
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-07: JavaBeans

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Overview
• Kinds of components in Java
• JavaBeans: design and deployment

– Properties
• Property design pattern

– Events
• Connection-oriented programming
• Observer design pattern

– Serialization
– Jar
– Introspection (InfoBeans)

è Chapter 14, sections 14.1, 14.3 and 14.5 of Component Software:
Beyond Object-Oriented Programming. C. Szyperski, D. Gruntz, S.
Murer, Addison-Wesley, 2002.

è The JavaBeans API Specification, sections 1, 2, 6, 7 and 8.
https://www.oracle.com/java/technologies/javase/javabeans-spec.html

2

https://www.oracle.com/java/technologies/javase/javabeans-spec.html

Components in Java SE
(Standard Edi3on): Java Beans

3

Other Java Distribu<ons

• Java/Jakarta EE (Enterprise Edition)
– Suite of specifications for referencing runtimes

(application servers / microservices)
– Example of uses: e-commerce, banking information

systems, accounting.
– Around 10 referencing runtimes available
– Reference implementation: Oracle Glassfish

• Java ME (Micro Edition)
– embedded and mobile devices, e.g. micro-controllers,

sensors, gateways, mobile phones, personal digital
assistants (PDAs), TV set-top boxes, printers…

4

Client side
• JavaBeans
• Applets
• Application

Components
Web server tier:
• Servlets
• JSPs
Application tier:
• Stateless session EJB
• Stateful session EJB
• Entity EJB
• Message-driven EJB

5

Components in Jakarta EE

6

Components in Jakarta EE

Overview and history of Java component technologies

on the application server tier, EJB in four variations (stateless session, stateful
session, entity, and message-driven beans). Using different kinds of compo-
nents (rather than just different components) is a mixed blessing. On the one
hand, it helps to have component models that fit well with a particular archi-
tectural area. On the other hand, it makes it harder to refactor an overall
system as boundaries of component models may need to be crossed. It is also
somewhat unclear how such a fine and diverse factoring of component models
caters to the evolution of overall systems architecture. Will the number of
J2EE component models continue to grow?

The J2EE architectural overview in Figure 14.3 separates the areas that
J2EE supports using specialized component models. Figure 14.3 does not
mention JavaBeans. The reason is that JavaBeans components, although pre-
equipped with options to perform in the user interface space, aren’t really
confined to any particular tier. Instead, JavaBeans and its core technologies
could be used in almost any of the spaces shown in the figure. Furthermore,
note that the arrows in the figure represent characteristic cases of control flow.
They are not meant to be complete. Data flow typically follows the same lines,
but in both directions. A binding substrate underpinning all parts of a J2EE
system is the naming and directory infrastructure accessible via JNDI (Java
naming and directory interface). A second integration plane is the messaging
infrastructure accessible via JMS (Java message service). Both JNDI and JMS

269

Figure 14.3 Architectural overview of J2EE.

Client tier

Web
browser

+
applets

Rich clients
+ application

client
components

Web service
clients

Web server tier

JSP
container

+
JSPs

+
Servlets

+
Servlets

App server tier

EJB
container

+
Entity beans

+
Stateful &
stateless
session
beans

+
Message-

driven beans

Backend tier

Databases

Legacy apps
etc.

Naming and directories (JNDI) Messaging (JMS)

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 269

Client side
• JavaBeans
• Applets
• Applica=on

Components
Web server 4er
• Servlets
• JSPs
Applica4on 4er:
• Stateless session EJB
• Stateful session EJB
• En=ty EJB
• Message-driven EJB

The JavaBeans API (1996)
Goal: to define a so&ware component model for Java, allowing
vendors to create and ship Java components that can be
composed together into applica8ons by end users.
Design goals:
• Granularity: from small (eg. a bu?on in a GUI) to medium

(eg. a spreadsheet as part of al larger document)
– Similar to MicrosoN's OLE Control or AcSveX APIs

• Portability: Ok in Java based applica8on servers. Bridges
defined to other component models (like OpenDoc,
OLE/COM/ Ac8veX)

• Uniformity and Simplicity: The API should be simple to be
supported on different plaQorms. Strong support for small
component, with reasonable defaults.

