
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-06: Software Components

1

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Overview

• Needs of components: Motivations

• Component-Based Software Development

• Component Models

• Successful component models

• Successful component-based systems

• Component-based software frameworks

➔ Chapters 1 and 4 of Component Software:
Beyond Object-Oriented Programming. C. Szyperski,
D. Gruntz, S. Murer, Addison-Wesley, 2002.

2

Some historical remarks

• Need of software built from prefabricated components first
stated by MALCOLM DOUGLAS MCILROY in a SE conference in
1968.
– He included pipes and filters in Unix, and developed several Unix

tools, such as spell, diff, sort, join, graph, speak, and tr.

• Brad Cox’s Integrated Circuit analogy:
– Software components should

be like integrated circuits (ICs)
(IEEE Software, 1990)

• Other analogies:
– Components of stereo equipments
– Lego blocks, …

• Full maturity of the field
in 1990-2000

3

Why Component-Based Software
Development (CBSD)?

CBSD provides significant advantages:
• reducing costs through reuse
• facilitating faster development cycles
• leveraging off-the-shelf solutions for complex

functionalities
• making system construction more modular and

manageable
These benefits are consistent with the trends in
modern software engineering where scalability,
reusability, and time-to-market are critical factors.

4

Advantages of Component-Based Software
Development (CBSD)

From Software Products to Product Families
• Shared Infrastructure Across Products
• Consistency and Standardization
• Faster Time-to-Market
Need to Reuse Software to Reduce Costs
• Lower Development Costs
• Reduction in Testing and Debugging
• Focus on New Features
Preference for Off-the-Shelf Components over Re-
Implementing
• Cost-Efficiency
• Access to Proven Solutions
• Faster Deployment

5

Advantages of Component-Based Software
Development (CBSD)

Easier System Construction by Composing
Components
• Modularity and Flexibility
• Separation of Concerns
• Interoperability and Customization
Additional Benefits
• Improved Maintainability
• Parallel Development
• Better Scalability

6

Desiderata for software components

Bertrand Meyer, in Object Oriented Software Construction
(1997):

1. modular (IC chips, disk drivers, are self-contained: packaged
code)
1. compatible (chips or boards that plug in easily, simple interfaces)

2. reusable (same processor IC can serve various purposes)

3. extendible (IC technology can be improved: inheritance)

2. reliable (an IC works most of the time!)
1. correct (it does what it's supposed to, according to specification)

2. robust (it functions in abnormal conditions)

3. efficient (ICs are getting faster and faster!)

4. portable (ease of transferring to different platforms)

5. timely (released when or before users want it)
7

What is a Software Component?

A software component can be defined as a modular, reusable, and encapsulated
unit of software that provides a specific functionality or set of functionalities. It is
designed to interact with other components via well-defined interfaces and can
be independently developed, deployed, and maintained.

Key Characteristics of a Software Component:

1. Encapsulation: A component hides its internal implementation details from
the outside world and exposes only the necessary interfaces. This abstraction
allows developers to interact with the component without needing to
understand its inner workings.

2. Reusability: Components are designed to be reused across different
applications, systems, or contexts. They are generic enough to be applied in
multiple scenarios without needing major modifications.

3. Modularity: Each component represenats a distinct part of the system, which
can be developed and deployed independently. This modularity ensures that
components can be composed together to form more complex systems.

8

What is a Software Component? (cont)

4. Composability: Components are designed to be combined with other components
to build larger systems. They interact via defined interfaces, making it easy to
integrate them into existing systems or applications.

5. Well-Defined Interfaces: Components interact with other components through
clearly defined interfaces, such as APIs (Application Programming Interfaces).
These interfaces specify what services or functionalities the component offers and
how other components can use them.

6. Independent Deployment: A component can be deployed independently of other
components. This characteristic allows for better scalability and maintainability
since individual components can be updated or replaced without affecting the
entire system.

7. Interchangeability: A component can often be replaced by another component
that implements the same interface, allowing flexibility in system evolution and
adaptation to changing requirements.

9

Basic concepts of a Component Model

• Component interface: describes the operations (method calls,
messages, . . .) that a component implements and that other
components may use

• Composition mechanism: the manner in which different
components can be composed to work together to
accomplish some task.
For example, using message passing.

