
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-09: Frameworks and Inversion of Control

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Components: a recap

• Examples: Java Beans, CLR Assemblies

• Well-defined interfaces: events, methods and
properties

• Independently developed and deployed: serializable,
constructor with no argument

• Composition model: connection oriented programming
(event source and listeners/delegates)

2

A software component can be defined as a modular, reusable, and
encapsulated unit of software that provides a specific functionality or set of
functionalities. It is designed to interact with other components via well-
defined interfaces and can be independently developed, deployed, and
maintained.

Software Frameworks

A software framework is a collection of common code providing generic
functionality that can be selectively overridden or specialized by user code
providing specific functionality.

Frameworks provide a standardized way to build and organize code, often
offering pre-built functionality for tasks like user interface design, database
interaction, and input/output management. The main benefits of using
frameworks include:

- Reusability: Pre-written code for common tasks.

- Efficiency: Reduces development time and effort.

- Structure: Encourages best practices and organized code.

- Extensibility: Allows developers to customize and extend functionality while
using core components.

3

General purpose Software Frameworks (1)

1. Spring (Java)

– Use case: Enterprise-level Java applications, particularly web-based.

– Features: Dependency injection, aspect-oriented programming (AOP), transaction management, and
comprehensive web development support (via Spring MVC).

– Notable projects: Large enterprise applications, microservices architecture (with Spring Boot).

2. NET Framework (C# and .NET languages)

– Use case: Building Windows-based applications, web applications, and services.

– Features: Comprehensive library for GUI, web apps, data access, and more; supports multiple
languages (C#, VB.NET, etc.); provides ASP.NET for web development.

– Notable projects: Enterprise-level web apps, desktop applications, cloud-based services.

3. Django (Python)

– Use case: Web development using the Python language.

– Features: Follows the "batteries-included" philosophy, meaning it comes with a lot of built-in
features (ORM, admin panel, authentication, etc.); emphasizes rapid development and clean,
pragmatic design.

– Notable projects: Web applications, content management systems, and social networking sites.

4

General purpose Software Frameworks (2)

4. Ruby on Rails (Ruby)

– Use case: Web development with Ruby.

– Features: Convention over configuration (fewer decisions to make), DRY (Don’t Repeat Yourself) principle, built-in
tools for database handling, scaffolding, and form handling.

– Notable projects: Web applications like GitHub, Basecamp.

5. React (JavaScript/TypeScript)

– Use case: Building user interfaces for web applications.

– Features: Component-based architecture, virtual DOM for efficient UI updates, flexibility in integrating with other
libraries or frameworks like Redux for state management.

– Notable projects: Interactive user interfaces for single-page applications (SPAs), mobile apps (via React Native).

6. Laravel (PHP)

– Use case: PHP-based web application development.

– Features: Elegant syntax, built-in authentication, routing, ORM (Eloquent), task scheduling, and migrations.

– Notable projects: Various types of web apps, from simple websites to complex enterprise applications.

7. Qt (C++)

– Use case: Cross-platform desktop and embedded applications.

– Features: GUI toolkit for desktop applications, support for cross-platform development (Windows, macOS, Linux),
mobile, and embedded systems.

– Notable projects: Applications in industries such as automotive, medical devices, and consumer electronics.

5

General purpose Software Frameworks (3)

8. Electron (JavaScript)

– Use case: Building cross-platform desktop apps using web technologies (HTML, CSS, JS).

– Features: Combines Node.js for backend functionality and Chromium for rendering web pages in
desktop apps.

– Notable projects: Desktop apps like Visual Studio Code, Slack, and Atom.

9. Flask (Python)

– Use case: Lightweight web applications and APIs.

– Features: Micro-framework with minimal built-in functionality, highly extensible, allows developers
to pick and choose libraries as needed.

– Notable projects: APIs and small-scale web apps, often paired with additional libraries for full-stack
development.

10. TensorFlow (Python, C++)

– Use case: Machine learning and AI applications.

