
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-05: The JVM instruction set

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Outline

• The JVM instruction set architecture

– Execution model

– Instruction format & Addressing modes

– Types and non-orthogonality of instructions

– Classes of instructions

➔Chapter 2 and 3 of the JVM Specification

2

The JVM interpreter loop

do {

 atomically calculate pc and fetch opcode at pc;

 if (operands) fetch operands;

 execute the action for the opcode;

} while (there is more to do);

The JVM instruction set is the collection of all the
possible instructions, identified by opcodes (8 bits
long).

3

Instruction set properties

• 32 bit stack machine
• Variable length instruction set

– One-byte opcode followed by arguments

• Simple to very complex instructions
• Symbolic references
• Only relative branches
• Byte aligned (not word aligned), except for

operands of tableswitch and
lookupswitch

• Compactness vs. performance

4

5

JVM Instruction Set

• Load and store (operand stack <-> local vars)

• Arithmetic

• Type conversion

• Object creation and manipulation

• Operand stack manipulation

• Control transfer

• Method invocation and return

• Monitor entry/exit

Instruction format

• Each instruction may have different “forms”
supporting different kinds of operands.

• Example: different forms of “iload” (i.e. push)

6

iload_0

iload_1

iload_2

iload_3

Assembly code

iload n

wide iload n

Binary instruction code layout

26

27

28

29

21 n

196 n21

Pushes local variable 0 on operand stack

Runtime memory

• Memory:
– Local variable array (frame)
– Operand stack (frame)
– Object fields (heap)
– Static fields (method area)

• JVM stack instructions
• implicitly take arguments from the top of the operand stack of the

current frame
• put their result on the top of the operand stack

• The operand stack is used to
• pass arguments to methods
• return a result from a method
• store intermediate results while evaluating expressions
• store local variables

7

JVM Addressing Modes

• JVM supports three addressing modes

– Immediate addressing mode

• Constant is part of instruction

– Indexed addressing mode

• Accessing variables from local variable array

– Stack addressing mode

• Retrieving values from operand stack using pop

8

Instruction-set: typed instructions

• JVM instructions are explicitly typed: different opCodes for
instructions for integers, floats, arrays, reference types, etc.

• This is reflected by a naming convention in the first letter of
the opCode mnemonics

• Example: different types of “load” instructions

9

iload

lload

fload

dload

aload

integer load
long load
float load
double load
reference-type load

i int

l long

s short

b byte

c char

f float

d double

a for reference

Instruction-set: accessing arguments
and locals in the Local Variable array

Instruction examples:

iload_1
iload_3
aload_5
aload_0

istore_1
astore_1
fstore_3

locals: indexes #args .. #args + #locals - 1

args: indexes 0 .. #args - 1

0:

1:

2:

3:

• A load instruction takes something from
the args/locals area and pushes it onto the
top of the operand stack.

• A store instruction pops something from
the top of the operand stack and places it
in the args/locals area.

10

Opcode “pressure” and
non-orthogonality

• Since op-codes are bytes, there are at most 256
distinct ones

• Impossible to have for each instruction one opcode
per type

• Careful selection of which types to support for each
instruction

• Non-supported types have to be converted

• Result: non-orthogonality of the Instruction Set
Architecture

11

Type support in the JVM
instruction set

• Design choice: almost no
support for byte, char
and short – using int as
computational type

2.11 Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

28

Table 2.11.1-A. Type support in the Java Virtual Machine instruction set

opcode byte short int long float double char reference

Tipush bipush sipush

Tconst iconst lconst fconst dconst aconst

Tload iload lload fload dload aload

Tstore istore lstore fstore dstore astore

Tinc iinc

Taload baload saload iaload laload faload daload caload aaload

Tastore bastore sastore iastore lastore fastore dastore castore aastore

Tadd iadd ladd fadd dadd

Tsub isub lsub fsub dsub

Tmul imul lmul fmul dmul

Tdiv idiv ldiv fdiv ddiv

Trem irem lrem frem drem

Tneg ineg lneg fneg dneg

Tshl ishl lshl

Tshr ishr lshr

Tushr iushr lushr

Tand iand land

Tor ior lor

Txor ixor lxor

i2T i2b i2s i2l i2f i2d

l2T l2i l2f l2d

f2T f2i f2l f2d

d2T d2i d2l d2f

Tcmp lcmp

Tcmpl fcmpl dcmpl

Tcmpg fcmpg dcmpg

if_TcmpOP if_icmpOP if_acmpOP

Treturn ireturn lreturn freturn dreturn areturn

Specification of an instruction: iadd

13

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

452

iadd iadd

Operation Add int

Format iadd

Forms iadd = 96 (0x60)

Operand

Stack

..., value1, value2 ®

..., result

Description Both value1 and value2 must be of type int. The values are popped

from the operand stack. The int result is value1 + value2. The

result is pushed onto the operand stack.

