0 = 0 + 1 * 4 + 2 * 1 + 3 * 2

Start of A1 End of A1 Start of A2

Initial value

for the

accumulator

int std::inner_product<int*, int*, int>(int*, int*, int*, int)

With strings?

• We have strings in two vectors: labels and values to display

• Can we exploit inner product algorithm?

• It would be enough to use string concatenation with a tab
separator instead of ‘*’ and with a new line instead of ‘+’

• But overloading of ‘+’ and ‘*’ operators make no sense: we
don’t want just string cat and we may interfere with already
defined overloads

• Fortunately, there is another version of inner_product that
allow specifying function objects to use instead of ‘*’ and ‘+’

Column printing with C++ std::string

#include <iostream>

#include <numeric>

#include <string.h>

#include <string>

#include <vector>

using namespace std;

struct CatS {

 string sep;

 CatS(string s) : sep(s) {}

 string operator()(string t, string s) {return t + sep + s;}

};

int main() {

 vector<string> s, v;

 s.push_back(string("Hello")); s.push_back(string("Antonio"));

 v.push_back(string("World")); v.push_back(string("Cisternino"));

 vector<string>::const_iterator A1 = s.begin(), A2 = v.begin();

 int N1 = s.size();

 cout << inner_product(A1, A1 + N1, A2, string(""), CatS(string("\n")),
CatS(string("\t"))) << endl;

 return 0;

}
A1 and A2 now are iterators to

vector<string>

Functional object (closure) defining

concatenation of strings with separator

The two calls

std::cout << inner_product(A1, A1 + N1, A2, 0)

 << std::endl;

std::cout <<

 inner_product(A1, A1 + N1, A2,

 std::string(""), CatS(std::string("\n")),

 CatS(std::string("\t"))) << std::endl;

For the code of innerproduct see

https://en.cppreference.com/w/cpp/algorithm/inner_product

https://en.cppreference.com/w/cpp/algorithm/inner_product

Inheritance? No thanks!

• STL relies on typedefs combined with namespaces to
implement genericity

• The programmer always refers to container::iterator to know
the type of the iterator

• There is no relation among iterators for different containers!

• The reason for this is PERFORMANCE

• Without inheritance types are resolved at compile time and
the compiler may produce better code!

• This is an extreme position: sacrificing inheritance may lead to
lower expressivity and lack of type-checking

• STL relies only on coding conventions: when the programmer
uses a wrong iterator the compiler complains of a bug in the
library!

34

Inlining

• STL relies also on the compiler
• C++ standard has the notion of inlining which is a

form of semantic macros
• A method invocation is type-checked then it is

replaced by the method body
• Inline methods should be available in header files

and can be labelled inline or defined within class
definition

• Inlining isn't always used: the compiler tends to
inline methods with small bodies and without
iteration

• The compiler is able to determine types at compile
time and usually does inlining of function objects

35

Memory management
• STL abstracts from the specific memory model used by a

concept named allocators.
• All the information about the memory model is

encapsulated in the Allocator class.
• Each container is parametrized by such an allocator to let

the implementation be unchanged when switching
memory models.

36

template <class T,

 template <class U> class Allocator = allocator>

 class vector {

... };

• The second template argument is a default argument that
uses the pre-defined allocator "allocator" (implementing
STL's own memory management strategies), when no other
allocator is specified by the user.

Potential problems

• The main problem with STL is error checking

• Almost all facilities of the compiler fail with STL
resulting in lengthy error messages that ends with
error within the library

• The generative approach taken by C++ compiler also
leads to possible code bloat

• Code bloat can be a problem if the working set of a
process becomes too large!

37

	Slide 1: 301AA - Advanced Programming
	Slide 2: Introduction
	Slide 3: The Standard Template Library
	Slide 4: 3D generic world
	Slide 5: Main entities in STL
	Slide 6
	Slide 7: JCF vs STL
	Slide 8: On Iterators
	Slide 9: Iterators in Java
	Slide 10: An example: Iterators for BinTrees
	Slide 11: Iterators for BinTrees (cont’d)
	Slide 12: Using iterators in Java
	Slide 13: From Java to C++
	Slide 14: Example of use: Vector and Forward Iterator
	Slide 15: Iterators and C++ namespaces!
	Slide 16: Implementing iterators: small struct
	Slide 17: A simple forward iterator for vectors
	Slide 18: Where is defined v_iterator?
	Slide 19: Complexity of operations on containers
	Slide 20: Complexity of use of Iterators
	Slide 21: Classifying iterators
	Slide 22: Categories of iterators
	Slide 23: C++ operators and iterators (1)
	Slide 24: C++ operators and iterators (2)
	Slide 25: Iterator validity
	Slide 26: Limits of the model
	Slide 28: An algorithm of STL: inner product
	Slide 29: With strings?
	Slide 31: Column printing with C++ std::string
	Slide 32: The two calls
	Slide 34: Inheritance? No thanks!
	Slide 35: Inlining
	Slide 36: Memory management
	Slide 37: Potential problems