• Component platform: A platform for the development and
execution of components

• Concepts are language/paradigm agnostic

• Lays the ground for language interoperability

10

Successful Component Models (1)

Each of these models offers distinct characteristics for designing, deploying,
and managing software components in a modular and reusable way:

1. Enterprise JavaBeans (EJB): is a server-side component model used in
Java EE (Jakarta EE) for building modular, transactional, and scalable
business components. It supports transaction management, security, and
concurrency control. Easy integration with other Java EE technologies.
Ideal for: large-scale, distributed enterprise systems.

Heavy. Spring (see later) more successful because lighter.

2. COM (Component Object Model): Developed by Microsoft, it is a
platform-independent, distributed, and object-oriented component
model. It allows objects to interact within the same process or across
network boundaries.
Components communicate via language-independent interfaces.
Supports binary-level software reusability and integration. Foundation
for OLE and ActiveX controls. Legacy. Windows only.

11

Successful Component Models (2)

3. CORBA (Common Object Request Broker Architecture) is an open,
vendor-neutral standard developed by the Object Management Group
(OMG) to enable distributed systems and components to communicate in
a language-agnostic manner.
Components communicate through an Object Request Broker (ORB).
Support for language-independent interoperable and distributed
applications.
Not successful as hoped, despite the standardization efforts

4. OSGi (Open Services Gateway initiative) is a dynamic module system for
Java that allows applications to be divided into reusable components
called bundles. These bundles can be dynamically installed, updated, or
removed without requiring a system restart. Used in Eclipse IDE and
enterprise software, especially in environments requiring dynamic
updates and runtime flexibility.

12

Successful Component Models (3)

5. Spring Beans (Spring Framework) offers a component-based development
model where business logic is encapsulated in Spring Beans. The Inversion of
Control (IoC) container manages the lifecycle and dependencies of String
Beans.
Supports dependency injection for wiring components together. Highly
modular and lightweight. Allows configuration using annotations, XML, or
Java configuration. Application: Ideal for building Java applications across
different architectures, including microservices and web applications.

6. JavaBeans is a reusable component model for Java that allows developers to
create objects (beans) that can be manipulated in a visual development
environment, such as NetBeans or Eclipse.

Beans follow specific conventions for property access (getter/setter methods).
Supports visual component assembly in IDEs.. Commonly used in graphical
user interface (GUI) applications and systems that require visual programming
and component reuse.

This is the model we will play with…

13

Successful Component Models (4)

7. Microsoft .NET Component Model: it enables developers to create
reusable components, often packaged as assemblies (.dll files), which can
be shared across .NET applications. Supports languages like C#, VB.NET,
and F#. Integrates with COM and ActiveX for legacy systems. Common in
Windows-based systems, including desktop, web, and cloud applications.

8. Model-Driven Architecture (MDA) is a framework that promotes the
generation of software components through the use of high-level models.
Components are designed based on Platform-Independent Models (PIMs),
which are later transformed into Platform-Specific Models (PSMs). Used in
environments where model-driven development is key, such as in
telecommunications and embedded systems.

9. SCA (Service Component Architecture): Developed by OASIS, is a
specification for creating service-oriented architecture (SOA) systems.
Language-neutral; Facilitates the development of loosely-coupled services.

14

Successful Component Models (5)

10. Web Components is a modern browser technology that
allows developers to create custom HTML elements with
encapsulated behavior. These components are reusable
across different web applications. Used for building modern
web applications, providing reusable, framework-agnostic UI
components.

11. Fractal Component Model: Provides introspection and
reflection mechanisms for runtime reconfiguration. Primarily
used in research, embedded systems, and large-scale
systems that need runtime flexibility and dynamic
adaptation.

12. Koala Component Model is a component model primarily
designed for consumer electronics and embedded systems.

15

Successful Component Models (6)

13. SOFA (Software Appliances) Component Model focuses on building
reliable distributed systems. It is designed to support dynamic
reconfiguration and runtime adaptation of software components.

Strong emphasis on dynamic reconfiguration. Components are designed
to be adaptable at runtime without downtime. Primarily used in systems
requiring high availability, such as telecommunication systems and
enterprise infrastructures.

14. Pi Calculus-Based Models (e.g., ArchJava) These models use process
algebras, like Pi Calculus, to model the interaction between components.
ArchJava, for instance, incorporates architectural constraints directly into
the programming language.
Useful in research and high-assurance systems, where formal verification
of component interaction is necessary.