The result is the 32 low-order bits of the true mathematical result

in a sufficiently wide two's-complement format, represented as a

value of type int. If overflow occurs, then the sign of the result

may not be the same as the sign of the mathematical sum of the

two values.

Despite the fact that overflow may occur, execution of an iadd

instruction never throws a run-time exception.

Computational Types

14

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary 2.11

29

The mapping between Java Virtual Machine actual types and Java Virtual Machine

computational types is summarized by Table 2.11.1-B.

Certain Java Virtual Machine instructions such as pop and swap operate on the

operand stack without regard to type; however, such instructions are constrained

to use only on values of certain categories of computational types, also given in

Table 2.11.1-B.

Table 2.11.1-B. Actual and Computational types in the Java Virtual Machine

Actual type Computational type Category

boolean int 1

byte int 1

char int 1

short int 1

int int 1

float float 1

reference reference 1

returnAddress returnAddress 1

long long 2

double double 2

2.11.2 Load and Store Instructions

The load and store instructions transfer values between the local variables (§2.6.1)

and the operand stack (§2.6.2) of a Java Virtual Machine frame (§2.6):

• Load a local variable onto the operand stack: iload, iload_<n>, lload,

lload_<n>, fload, fload_<n>, dload, dload_<n>, aload, aload_<n>.

• Store a value from the operand stack into a local variable: istore, istore_<n>,

lstore, lstore_<n>, fstore, fstore_<n>, dstore, dstore_<n>, astore, astore_<n>.

• Load a constant on to the operand stack: bipush, sipush, ldc, ldc_w, ldc2_w,

aconst_null, iconst_m1, iconst_<i>, lconst_<l>, fconst_<f>, dconst_<d>.

• Gain access to more local variables using a wider index, or to a larger immediate

operand: wide.

Instructions that access fields of objects and elements of arrays (§2.11.5) also

transfer data to and from the operand stack.

Compiling Constants, Local Variables,
and Control Constructs

• Sample Code

• Can compile to

• Pushing constants on the operand stacks

• Incrementing local variable, comparing

void spin() {

 int i;

 for (i = 0; i < 100; i++) {

 ; // Loop body is empty

 }

}

0 iconst_0

1 istore_1

2 goto 8

5 iinc 1 1

8 iload_1

9 bipush 100

11 if_icmplt 5

14 return

15

// Push int constant 0

// Store into local variable 1 (i=0)

// First time through don't increment

// Increment local variable 1 by 1 (i++)

// Push local variable 1 (i)

// Push int constant 100

// Compare and loop if less than (i < 100)

// Return void when done

int vs. double: lack of opcodes for double
requires longer bytecode

• Sample Code

• Can compile to

void dspin() {

 double i;

 for (i = 0.0; i < 100.0; i++) {

 ; // Loop body is empty

 }

}

0 dconst_0

1 dstore_1

2 goto 9

5 dload_1

6 dconst_1

7 dadd

8 dstore_1

9 dload_1

10 ldc2_w #4

13 dcmpg

14 iflt 5

17 return 16

// Push double constant 0.0

// Store into local variables 1 and 2

// First time through don't increment

// Push local variables 1 and 2

// Push double constant 1.0

// Add; there is no dinc instruction

// Store result in local variables 1 and 2

// Push local variables 1 and 2

// Push double constant 100.0

// There is no if_dcmplt instruction

// Compare and loop if less than(i < 100.0)

// Return void when done

Accessing literals in the Constant Pool

• Sample Code

• Can compile to

void useManyNumeric() {

 int i = 100;

 int j = 1000000;

 long l1 = 1;

 long l2 = 0xffffffff;

 double d = 2.2;

 ...do some calculations... }

0 bipush 100

2 istore_1

3 ldc #1

5 istore_2

6 lconst_1

7 lstore_3

8 ldc2_w #6

11 lstore 5

13 ldc2_w #8

16 dstore 7

...

