
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-10: On Designing Software Frameworks

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Software Framework Design

• Intellectual Challenging Task
• Requires a deep understanding of the application

domain
• Requires mastering of software (design)

patterns, OO methods and polymorphism in
particular

• Impossible to address in the course, but we can
play a bit…
– Using classic problems to teach Java framework

design, by H.C. Cunningham, Yi Liu and C. Zhang,
Science of Computer Programming 59 (2006).

2

Four levels for understanding frameworks

1. Frameworks are normally implemented in an object-
oriented language such as Java ➔ Understanding the
applicable language concepts, which include inheritance,
polymorphism, encapsulation, and delegation.

2. Understanding the framework concepts and techniques
sufficiently well to use frameworks to build a custom
application

3. Being able to do detailed design and implementation of
frameworks for which the common and variable aspects
are already known.

4. Learning to analyze a potential software family, identifying
its possible common and variable aspects, and evaluating
alternative framework architectures.

3

A Framework for the family of
Divide and Conquer algorithms

• Idea: start from a well-known generic algorithm

• Apply known techniques and patterns to define a
framework for a software family

• Instances of the framework, obtained by standard
extension mechanism, will be concrete algorithms of
the family

4

function solve (Problem p) returns Solution

{ if isSimple(p)

 return simplySolve(p);

else

 sp[] = decompose(p);

 for (i= 0; i < sp.length; i = i+1)

 sol[i] = solve(sp[i]);

 return combine(sol);

}

Some terminology…
• Frozen Spot: common (shared) aspect of the software family

• Hot Spot: variable aspect of the family

• Template method: concrete method of base (abstract) class
implementing behavior common to all members of the family

• A hot spot is represented by a group of abstract hook
methods.

• A template method calls a hook method to invoke a function
that is specific to one family member [Inversion of Control]

• A hot spot is realized in a framework as hot spot subsystem:
– Abstract base

class + some
concrete
subclasses

5

150 H.C. Cunningham et al. / Science of Computer Programming 59 (2006) 147–169

Fig. 1. Hot spot subsystem.

specific to one family member. Furthermore, we must separate the various common and

variable aspects from each other and consider them independently, one at a time. We use

the terms frozen spot to denote a common (or shared) aspect of the family and hot spot to

denote a variable aspect of the family [22].

A software framework is a generic application that allows the creation of different

specific applications from a family [21]. It is an abstract design that can be reused within a

whole application domain. In a framework, the frozen spots of the family are represented

by a set of abstract and concrete base classes that collaborate in some structure. A behavior

that is common to all members of the family is implemented by a fixed, concrete template

method in a base class. A hot spot is represented by a group of abstract hook methods. A

template method calls a hook method to invoke a function that is specific to one family

member.

A hot spot is realized in a framework as a hot spot subsystem. A hot spot subsystem

typically consists of an abstract base class, concrete subclasses of that base class, and

perhaps other related classes [22]. The hook methods of the abstract base class define the

interface to the alternative implementations of the hot spot. The subclasses of the base

class implement the hook methods appropriately for a particular choice for a hot spot.

Fig. 1 shows a UML class diagram of a hot spot subsystem.

There are two principles for framework construction—unification and separation [8].

The unification principle uses inheritance to implement the hot spot subsystem. Both the

template methods and hook methods are defined in the same abstract base class. The hook

methods are implemented in subclasses of the base class. In Fig. 1, the hot spot subsystem

for the unification approach consists of the abstract base class and its subclasses. The

separation principle uses delegation to implement the hot spot subsystem. The template

methods are implemented in a concrete context class; the hook methods are defined in

a separate abstract class and implemented in its subclasses. The template methods thus

delegate work to an instance of the subclass that implements the hook methods. In Fig. 1,

the hot spot subsystem for the separation approach consists of both the client (context)

class and the abstract base class and its subclasses.

A framework is a system that is designed with generality and reuse in mind; and

design patterns [9], which are well-established solutions to program design problems

that commonly occur in practice, are the intellectual tools for achieving the desired

level of generality and reuse. Two design patterns, corresponding to the two framework

construction principles, are useful in implementation of the frameworks.

Two Principles for Framework Construction

• The unification principle [Template Method DP]

– It uses inheritance to implement the hot spot subsystem

– Both the template methods and hook methods are defined in
the same abstract base class

– Hook methods are implemented in subclasses of the base class

• The separation principle [Strategy Design Pattern]

– It uses delegation to implement the hot spot subsystem

– The template methods are implemented in a concrete context
class; the hook methods are defined in a separate abstract class
and implemented in its subclasses

– The template methods delegate work to an instance of the
subclass that implements the hook methods

6

The Template Method design pattern

• One of the behavioural pattern of the Gang of Four

• Intent: Define the skeleton of an algorithm in an operation,
deferring some steps to subclasses.