– Features: Provides tools for building deep learning models, including neural networks and natural
language processing. Can be used for both research and production-level machine learning systems.

– Notable projects: AI-driven applications, recommendation systems, image recognition software.

6

Web Application Frameworks

GUI
Toolkits

7

Application Frameworks

Frameworks for Applications with GUI

• Qt (C++) - Autodesk Maya, VLC Media Player

• Electron (JavaScript) - Visual Studio Code, Slack, Discord

• JavaFX (Java) - Enterprise and educational tools, data visualization apps

• GTK (C) [default for Linux GNOME] - GIMP, Inkscape

• WPF (Windows Presentation Foundation, C#/.NET) - Visual Studio,
Windows internal tools

• Swing (Java) - Enterprise apps, educational and simulation tools

• Tkinter (Python) - Basic desktop utilities, educational apps

• wxWidgets (C++) - Offers native-looking applications on Windows, macOS,
and Linux

• Avalonia (C#/.NET) - open-source framework for building cross-platform
.NET applications.

8

Frameworks for concurrency

• Apache Hadoop - software framework for
applications which process big amounts of
data in-parallel using the Map/Reduce
programming model on large clusters
(thousands of nodes) in a fault-tolerant
manner.

• Map: Takes input data and converts it into a set of
tuples (key/value pairs).

• Reduce: Takes the output from Map and combines the
data tuples into a smaller set of tuples.

9

Features of Frameworks

• A framework embodies some abstract design, with
more behavior built in.

• In order to use it you need to insert your behavior
into various places in the framework either by
subclassing or by plugging in your own classes.

• The framework’s code then calls your code at these
points.

• A very general concept, emphasizing inversion of
control: as opposed to libraries, is the code of the
framework that calls the programmer's code

10

Component Frameworks

• Frameworks that support development, deployment, composition
and execution of components designed according to a given
Component Model

• Support the development of individual components, enforcing the
design of precise interfaces

• Support the composition/connection of components according to
the mechanisms provided by the Component Model

• Allow instances of these components to be “plugged” into the
component framework itself

• Provide prebuilt functionalities, such as useful components or
automated assembly functions that automatically instantiate and
compose components to perform common tasks.

• The component framework establishes environmental conditions
for the component instances and regulates the interaction between
component instances.

11

Frameworks vs Integrated
Development Environments (IDEs)

• Orthogonal concepts

• A framework can be supported by several IDEs

– Eg: Spring supported by Spring Tool Suite (based
on Eclipse), NetBeans, IntelliJ IDEA, Eclipse, …

• An IDE can support several frameworks

– Eg: NetBeans supports JavaBeans, Spring, J2EE,
Maven, Hibernate, JavaServer Faces, Struts, Qt,…

12

Frameworks Features
• Consist of parts that are found in many apps of that type

– Libraries with APIs (classes with methods etc.)
– Ready-made extensible programs ("engines")
– Sometimes also tools (e.g. for development, configuration,

content)

• Frameworks, like software libraries, provide reusable
abstractions of code wrapped in a well-defined API

• But: Inversion of control
– unlike in libraries, the overall program's flow of control is not

dictated by the caller, but by the framework

• Helps solving recurring design problems
– Providing a default behavior
– Dictating how to fill-in-the-blanks

• Non-modifiable framework code
– Extensibility: usually by selective overriding

13

Extensibility

• All frameworks can be extended to cater for app-
specific functionality.
– A framework is intended to be extended to meet the

needs of a particular application

• Common ways to extend a framework:
– Extension within the framework language:

• Subclassing & overriding methods

• Implementing interfaces

• Registering event handlers

– Plug-ins: framework can load
certain extra code in a specific
format

14

Two selected topics

We give a closer look to two general topics
related to frameworks:

• Inversion of control

• Mastering dependencies among components

15

Inversion of Control (IoC) in GUIs

• In text-based interaction, the order of interactions
and of invocations is decided by the the code.