17

// Push small int constant with bipush

// Push large int (1000000) with ldc

// A tiny long value uses fast lconst_1

// Push long 0xffffffff (that is, int -1)

// Any long can be pushed with ldc2_w

// Push double constant 2.200000

...do those calculations…

Parameter passing: Receiving Arguments

• Sample Code

• Can compile to

int addTwo(int i, int j) {

 return i + j;

}

0 iload_1

1 iload_2

2 iadd

3 ireturn

18

// Push value of local variable 1 (i)

// Push value of local variable 2 (j)

// Add; leave int result on operand stack

// Return int result

• Local variable 0 used for this in instance methods

• Sample Code

• Can compile to

static int addTwo(int i, int j) {

 return i + j;

}

0 iload_0

1 iload_1

2 iadd

3 ireturn

Invoking Methods

• Sample Code

• Can compile to

int add12and13() {

 return addTwo(12, 13);

}

0 aload_0

1 bipush 12

3 bipush 13

5 invokevirtual #4

8 ireturn

19

// Push local variable 0 (this)

// Push int constant 12

// Push int constant 13

// Method Example.addtwo(II)I

// Return int on top of operand stack;

// it is the int result of addTwo()

• invokevirtual causes the allocation of a new frame, pops the
arguments from the stack into the local variables of the callee
(putting this in 0), and passes the control to it by changing the pc

• A resolution of the symbolic link is performed
• ireturn pushes the top of the current stack to the stack of the

caller, and passes the control to it. Similarly for dreturn, …
• return just passes the control to the caller

Other kinds of method invocation

20

• invokestatic – for calling methods with “static” modifiers
– this is not passed, arguments are copied to local vars from 0

• invokespecial – for calling constructors, which are not
dynamically dispatched, private methods or superclass
methods.
– this is always passed

• invokeinterface – same as invokevirtual, but used when
the called method is declared in an interface (requires a
different kind of method lookup)

• invokedynamic – introduced in Java SE 7 to support
dynamic typing
– We shall discuss it when presenting lambdas

Working with objects

• Sample Code

• Can compile to

Object create() {

 return new Object();

}

0 new #1 // Class java.lang.Object

3 dup

4 invokespecial #4 // Method java.lang.Object.<init>()V

7 areturn

21

• Objects are manipulated essentially like data of
primitive types, but through references using the
corresponding instructions (e.g. areturn)

Method void setIt(int)

0 aload_0

1 iload_1

2 putfield #4 // Field Example.i I

5 return

Method int getIt()

0 aload_0

1 getfield #4 // Field Example.i I

4 ireturn

Accessing fields (instance variables)

• Sample Code

• Can compile to

void setIt(int value) {

i = value;

}

int getIt() {

return i;

}

22

• Requires resolution of the symbolic reference in the constant pool
• Computes the offset of the field in the class, and uses it to access

the field in this
• Similar for static variables, using putstatic and getstatic

Using Arrays

• Sample Code

• Can compile to

void createBuffer() {

 int buffer[];

 int bufsz = 100;

 int value = 12;

 buffer = new int[bufsz];

 buffer[10] = value;

 value = buffer[11];

}

0 bipush 100

2 istore_2

3 bipush 12

5 istore_3

6 iload_2

7 newarray int

9 astore_1

10 aload_1

11 bipush 10

13 iload_3

14 iastore

15 aload_1

16 bipush 11

18 iaload

19 istore_3

20 return
23

// Push int constant 100 (bufsz)

// Store bufsz in local variable 2

// Push int constant 12 (value)

// Store value in local variable 3

// Push bufsz and...

// ... create new int array of that length

// Store new array in buffer

// Push buffer

// Push int constant 10

// Push value

// Store value at buffer[10]

// Push buffer

// Push int constant 11

// Push value at buffer[11]...

// ...and store it in value

Compiling switches (1)

• Sample Code

• Can compile to

int chooseNear(int i) {

 switch (i) {

 case 0: return 0;

 case 1: return 1;

 case 2: return 2;

 default: return -1;

} }

0 iload_1

1 tableswitch 0 to 2:

0: 28

1: 30

2: 32

default:34

28 iconst_0

29 ireturn

30 iconst_1

31 ireturn

32 iconst_2

33 ireturn

34 iconst_m1

35 ireturn

24

// Push local variable 1 (argument i)

// Valid indices are 0 through 2

// If i is 0, continue at 28

// If i is 1, continue at 30

// If i is 2, continue at 32

// Otherwise, continue at 34

// i was 0; push int constant 0...

// ...and return it

// i was 1; push int constant 1...

// ...and return it

// i was 2; push int constant 2...

// ...and return it

// otherwise push int constant -1...

// ...and return it

25

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

593

tableswitch tableswitch

Operation Access jump table by index and jump

Format tableswitch

<0-3 byte pad>

defaultbyte1

defaultbyte2

defaultbyte3

defaultbyte4

lowbyte1

lowbyte2

lowbyte3

lowbyte4

highbyte1

highbyte2

highbyte3

highbyte4

jump offsets...