7

What are Java Beans?
“A Java Bean is a reusable so&ware component that can be
manipulated visually in a builder tool.”
• Sample tools: builders for web pages, visual applica8ons, GUI

layout, server applica8ons. Also document editors.
• A bean typically has a GUI representa8on, but not necessarily

– Invisible beans
• Any Java class can be recognized as a bean in a tool

provided that
– It has a public constructor with no arguments
– It implements the interface java.io.Serializable
– It is in a jar file with manifest file containing

 Java-Bean: True

8

(Really needed?)

JavaBeans as So7ware Components

• Beans are binary building blocks (class files)
• Development vs. deployment (customization)
• Beans can be assembled to build a new bean

or a new application, applet, … writing glue
code to wire beans together

• Client-side beans vs. beans for business logic
process in MVC on server (beans on server are
not visible)

9

Sample Reusable Components

Button Beans Slider Bean

An application constructed from Beans

10

JavaBeans common features
• Support for properties, both for customization and for

programmatic use
• Support for events: simple communication metaphor that

can be used to connect several beans
• Support for customization: in the builder the user can

customize the appearance and behaviour of the bean
• Support for persistence: a bean can be customized in an

application builder and then have its customized state
saved away and reloaded later

• Support for introspection: a builder tool can analyze how
the bean works

Emphasis on GUI, but textual programming also possible using
the existing API

11

Design time vs. run-time

• A bean must be able to run in the design
environment of a builder tool providing means to
the user to customize aspect and behaviour

• At run-time there is less need for customization
• Possible solution: design-time information for

customization is separated from run-time
information, and not loaded at run-time
– <BeanName>BeanInfo.java class

• If such class is absent, information is extracted
from the bean code itself

12

Simple Proper<es

• Discrete named attributes that can affect a
bean instance’s appearance or behaviour

• Property X (and its type) determined by public
setter (setX) and /or getter (getX) methods

• Can be changed at design time
(customization) or run-time (application logic)

• Example property of a button: background

public java.awt.Color getBackground ();
public void setBackground (java.awt.Color color);

13

14

How can a builder iden/fy the proper/es of a bean?

Introspection

• Process of analyzing a bean to determine the
capabilities

• Allows application builder tool to present info
about a component to software designers

• Implicit method: based on reflection, naming
conventions, and design patterns

• Alternative: <BeanName>BeanInfo class to
explicitly describe info about a bean for the
builder tool

15

Using the BeanInfo class

16

With the BeanInfo class you can:
• Expose only those features you want to expose.
• Rely on BeanInfo to expose some Bean features

while relying on low-level reflec?on to expose
others.

• Associate an icon with the target Bean.
• Specify a customizer class.
• Segregate features into normal and expert

categories.
• Provide a more descrip?ve display name, or

addi?onal informa?on about a Bean feature.

Design Pattern for Simple Properties

• From pair of methods:
 public <PropertyType> get<PropertyName>();
 public void set<PropertyName>(<PropertyType> a);

infer existence of property propertyName of type
PropertyType

• Example:
 public java.awt.Color getBackground ();
 public void setBackground (java.awt.Color color);

• If only the geGer (seGer) method is present then the
property is read-only (write-only)

17

Pattern for Indexed Properties

• If a property is an array, seMer/geMer methods
can take an index or the whole array

• From these methods, by introspecOon the
builder infers the existence of property
spectrum of type java.awt.Color[]

18

public java.awt.Color getSpectrum (int index);
public java.awt.Color[] getSpectrum ();
public void setSpectrum (int index, java.awt.Color color);
public void setSpectrum (java.awt.Color[] colors);

Bound and Constrained Property

• A bound property generates an event when
the property is changed

• A constrained property can only change value
if none of the registered observers "poses a
veto"

è We discuss them after the event-based
communication mechanism

19

Connection-oriented programming

• Paradigm for gluing together components in a
builder tool

• Loose coupling
• Based on the Observer design pattern
• Adequate for GUIs

20

Pa>ern: Observer (Behavioral)
aka Publish-Subscribe

Name: Observer
Problem: Define a one-to-many dependency
among objects so that when one object
changes state, all of its dependents are
notified and updated automatically.

21

22

Forms of design-level reuse

the catalog by Gamma et al. that is particularly close to many examples in this
book is the Observer pattern. It defines a one-to-many dependency between
objects. This is that when the one object (the subject) changes, all its depend-
ents (the observers) are notified to perform updates as required. Using the
notation of Gamma et al., Figure 9.1 shows the class diagram of the Observer
pattern. The attached “notes” sketch implementations where this helps to
understand the pattern. Otherwise, the notation is close to UML.