• In the GUI-based interaction, the GUI loop decides
when to invoke the methods (listeners), based on the
order of events

16

#ruby
 puts 'What is your name?'
 name = gets
 process_name(name)
 puts 'What is your quest?'
 quest = gets
 process_quest(quest) TEXT

require 'tk'
 root = TkRoot.new()
 name_label = TkLabel.new() {text "What is Your Name?"}
 name_label.pack
 name = TkEntry.new(root).pack
 name.bind("FocusOut") {process_name(name)}
 quest_label = TkLabel.new() {text "What is Your Quest?"}
 quest_label.pack
 quest = TkEntry.new(root).pack
 quest.bind("FocusOut") {process_quest(quest)}
 Tk.mainloop() GUI

https://martinfowler.com/bliki/InversionOfControl.html

Inversion of Control in Frameworks
• With Frameworks the Inversion of Control becomes dominant

• The application architecture is often fixed, even if

customizable, and determined by the Framework

– When using a framework, one usually just implements a few callback

functions or specializes a few classes, and then invokes a single method.

– The framework does the rest of the work for you, invoking any necessary

client callbacks or methods at the appropriate time and place.

– In essence, IoC in frameworks lets developers focus more on business logic

while the framework manages lower-level operations like object creation and

lifecycle management.

• Example: Java's Swing and AWT classes, NetBeans projects

– They have a huge amount of code to manage the user interface, and there is

inversion of control because you start the GUI framework and then wait for it

to call your listeners
17

Inversion of Control

Traditional Program Execution Inversion of Control

The app has control over the
execution flow, calling library
code when it needs to.

The framework has control over
the execution flow, calling app
code for app-specific behavior.

18

Frameworks vs Libraries

• Frameworks consist of large sets of classes
/interfaces, suitably packaged

• Not much different from libraries
• (Possible) Key feature: wide use of Inversion of

Control
• “Framework” sometimes intended as “well-

designed library”
• Java Collection Framework vs C++ Standard

Template Library: are them frameworks or
libraries?

19

JCF vs STL

20

Java Collection Framework

Standard Template Library

Components, Containers and IoC

• Often Frameworks provide containers for deploying
components

• A container may provide at runtime functionalities
needed by the components to execute

• Example: EJB containers are responsible of the
persistent storage of data and of the availability of EJB’s
for all authorized clients

• Using IoC, EJB containers can invoke on session beans
methods like ejbRemove, ejbPassivate (store to
secondary storage), and ejbActivate (restore from
passive state).

• Spring’s IoC containers: a related concept…

21

Loosely coupled systems:
advantages and techniques

• Good OO Systems should be organised as
network of interacting objects

• Goal: High cohesion, low coupling

• Advantages of low coupling

– Extensibility

– Testability

– Reusability

• We discuss Dependency injection and other
techniques to achieve it

22Nick Hines - Dependency Injection and Inversion of Control - ThoughtWorks, 2006

More on Inversion of Control
• Control: not only control flow, but also control over dependencies,

coupling, configuration
• Inversion: component gives up control to a framework and agrees

to play by some rules
• Framework calls component in well-defined ways (setters, template

methods, interface)
Dependency injection
• IoC with respect to dependencies
• something outside a component handles:

– configuration (properties)
– wiring / dependencies (components)

• component-oriented
• removes coupling

– coupling of configuration and dependencies to the point of use
– coupling of component to concrete dependent components

• somewhat contrary to encapsulation
23

A Concrete Example – A Trade Monitor
• A trader wants that the system rejects trades when the

exposure reaches a certain limit
• Thus the component TradeMonitor (a class…) provides

a method TryTrade which checks the condition
• The current exposure and the exposure limit are stored

in some persistent storage, and are accessed by
TryTrade using another component, a DAO (Data
Access Object)

• We discuss various solutions to limit dependencies
among the two components

24

public class TradeMonitor

{

 // other stuff

 public bool TryTrade(string symbol, int amount){

 int limit = limitDao.GetLimit(symbol);

int exposure = limitDao.GetExposure(symbol);

 return (exposure + amount > limit) ? false : true;

}

}

Data Access Object (DAO)

• A Java EE design pattern

controller

user

model

view

DAO

Persistent
Data
Store

Application code

Trade Monitor – The first design

• TradeMonitor is tightly coupled to LimitDao
– Extensibility – what if we replace the database with a distributed cache?