16

Successful systems exploiting components (1)
Component-based software architecture has been successfully applied across a wide range
of industries. By using modular, reusable components, organizations can build scalable,
maintainable, and flexible systems that can evolve over time.

1. Enterprise Resource Planning (ERP) Systems – SAP

– Overview: SAP's ERP system is a classic example of a component-based system. It
consists of numerous modules (components) that handle specific business
functions like finance, human resources, supply chain management, and more.

– Component Usage: Each module is a self-contained component that can be
deployed independently and interacts with other components via APIs and
services.

2. Microsoft Office Suite

– Overview: Microsoft Office (Word, Excel, PowerPoint, etc.) is a software suite with
different applications (components) that share common services, like spell
checkers, file formats, and user interface elements.

– Component Usage: The suite is a collection of components that integrate
seamlessly but can also be used independently. The components share a common
architecture, and through APIs like Visual Basic for Applications (VBA), they enable
developers to build custom solutions that integrate Office applications.

17

Successful systems exploiting components (2)
3. Web Browsers – Google Chrome & Mozilla Firefox

– Overview: Modern web browsers like Google Chrome and Mozilla Firefox are built from
numerous software components that handle different tasks, such as rendering HTML/CSS,
handling JavaScript execution, network communication, and providing security features.

– Component Usage: For instance, Chrome uses the Blink rendering engine (which is a
component itself) and separates tabs into independent processes (components) for better
stability and security. Each tab operates as an isolated component, meaning if one crashes, the
others can continue to function.

4. Cloud Computing Platforms – Amazon Web Services (AWS)

– Overview: AWS provides a vast array of cloud services (components) like storage (S3),
computing (EC2), databases (RDS), and messaging services (SQS).

– Component Usage: These services are modular components that can be used independently
or combined to create custom cloud-based architectures. Each service is self-contained, with
defined APIs for interaction, enabling customers to build highly scalable and flexible systems
using different AWS components.

5. Operating Systems – Linux

– Overview: Linux is built on a modular architecture where the kernel is at the core, and various
components (modules) provide additional functionality such as device drivers, file system
support, and networking capabilities.

– Component Usage: The Linux kernel is highly modular, and components (known as kernel
modules) can be dynamically loaded or unloaded to provide additional functionality as
needed, without having to recompile the entire kernel.

18

Successful systems exploiting components (3)
6. Microservices-Based Applications – Netflix

– Overview: Netflix is a pioneer in building large-scale, cloud-based systems using
microservices, which are essentially small, independently deployable software components.

– Component Usage: Each microservice (component) in the Netflix architecture handles a
specific part of the system (e.g., user recommendations, streaming management,
authentication). These microservices communicate via APIs, enabling Netflix to scale and
evolve its system continuously while maintaining high availability.

7. Integrated Development Environments (IDEs) – Eclipse

– Overview: Eclipse is an open-source IDE for software development. It’s built on a component-
based architecture called the Eclipse Rich Client Platform (RCP), based on the OSGi
component framework.

– Component Usage: Eclipse is highly modular, consisting of a core platform and numerous
plugins (components) that provide additional functionality such as debugging, version control,
and language support. Developers can create their own plugins or customize the IDE by
integrating third-party components.

8. Content Management Systems (CMS) – WordPress

9. E-Commerce Platforms – Shopify

10. Automotive Software Platforms – AUTOSAR (Automotive Open System Architecture)

11. Banking Systems – Murex

12. Healthcare Systems – Epic Systems

19

What do all the above examples have
in common?

• In all cases there is an infrastructure providing
rich foundational functionality for the addressed
domain.

• Components can be purchased from
independent providers and deployed by clients.

• The components provide services that are
substantial enough to make duplication of their
development too difficult or not cost- effective.

• Multiple components from different sources can
coexist in the same installation.

20

• Components exist on a level of abstraction where
they directly mean something to the deploying
client

• With Visual Basic, this is obvious – a control has a
direct visual representation, displayable and
editable properties, and has meaning that is
closely attached to its appearance.

• With plugins, the client gains some explicable,
high-level feature and the plugin itself is a user-
installed and configured component

21

Software Frameworks for Component-
Based Application

These frameworks enable developers to build modular, scalable, and maintainable
systems by encouraging the reuse and composition of components.