The idea is that, once the problem has been isolated, a proper pattern can
be chosen. The pattern then needs to be adapted to the specific circumstances.
For example, an observable subject may need to be observed by n observers
which are themselves unknown to the subject. The Observer pattern is chosen,
but the pattern’s Update method may need an additional argument to inform
observers of what it is that has changed. A pattern catalog should contain a
discussion of the common variations on a patterns theme, as demonstrated by
Gamma et al.

Design patterns are microarchitectures. They describe the abstract interac-
tion between objects collaborating to solve a particular problem. They are
quite different from frameworks (described in the next section). Gamma et al.
list the following differences between patterns and frameworks (Gamma et al.,
1995, p. 28):

157

Figure 9.1 The class diagram of the Observer pattern, with “notes” regarding implementations.

Observer

+Update()

ConcreteObserver

–observerState

+Update()

Subject

+Attach(in Observer)
+Detach(in Observer)
+Notify()

ConcreteSubject

–subjectState

+GetState()
+SetState()

For all o in observers {
 o->Update()
}

Return subjectState
observerState =
 subject->GetState()

Subject

Observers

1 *

8557 Chapter 9 p151-168 3/10/02 10:33 PM Page 157

Events

• In Java the Observer pattern is based on
Events and Event Listeners

• An event is an object created by an event
source and propagated to the registered event
listeners

• Multicast semantics by default: several
possible listeners

• Unicast semantics (at most one listener) can
be enforced by tagging the event source.

23

Design PaQern for Events

Based on methods for (un)registering listeners. From
 public void add<EventListType>(<EventListType> a)
 public void remove<EventListType>(<EventListType> a)

infer that the object is source of an event; the name is
extracted from EventListType.
Example: from
 public void addUserSleepsListener (UserSleepsListener l);

 public void removeUserSleepsListener (UserSleepsListener l);

infers that the class generates a UserSleeps event

24

Unicast event sources

• Unicast semaOcs is assumed if the add
method is declared to throw
java.util.TooManyListenersException

• Example:
public void addJackListener(JackListener t)
throws java.util.TooManyListenersException;

public void removeJackListener(JackListener t);
defines a unicast event source for the
“JackListener” interface.

25

Event Adaptors

• Placed between the event source and a listener
• Is at the same Fme listener and source
• Examples of uses of adaptors:
– ImplemenLng an event queuing mechanism between

sources and listeners.
– AcLng as a filter.
– DemulLplexing mulLple event sources onto a single

event listener.
– AcLng as a generic “wiring manager” between

sources and listeners.

26

Event Adaptors: general architecture

27

JavaBeans Events

Sun Microsystems 32 7/25/02

listeners still on the current list. Other implementations may choose to make a copy of the event
target list when they start the event delivery and then deliver the event to that exact set.
Note that this means that an event listener may be removed from an event source and then still
receive subsequent event method calls from that source, because there were multicast events in
progress when it was removed.

6.7 Event Adaptors
Event adaptors are an extremely important part of the Java event model.
Particular applications or application builder tools may choose to use a standard set of event
adaptors to interpose between event sources and event listeners to provide additional policy on
event delivery .

6.7.1 Event Adaptor Overview
When additional behavior is required during event delivery, an intermediary “event adaptor”
class may be defined, and interposed between an event source and the real event listener.

EventSource Object

public synchronized
void addFooListener(FooListener fel);

FooEvent

EventAdaptor

FooEvent

class XyzListener implements FooListener {
 void fooHappened(FooEvent fe) {

void doIt(FooEvent fe) {
...
}

eListener

eDestination

 eDestination.doIt(fe);
}

Overview of Event Adaptor Model.

register Listener

fire
Event

forward
Event

reference to destination

interface
reference

Event adaptors example:
Demultiplexing multiple event sources

28

JavaBeans Events

Sun Microsystems 34 7/25/02

In the example (see the diagram and code below) a DialogBox object has two push buttons
“OK” and “Cancel”, both of which fire a buttonPushed(PBEvent) method. The DialogBox is
designed to invoke the methods, doOKAction() when the “OK” button fires, and doCancelAc-
tion() when the “Cancel” button fires.
The DialogBox defines two classes, OKButtonAdaptor and CancelButtonAdaptor that both im-
plement the PBListener interface but dispatch the incoming notification to their respective ac-
tion methods.
As a side effect of instantiation of the DialogBox, instances of the private adaptors are also cre-
ated and registered with the PushButton instances, resulting in the appropriate event flow and
mapping.