• A template method belongs to an abstract class and it defines an
algorithm in terms of abstract operations that subclasses override
to provide concrete behavior.

• Template methods call, among others, the following operations:

– concrete operations of the abstract class (i.e., fixed parts of the
algorithm);

– primitive operations, i.e., abstract operations, that subclasses
have to implement; and

– hook operations, which provide default behavior that
subclasses may override if necessary. A hook operation often
does nothing by default.

7

8

Implementation of Template Methods

• Using Java visibility modifiers
– The template method itself should not be overridden: it can be declared a public

final method

– The concrete operations can be declared private ensuring that they are only
called by the template method

– Primitive operations that must be overridden are declared protected abstract

– The hook operations that may be overridden are declared protected

• Using C++ access control
– The template method itself should not be overridden: it can be declared a

nonvirtual member function

– The concrete operations can be declared protected members ensuring that they
are only called by the template method

– Primitive operations that must be overridden are declared pure virtual

– The hook operations that may be overridden are declared protected virtual

9

Applying the
unification
principle:

UML diagram
of the solution

10

function solve (Problem p) returns Solution // template method

{ if isSimple(p) // hot spots

 return simplySolve(p);

else

 sp[] = decompose(p);

 for (i= 0; i < sp.length; i = i+1)

 sol[i] = solve(sp[i]);

 return combine(sol);

}

11

Java code of
the framework

(unification
principle)

function solve (Problem p) returns Solution // template method

{ if isSimple(p) // hot spots

 return simplySolve(p);

else

 sp[] = decompose(p);

 for (i= 0; i < sp.length; i = i+1)

 sol[i] = solve(sp[i]);

 return combine(sol);

}

• In-place sorting
• Both problem and solution

described by the same
structure: <array, first, last>

12

An application of the
framework:
QuickSort

(unification principle)

• Merge-sort can be defined similarly
• In that case, combine would do most of the work

The Strategy design pattern

• One of the behavioural pattern of the Gang of Four

• Intent: Allows to select (part of) an algorithm at runtime

• The client uses an object implementing the interface and
invokes methods of the interface for the hot spots of the
algorithm

13

Applying the
separation
principle:

UML diagram
of the solution

14

function solve (Problem p) returns Solution // template method

{ if isSimple(p) // hot spots

 return simplySolve(p);

else

 sp[] = decompose(p);

 for (i= 0; i < sp.length; i = i+1)

 sol[i] = solve(sp[i]);

 return combine(sol);

}

15

Code of the framework
(separation principle)

The client delegates
the hot spots to an
object implementing
the strategy

The implementations
of DivConqStrategy are
similar to the previous
case

Unification vs. separation principle
Template method vs. Strategy DP

• The two approaches differ in the coupling between client
and chosen algorithm

• With Strategy, the coupling is determined by dependency
(setter) injection, and could change at runtime 16

Framework development by
generalization

• We address now level 4 of "framework understanding"
– Learning to analyze a potential software family, identifying its

possible common and variable aspects, and evaluating
alternative framework architectures. Framework design involves
incrementally evolving a design rather than discovering it in one
single step.

• This “evolution” consists of
– examining existing designs for family members
– identifying the frozen spots and hot spots of the family
– generalizing the program structure to enable

• reuse of the code for frozen spots and
• use of different implementations for each hot spot.

• We present an example based on binary trees traversals,
starting from a concrete algorithm for printing a tree with
preorder traversal

17

Binary trees and preorder traversal

18

Binary trees as instance of
the Composite design pattern
• Provides uniform access to

nodes and to leaves

Pseudo-code of generic
depth-first preorder
left-to-right traversal
(action not specified)

Binary tree class hierarcy

19

Abstract class defining defaults
and abstract methods

Implementation of the
abstract class for Nodes
• The action simply prints

Implementation of the
abstract class for leaves,
using the Singleton DP

Identifying Frozen and Hot Spots

Possible choices, generalizing the concrete
program to a family of tree-traversal algorithms

• Frozen Spots (fixed for the whole family)

– The structure of the tree, as defined by the
BinTree hierarchy

– A traversal accesses every element of the tree
once, but it can stop before completing

– A traversal performs one or more visit actions
accessing an element of the tree

20

Identifying Frozen and Hot Spots

• Hot Spots (to be fixed in each element of the
family)
1. Variability in the visit operation’s action: a function

of the current node’s value and the accumulated
result

2. Variability in ordering of the visit action with respect
to subtree traversals. Should support preorder,
postorder, in-order, and their combination

3. Variability in the tree navigation technique. Should
support any access order (not only left-to-right,
depth-first, total traversals)

21

22

Hot Spot #1: Generalizing the visit action
• Using the separation principle (Strategy pattern) we allow different visit actions on the

same tree
• action is represented by the abstract method visitPre
• It takes an accumulator Object and a BinTree as arguments

New BinTree hierarcy.