– Testability – where do the limits for test come from?

public class TradeMonitor

{

 private LimitDao limitDao;

public TradeMonitor()

 {

limitDao = new LimitDao();

 }

public bool TryTrade(string symbol, int amount)

{

int limit = limitDao.GetLimit(symbol);

 int exposure = limitDao.GetExposure(symbol);

return (exposure + amount > limit)? false : true;

}

}

public class LimitDao

{

public int GetExposure(string symbol)

{

// Do something with the database

}

public int GetLimit(string symbol)

{

// Do something with the database

}

}

limitDao = new LimitDao();

26

Trade Monitor – The Design Refactored (1)

• Introduce interface/implementation separation
– Logic does not depend on DAO anymore.

– Does this really solve the problem?

public class TradeMonitor

{

private LimitRepository limitRepository;

public TradeMonitor()

{

limitRepository = new LimitDao();

}

public bool TryTrade(string symbol, int amount)

{

 . . .

 }

 }

public interface LimitRepository

{

int GetExposure(string symbol);

int GetLimit(string symbol);

}

public class LimitDao extends LimitRepository

{

public int GetExposure(string symbol){…}

public int GetLimit(string symbol){…}

}

limitRepository = new LimitDao();

• The constructor still has a static dependency on DAO

27

• Introduce a Factory. It has the responsibility to
create the required instance.

• TradeMonitor decoupled from LimitDao
• LimitDao still tightly-coupled, this time to Factory
public class LimitFactory

{

public static LimitRepository GetLimitRepository()

{

 return new LimitDao();

}

}

public class TradeMonitor

{

private LimitRepository limitRepository;

public TradeMonitor()

{

 limitRepository = LimitFactory.GetLimitRepository();

}

public bool TryTrade(string symbol, int amount)

{

 . . .

 }

}

LimitFactory

TradeMonitor

<<interface>>
LimitRepository

LimitDao

<<creates>>

return new LimitDao();

28

Trade Monitor – The Design Refactored (2)

• Introduce a ServiceLocator. This object acts as a (static)
registry for the LimitDao you need.

• This gives us extensibility, testability, reusability
• Note that an external Assembler sets up the registry

public class ServiceLocator{

 public static void RegisterService(Type t, object o)

{. . .}

public static object GetService(Type t)

{. . .}

}

public class TradeMonitor{

private LimitRepository limitRepository;

public TradeMonitor(){

object o =

 ServiceLocator.GetService(typeof(LimitRepository));

limitRepository = (LimitRepository) o;

}

public bool TryTrade(string symbol, int amount){

 . . .

 }

}

29

Trade Monitor – The Design Refactored (3)

ServiceLocator – Pros and cons
• The Service Locator pattern succeeds in decoupling the TradeMonitor

from the LimitDao
• Allows new components to be dynamically created and used by other

components later
• It can be generalized in several ways, eg. to cover dynamic lookup
Cons:
• Every component that needs a dependency must have a reference to the

service locator
• All components need to be registered with the service locator
• If bound by name:

– Services can’t be type-checked
– Component has a dependency to the dependent component names
– if many components share an instance but later you want to specify different

instance for some, this becomes difficult

• If bound by type:
– Can only bind one instance of a type in a container

• Code needs to handle lookup problems

30

Towards Dependency Injection
• In the original situation, we aim at

relaxing the coupling using solutions
based on Inversion of Control

Q: Which “control” is inverted?
A: The dependency of TradeMonitor
from the LimitDao

The plugin is created by an external
Assembler and it is passed to
TradeMonitor in some way.
Thus the dependency is not anymore
in the code of the main component,
but it is injected into it

31

Dependency Injection

• Dependency injection allows avoiding hard-coded
dependencies (strong coupling) and changing them

• Allows selection among multiple implementations of a
given dependency interface at run time

• Examples:
– load plugins dynamically
– replace mock objects in test environments vs. real objects

in production environments

• Three forms:
– Setter injection
– Constructor injection
– (Interface injection)

32

Dependency injection based on setter methods

• Idea: add a setter, leaving creation and resolution to others
public class TradeMonitor

{

private LimitRepository limitRepository;

public TradeMonitor()

{

}

public LimitRepository Limits

{

set { limitRepository = value;}

}

 public bool TryTrade(string symbol, int amount){

 . . .