// Adaptor to map “Cancel Pressed” events onto doCancelAction()

class CancelAdaptor implements PushButtonExampleListener {
private Dialog dialog;
public CancelAdaptor(Dialog dest) {

dialog = dest;
}
public void buttonPushed(PushButtonExampleEvent pbe) {

dialog.doCancelAction();
}

}

OK Button

Cancel Button

buttonPushed(PBEvent pbe)

buttonPushed(PBEvent pbe)

buttonPushed(PBEvent pbe) {
 dialog.doOKAction();
 }

 buttonPushed(PBEvent pbe) {
 dialog.doCancelAction();
 }

Dialog BoxOKButtonAdaptor

doOKAction() {
 // ...
}

doCancelAction() {
 // ...
}

okButton.addPBListener(okButtonAdaptor)

cancelButton.addPBListener(cancelButtonAdaptor)

CancelButtonAdaptor

Back to Bound Properties

• Generate an event when the property is
changed

• The event is of type PropertyChangeEvent
and is sent to objects that previously
registered an interest in receiving such
notifications

• Bean with bound property: event source
• Bean implementing listener: event target
• Helper classes in the API to simplify

implementation

29

Implement Bound Property in a Bean

1. Import java.beans package
2. Instantiate a PropertyChangeSupport helper object

private PropertyChangeSupport changes =
 new PropertyChangeSupport(this);

3. Implement methods to maintain the property change listener
list:

 public void
addPropertyChangeListener(PropertyChangeListener l)

 { changes.addPropertyChangeListener(l);}

 (also removePropertyChangeListener method is
needed)

30

Implement Bound Property in a Bean (cont.)

4. Modify a property’s se@er method to fire a property change
event when the property is changed.

public void setX(int newX){
 int oldx = x;
 x = newX;
 changes.firePropertyChange("x", oldX, newX);
}

31

Implement Bound Property Listener
1. Listener bean must implement the interface

PropertyChangeListner

public class MyLstnr implements
 PropertyChangeListener, Serializable

2. It must override the method
public abstract void
 propertyChange(PropertyChangeevent evt)

3. Sample registraSon:
Button button = new OurButton();
MyLstnr lis = new MyLstnr();
button.addPropertyChangeListener(lis);

32

Constrained Property

• It generates an event when an attempt is made to change its
value

• The event type is PropertyChangeEvent
• The event is sent to objects that previously registered for

receiving such notification
• Those other objects have the ability to veto the proposed

change by raising an exception
• This allows a bean to operate differently according to the

runtime environment

33

Three Parts in Implementation of
Constrained Property

1. Source bean containing one or more constrained
properties

2. Listener objects that implement the
VetoableChangeListener interface. These
objects either accept or reject the proposed change.
The change is rejected by raising a
PropertyVetoException

3. PropertyChangeEvent object containing property
name, old value, new value.

34

Implement Constrained Property in a Bean

The bean containing the constrained property must:
1. Import the java.beans package
2. Instantiate a VetoableChangeSupport object:

 private VetoableChangeSupport vetos =
 new VetoableChangeSupport(this);

3. Implement methods to maintain the listener list:
public void

addVetoableChangelistener(VetoableChangelistener l)
{ vetos.addVetoableChangeListener(l);}

4. and similarly for removeVetoableChangelistener

35

Implement Constrained Property in a Bean (cont.)

5. Write a property’s se@er method to fire a property change
event:

 public void setX(int newX)
 { int oldX = X;

 try{
 vetos.fireVetoableChange(“X”, oldX, newX);
 // if no veto there
 X = newX;

 // add here code to notify change, if needed
 } catch(PropertyVetoException e){

 // code to be executed if
 // change is rejected by somebody

 }
 }

36

Implementing Constrained Property Listeners

1. Implements the VetoableChangeListener interface
which has an abstract method
 void vetoChange(PropertyChangeEvent evt)

2. Override this abstract method. This is the method that will
be called by the source bean on each object in the listener
list kept by the vetoableChangeSupport object

3. If the listener wants to forbid the change described in evt, it
should raise a PropertyVetoExcep3on. Otherwise simply
return.

37

Summary

• JavaBean is a pla^orm-neutral component
architecture for reusable so_ware component

• It is a black box component to be used to build
large component or applicaOon

• Property, method, event, introspector,
customizer are parts of the JavaBean API

38

