301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

AP-11: Polymorphism

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Outline

Polymorphism: a classification
Overloading

Coercion

Inclusion polymorphism
Overriding

Polymorphism

From Greek: moAvpopdoc, composed of moAv
(many) and popdn (form), thus “having
several forms”

“Forms” are types

“Polymorphic” are function names (also
operators, methods, ...)

“Polymorphic” can also be types (parametric
data types, type constructors, generics, ...)

— Usually as encapsulation of several related
function names

Flavors of polymorphism

Ad hoc
Bounded
Contravariant
Covariant
Inclusion
Invariant
Parametric
Universal

Related concepts:

Coercion
Generics
Inheritance
Macros
Overloading
Overriding
Subtyping
Templates

Universal vs. ad hoc polymorphism

* With ad hoc polymorphism the same function
name denotes different algorithms,
determined by the actual types

* With universal polymorphism there is only
one algorithm: a single (universal) solution
applies to objects of different types

* Ad hoc and universal polymorphism can
coexist

Binding time

* The binding of the function name with the
actual code to execute can be

— at compile time — early, static binding
— at linking time
— at execution time — late, dynamic binding

 |f it spans over different phases, the binding
time is the last one.

* The earlier the better, for debugging reasons.

Classification of Polymorphism

Polymorphism

Parametric <
Umversal

\ Ad hoc

Coercion

Inclusion

Implicit

Explicit —— Bounded

\

Overloading

Overrldlng

Covariant
Invariant

Contravariant

Overloading (Ad hoc polymorphism)

Present in all languages, at least for built-in
arithmetic operators: +, *, -, ...

Sometimes supported for user defined functions
(Java, C++, ...)

C++, Haskell, Python,... allow overloading of
primitive operators by user defined functions
The code to execute is determined by the type of
the arguments, thus

— early binding in statically typed languages

— late binding in dynamically typed languages

Overloading: an example

Function for squaring a number:
sqgr (x) { return x * x; }

Typed version (like in C) :

int sqgr(int x) { return x * x; }

Multiple versions for different types (C):

int sqgrInt(int x) { return x * x; }

double sqgrDouble (double x) { return x * x;

Overloading (Java, C++):
int sqr(int x) { return x * x; }
double sqgr (double x) { return x * x;

}

}

Overloading in Haskell

Haskell introduces type classes for handling
overloading in presence of type inference

Very nice and clean solution, unlike most
programming languages

Adopted by Rust: traits

We shall present this later in the course

Coercion (Universal polymorphism)

e Coercion: automatic conversion of an object to a
different type

* Opposed to casting, which is explicit

double sqgrt(double x){..}
double d = sqrt(5) // applied to int

 Thus the same code is applied to arguments of
different types

* |In well-designed languages, coercion only

possible if there is no loss of information (Java vs
C++)

* Degenerate, uninteresting case of polymorphism

Classification of Polymorphism

Polymorphism

Parametric <
Universal

\ Ad hoc

Coercion

Inclusion

Implicit

Explicit —— Bounded

\

Overloading

Overriding

Covariant
Invariant

Contravariant

Inclusion polymorphism

Also known as subtyping polymorphism, or just
inheritance

Polymorphism ensured by (Barbara Liskov’)
Substitution principle: an object of a subtype
(subclass) can be used in any context where an object
of the supertype (superclass) is expected

[Java, C++,...] methods/functions with a formal
parameter of type T accept an actual parameter of
type S<: T (S subtype of T).

Methods/virtual functions declared in a class can be
invoked on objects of subclasses, if not redefined...

class Af{
o« o public void m{() {
Overriding /7 prints
class B extends A{
e [Java] A method m of a public void m() {
class A can be redefined // prints "B"
in a subclass B of A. M

* Dynamic binding:

A a = new B(); // legal
a.m(); // overridden method in B is invoked

* Overriding introduces ad hoc polymorphism in
the universal polymorphism of inheritance

* Resolved at runtime by the lookup done by the
invokevirtual operation of the JVM

An effect of Overriding: class
TempLabel

«Create a Java Bean named TemplLabel that implements a temperature
converter from Celsius to Farenheit. This Bean must extend JLabel redefining
the setText method in such a way that setText("'c") visualizes the value
obtained by converting c into Farenheit.»

import javax.swing.*; The constructor of
public class TempLabel extends JLabel ({)
@Override TempLabel invokes
public void setText(String s) { the default
double celsius = Double.parseDouble (s) ; t t
super.setText (Double. toString(celsius * 9 / 5 + 32)); constructor Of
} JLabel, which
: invokes
public static void main(String[] args) { e s1IN1
TempLabel lab = new TempLlabel () ; thlS("“"")’
lab.setText("0.0']'-) ,;lab o) which invokes
System.out.println .getText ;
} setText("").

Exception in thread "main" java.lang.NumberFormatException:
empty String

https://docs.oracle.com/javase/8/docs/api/javax/swing/JLabel.html

Overloading + Overriding: C++ vs Java

class A {

public:
virtual void onFoo () {}
virtual void onFoo (int i) ({}

};
class B : public A {
public:

virtual void onFoo (int i) ({}

};

class C : public B {

};

int main() {

C* ¢ = new C();

c->onFoo () ;
//Compile error -
// doesn't exist

class A {

public void onFoo () {}
public void onFoo (int i) {}

}

class B extends A {

public void onFoo(int i) ({}

}

class C extends B {

}

class D {
public static void main(String[] s)
{
C ¢ = new C();
c.onFoo () ;
//Compiles !!

Overriding + Overloading

[Java] Overloading is type-checked by the compiler

Overriding resolved at runtime by the lookup done by
invokevirtual

[C++] Dynamic method dispatch: C++ adds a v-table to each
object from a class having virtual methods

The compiler does not see any declaration of onFoo in C,
so it continues upwards in the hierarchy. When it checks B,
it finds a declaration of void onFoo (int i), so it stops
lookup and tries overload resolution, but it fails due to the
inconsistency in the arguments.

void onFoo (int 1) hides the definitions of onFoo in
the superclass.

Solution:add using A::onFoo; toclassB

	Slide 1: 301AA - Advanced Programming
	Slide 2: Outline
	Slide 3: Polymorphism
	Slide 4: Flavors of polymorphism
	Slide 5: Universal vs. ad hoc polymorphism
	Slide 6: Binding time
	Slide 7: Classification of Polymorphism
	Slide 8: Overloading (Ad hoc polymorphism)
	Slide 9: Overloading: an example
	Slide 10: Overloading in Haskell
	Slide 11: Coercion (Universal polymorphism)
	Slide 12: Classification of Polymorphism
	Slide 13: Inclusion polymorphism
	Slide 14: Overriding
	Slide 15: An effect of Overriding: class TempLabel
	Slide 16: Overloading + Overriding: C++ vs Java
	Slide 17: Overriding + Overloading