 }

}

• Pros:
• Leverages existing JavaBean reflective patterns
• Simple, often already available

• Cons:
• Possible to create partially constructed objects
• Advertises that dependency can be changed at runtime (as opposed to

constructor)

This is Setter Injection

• Widely used in Spring

33

Dependency Injection based on Constructors

• Why not just use the constructor?
public class TradeMonitor

{

private LimitRepository limitRepository;

public TradeMonitor(LimitRepository

limitRepository)

{

this.limitRepository = limitRepository;

}

 public bool TryTrade(string symbol, int amount){

 . . .

 }

}

Pros:

• Object can’t be partially constructed

• Simple, often already available

Cons:

• Bidirectional dependencies between objects can be tricky

• Constructors can easily get big and parameters confusing

• If lots of optional dependencies, may have lots of constructors

• Can make class evolution more complicated (an added dependency

affects all users of the class) wrt setter injection

This is Constructor Injection

• Widely used in PicoContainer

34

Exploiting Constructor Injection for Testing

[TestFixture]

public class TradeMonitorTest

{

[Test]

public void MonitorBlocksTradesWhenLimitExceeded()

{

DynamicMock mockRepository = new DynamicMock(typeof(LimitRepository));

mockRepository.SetupResult('GetLimit', 1000000, new Type[] { typeof(string) });

mockRepository.SetupResult('GetExposure', 999999, new Type[] { typeof(string) });

TradeMonitor monitor = new
TradeMonitor((LimitRepository)mockRepository.MockInstance);

Assert.IsFalse(monitor.TryTrade('MSFT', 1000), 'Monitor should block trade');

}

}

public class TradeMonitor

{

private LimitRepository repository;

 public TradeMonitor(LimitRepository repository) { this.repository =

repository; }

 public bool TryTrade(string symbol, int amount)

{

int limit = repository.GetLimit(symbol);

int exposure = repository.GetExposure(symbol);

return ((amount + exposure) <= limit);

}

}

35

Summary: decoupling using Service
Locator vs Dependency Injection

36

Which solution to use?

• Both Service Locator and Dependency Injection provide
the desired decoupling

• With service locator, the desired component is obtained
after request by the TradeMonitor to the Locator: no IoC

• With dependency injection there is no explicit request: the
component appears in the application class

• Inversion of control a bit harder to understand
• With Service Locator the application still depends on the

locator
• It is easier to find dependencies of component if

Dependency Injection is used
– Check constructors and setters vs check all invocations to

locator in the source code

37

Towards IoC Containers

• There are still some open questions
– Who creates the dependencies? (who is the “Assembler”?)

– What if we need some initialisation code that must be run
after dependencies have been set?

– What happens when we don’t have all the components?

• IoC Containers solve these issues [eg: Spring]
– Have configuration – often external

– Create objects

– Ensure all dependencies are satisfied

– Provide lifecycle support

38

Other possible solutions

• Reflection can be used to determine dependencies,
reducing the need for config files.
– Make components known to container.
– Container examines constructors and determines

dependencies.

• Most IoC containers support auto-wiring: automatic
wiring between properties of a bean and other beans
based, eg, on name or type

• Auto-wiring provides other benefits:
– Less typing.
– Static type checking by IDE at edit time.
– More intuitive for developer.