The preorder method takes
the action from the strategy
and handles accumulation

Exercise: define strategies for
printing the values of the
nodes, and for computing the
sum / max of all node values

23

Hot Spot #2: Generalizing the visit order
We generalize the previous hot spot
subsystem
• The Euler Strategy visits each node

three times (left = pre, right = post,
bottom = in)

preorder is now traverse

Using the new abstract
methods an Euler Strategy
can implement any
combination of pre-order,
post-order or in-order
traversal

Also visitNil method added,
for the sake of generality

Hot Spot #3: Generalizing the tree navigation

• Support for breadth-first, depth-first, left-to-right,
right-to-left, partial traversal, …

• Remember the frozen spots:
– The structure of the tree, as defined by the BinTree

hierarchy: it cannot be modified
– A traversal accesses every element of the tree once,

but it can stop before completing

• Instead of generalizing the traverse method, we
use the Visitor design pattern

• Visitor guarantees separation between algorithm
and data structure

24

The Visitor design pattern

25

• The data structure can be made of
different types of components
(ConcreteElements)

• Each component implements an
accept(Visitor) method

• The Visitor defines one visit method
for each type

• The navigation logic is in the Visitor

• At each step, the correct visit method
is selected by overloading

Hot Spot #3: Binary Tree Visitor framework

26

27

The BinTree code is almost unchanged,
only the traverse method is changed to
• accept an instance of Visitor
• invoke visit(this) on it

Binary Tree Visitor framework: the BinTree code

Binary Tree Visitor framework:
defining a visitor for Euler Traversal

• The Visitor framework has two levels
– the Visitor pattern as described above
– Possibly a second framework for the design of the Visitor objects.

• To implement an Euler tour traversal we
– design a concrete class EulerTourVisitor that implements the BinTreeVisitor

interface
– this class delegates the specific visit actions to a Strategy object of type

EulerStrategy.

28

29

• The navigation logic is in
the visit() method

• It exploits accept() to
pass to the next node

• The concrete actions are
defined in an object
implementing
EulerStrategy

• The strategy is injected
with the constructor
and can be changed
dynamically.

Visitor for Euler Traversal using Strategy

Comparing tree traversal with and
without visitor object

30

Depth-first, left-to-right
traversal starts with

 root.traverse(acc, es)

Traversal starts with

root.accept(eulerTVisitor) ->
eulerTourVisitor.visit(root)

Conclusions

• Software Framework design is a complex task
• Starting point: families of homogeneous software

applications
• Identification of frozen spots and hot spots
• Use of design patterns and of other techniques

for greater generality and for reducing coupling
• Inversion of control and in particular dependency

injection arise naturally
• Suggested reading: Why do I hate Frameworks?

By Joel Spolsky, co-founder of Stack Overflow

31

	Slide 1: 301AA - Advanced Programming
	Slide 2: Software Framework Design
	Slide 3: Four levels for understanding frameworks
	Slide 4: A Framework for the family of Divide and Conquer algorithms
	Slide 5: Some terminology…
	Slide 6: Two Principles for Framework Construction
	Slide 7: The Template Method design pattern
	Slide 8
	Slide 9: Implementation of Template Methods
	Slide 10: Applying the unification principle: UML diagram of the solution
	Slide 11
	Slide 12
	Slide 13: The Strategy design pattern
	Slide 14: Applying the separation principle: UML diagram of the solution
	Slide 15
	Slide 16: Unification vs. separation principle Template method vs. Strategy DP
	Slide 17: Framework development by generalization
	Slide 18: Binary trees and preorder traversal
	Slide 19: Binary tree class hierarcy
	Slide 20: Identifying Frozen and Hot Spots
	Slide 21: Identifying Frozen and Hot Spots
	Slide 22: Hot Spot #1: Generalizing the visit action
	Slide 23: Hot Spot #2: Generalizing the visit order
	Slide 24: Hot Spot #3: Generalizing the tree navigation
	Slide 25: The Visitor design pattern
	Slide 26: Hot Spot #3: Binary Tree Visitor framework
	Slide 27: Binary Tree Visitor framework: the BinTree code
	Slide 28: Binary Tree Visitor framework: defining a visitor for Euler Traversal
	Slide 29: Visitor for Euler Traversal using Strategy
	Slide 30: Comparing tree traversal with and without visitor object
	Slide 31: Conclusions