• Spring Framework

• Angular (Web Components), by Google

• React (Component-Based UI), by Facebook

• Vue.js: progressive JavaScript framework for building web interfaces

• Apache Struts: open-source web application framework based on (MVC)

• Apache Wicket: Java-based web application framework

• Vaadin: Java-based web application framework that provides component-
based model

• Microsoft .NET Core

• OSGi (Open Services Gateway initiative)

• JBoss Seam (Red Hat)

• MEAN Stack (MongoDB, Express, Angular, Node.js)
22

OOP vs CBSD
Object-Oriented Programming promotes reuse primarily through:

• Inheritance

• Polymorphism: Allowing methods to operate differently based on the
object type

• Encapsulation

OOP has been successful in promoting modularity and reuse within individual
applications or projects, but it has several limitations when it comes to large-
scale or cross-project software reuse:

1. Tight Coupling and Inflexibility: Inheritance often leads to tight coupling
between classes. If one class is changed, all its subclasses may need to be
modified as well. This can reduce flexibility and make reuse across
different applications or contexts harder.

OOP assumes that you have access to the source code or are working
within the same project or system. In many cases, external or third-party
components cannot easily be adapted using traditional OOP techniques.

23

OOP vs CBSD (2)
2. Granularity of Reuse: OOP is primarily focused on reuse at

the class level. However, software reuse at a higher level, like
services or components, requires a more coarse-grained
approach. Reusing entire modules, components, or services
is often more beneficial than reusing individual classes.

3. Difficulty in Cross-Project Reuse: OOP relies on a shared
type hierarchy and a common environment (like a shared
codebase). Reusing components across different projects,
with different dependencies, frameworks, or runtime
environments, can be challenging.
Reuse in OOP can be limited to projects that use the same
language, libraries, and framework versions, making it less
effective in heterogeneous or multi-language environments.

24

OOP vs CBSD (3)

4. Evolving Requirements: Modern software often needs to
evolve rapidly in response to changing user needs and
market conditions. The rigidity of OOP's inheritance
hierarchies can make it difficult to adapt existing classes to
new requirements without extensive modification, which is
contrary to the principles of agile development.

5. Interoperability Issues: OOP paradigms can lead to
challenges in integrating with components or services that
were designed using different paradigms or technologies
(e.g., functional programming, procedural programming, or
microservices-based architectures).

25

Component Based Software Engineering
basic definitions

• The basis is the Component
• Components can be assembled

according to the rules specified by the
component model

• Components are assembled through
their interfaces

• A Component Composition is the
process of assembling components to
form an assembly, a larger component
or an application

• Component are performing in the
context of a component framework

• All parts conform to the component
model

• A component technology is a concrete
implementation of a component model

c 1 c 2

Middleware

Run-time system

framework

Component Model

26

Summary

• Component technology in Software
Development reached maturity in 1990/2000

• Main motivation: cost-efficiency thanks to
reuse

• Various Component Models

• Component based software development
supported by several frameworks

• We shall play with JavaBeans as Component
Model, with NetBeans as framework

27

	Slide 1: 301AA - Advanced Programming
	Slide 2: Overview
	Slide 3: Some historical remarks
	Slide 4: Why Component-Based Software Development (CBSD)?
	Slide 5: Advantages of Component-Based Software Development (CBSD)
	Slide 6: Advantages of Component-Based Software Development (CBSD)
	Slide 7: Desiderata for software components
	Slide 8: What is a Software Component?
	Slide 9: What is a Software Component? (cont)
	Slide 10: Basic concepts of a Component Model
	Slide 11: Successful Component Models (1)
	Slide 12: Successful Component Models (2)
	Slide 13: Successful Component Models (3)
	Slide 14: Successful Component Models (4)
	Slide 15: Successful Component Models (5)
	Slide 16: Successful Component Models (6)
	Slide 17: Successful systems exploiting components (1)
	Slide 18: Successful systems exploiting components (2)
	Slide 19: Successful systems exploiting components (3)
	Slide 20: What do all the above examples have in common?
	Slide 21
	Slide 22: Software Frameworks for Component-Based Application
	Slide 23: OOP vs CBSD
	Slide 24: OOP vs CBSD (2)
	Slide 25: OOP vs CBSD (3)
	Slide 26: Component Based Software Engineering basic definitions
	Slide 27: Summary