39

Dependency injection in Spring

• The objects that form the backbone of a Spring application are
called beans

• A bean is an object that is instantiated, assembled, and otherwise
managed by a Spring IoC container

• Bean definition contains the information called configuration
metadata, which is needed for the container to know the following
– How to create a bean
– Bean’s lifecycle details
– Bean’s dependencies

• The configuration metadata can be supplied to the container in
three possible ways:
– XML based configuration file (the standard)
– Annotation-based configuration
– Java-based configuration

40

Spring IoC containers
• The Spring container is at the core of the Spring

Framework.
• The container will create the objects, wire them

together, configure them, and manage their complete
life cycle from creation till destruction.

• The Spring container uses Dependency Injection to
manage the components that make up an application.

• The container gets its instructions on what objects to
instantiate, configure, and assemble by reading the
configuration metadata provided.

• The Spring IoC container makes use of Java POJO
classes and configuration metadata to produce a fully
configured and executable system or application.

41

// imports…
public class MainApp {
 public static void main(String[] args) {
 ApplicationContext context = new ClassPathXmlApplicationContext("Beans.xml");
 HelloWorld obj = (HelloWorld) context.getBean("helloWorld");
 obj.getMessage(); }}

The main class, loading an Application Context
42

public class HelloWorld {
 private String message;
 public void setMessage(String message){
 this.message = message;
 }
 public void getMessage(){
 System.out.println("Your Message : " + message);
 }
} The bean: a POJO (Plain Old Java Object)

<?xml version = "1.0" encoding = "UTF-8"?>
<beans xmlns = "http://www.springframework.org/schema/beans"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd”>
 <bean id = "helloWorld" class = "com.tutorialspoint.HelloWorld">
 <property name = "message" value = "Hello World!"/>
 </bean>
</beans> The Configuration Metafile (XML)

Setter Injection
(performed by the
IoC container)

Summary

• Recap: JavaBeans as Components

• Frameworks, Component Frameworks and their
features

• Frameworks vs IDEs

• Inversion of Control and Containers

• Frameworks vs Libraries

• Decoupling Components

• Dependency Injection vs Service Locator

• IoC Containers in Spring

43

	Slide 1: 301AA - Advanced Programming
	Slide 2: Components: a recap
	Slide 3: Software Frameworks
	Slide 4: General purpose Software Frameworks (1)
	Slide 5: General purpose Software Frameworks (2)
	Slide 6: General purpose Software Frameworks (3)
	Slide 7: Application Frameworks
	Slide 8: Frameworks for Applications with GUI
	Slide 9: Frameworks for concurrency
	Slide 10: Features of Frameworks
	Slide 11: Component Frameworks
	Slide 12: Frameworks vs Integrated Development Environments (IDEs)
	Slide 13: Frameworks Features
	Slide 14: Extensibility
	Slide 15: Two selected topics
	Slide 16: Inversion of Control (IoC) in GUIs
	Slide 17: Inversion of Control in Frameworks
	Slide 18: Inversion of Control
	Slide 19: Frameworks vs Libraries
	Slide 20: JCF vs STL
	Slide 21: Components, Containers and IoC
	Slide 22: Loosely coupled systems: advantages and techniques
	Slide 23: More on Inversion of Control
	Slide 24: A Concrete Example – A Trade Monitor
	Slide 25: Data Access Object (DAO)
	Slide 26: Trade Monitor – The first design
	Slide 27: Trade Monitor – The Design Refactored (1)
	Slide 28: Trade Monitor – The Design Refactored (2)
	Slide 29: Trade Monitor – The Design Refactored (3)
	Slide 30: ServiceLocator – Pros and cons
	Slide 31: Towards Dependency Injection
	Slide 32: Dependency Injection
	Slide 33: Dependency injection based on setter methods
	Slide 34: Dependency Injection based on Constructors
	Slide 35: Exploiting Constructor Injection for Testing
	Slide 36: Summary: decoupling using Service Locator vs Dependency Injection
	Slide 37: Which solution to use?
	Slide 38: Towards IoC Containers
	Slide 39: Other possible solutions
	Slide 40: Dependency injection in Spring
	Slide 41: Spring IoC containers
	Slide 42
	Slide 43: Summary