Forms tableswitch = 170 (0xaa)

Operand

Stack

..., index ®

...

Description A tableswitch is a variable-length instruction. Immediately after

the tableswitch opcode, between zero and three bytes must act

as padding, such that defaultbyte1 begins at an address that is a

multiple of four bytes from the start of the current method (the

opcode of its first instruction). Immediately after the padding are

bytes constituting three signed 32-bit values: default, low, and

high. Immediately following are bytes constituting a series of high

- low + 1 signed 32-bit offsets. The value low must be less than or

equal to high. The high - low + 1 signed 32-bit offsets are treated

THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

593

tableswitch tableswitch

Operation Access jump table by index and jump

Format tableswitch

<0-3 byte pad>

defaultbyte1

defaultbyte2

defaultbyte3

defaultbyte4

lowbyte1

lowbyte2

lowbyte3

lowbyte4

highbyte1

highbyte2

highbyte3

highbyte4

jump offsets...

Forms tableswitch = 170 (0xaa)

Operand

Stack

..., index ®

...

Description A tableswitch is a variable-length instruction. Immediately after

the tableswitch opcode, between zero and three bytes must act

as padding, such that defaultbyte1 begins at an address that is a

multiple of four bytes from the start of the current method (the

opcode of its first instruction). Immediately after the padding are

bytes constituting three signed 32-bit values: default, low, and

high. Immediately following are bytes constituting a series of high

- low + 1 signed 32-bit offsets. The value low must be less than or

equal to high. The high - low + 1 signed 32-bit offsets are treated

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

594

as a 0-based jump table. Each of these signed 32-bit values is

constructed as (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4.

The index must be of type int and is popped from the operand

stack. If index is less than low or index is greater than high, then

a target address is calculated by adding default to the address of

the opcode of this tableswitch instruction. Otherwise, the offset

at position index - low of the jump table is extracted. The target

address is calculated by adding that offset to the address of the

opcode of this tableswitch instruction. Execution then continues

at the target address.

The target address that can be calculated from each jump table

offset, as well as the one that can be calculated from default, must

be the address of an opcode of an instruction within the method

that contains this tableswitch instruction.

Notes The alignment required of the 4-byte operands of the tableswitch

instruction guarantees 4-byte alignment of those operands if and

only if the method that contains the tableswitch starts on a 4-byte

boundary.

Compiling switches (2)

• Sample Code

• Can compile to

int chooseFar(int i) {

 switch (i) {

 case -100: return -1;

 case 0: return 0;

 case 100: return 1;

 default: return -1;

} }

0 iload_1

1 lookupswitch 3:

 -100: 36

 0: 38

 100: 40

 default: 42

36 iconst_m1

37 ireturn

38 iconst_0

39 ireturn

40 iconst_1

41 ireturn

42 iconst_m1

43 ireturn

26

• lookupswitch is used when the cases of
the switch are sparse

• Each case is a pair <value: address>,
instead of an offset in the table of
addresses

• Cases are sorted, so binary search can be
used

Note that only switches on int are
supported: for other types conversions
(char, byte, short) or non-trivial translations
(String, using hashcode) are needed

Operand stack manipulation

• Sample Code

• Can compile to

public long nextIndex() {

 return index++;

}

 private long index = 0;

0 aload_0

1 dup

2 getfield #4

5 dup2_x1

6 lconst_1

7 ladd

8 putfield #4

11 lreturn

27

// Push this

// Make a copy of it

// One of the copies of this is consumed

// pushing long field index,

// above the original this

// The long on top of the operand stack is

// copied into the operand stack below the

// original this

// Push long constant 1

// The index value is incremented...

// ...and the result stored in the field

// The original value of index is on top of

// the operand stack, ready to be returned

28

6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

448

dup2_x1 dup2_x1

Operation Duplicate the top one or two operand stack values and insert two

or three values down

Format dup2_x1

Forms dup2_x1 = 93 (0x5d)

Operand

Stack

Form 1:

..., value3, value2, value1 ®

..., value2, value1, value3, value2, value1

where value1, value2, and value3 are all values of a category 1

computational type (§2.11.1).

Form 2:

..., value2, value1 ®

..., value1, value2, value1

where value1 is a value of a category 2 computational type and

value2 is a value of a category 1 computational type (§2.11.1).

Description Duplicate the top one or two values on the operand stack and insert

the duplicated values, in the original order, one value beneath the

original value or values in the operand stack.

Throwing Exceptions

• Sample Code

• Can compile to

void cantBeZero(int i) throws TestExc

{

 if (i == 0) {

 throw new TestExc();

 }}

0 iload_1

1 ifne 12

4 new #1

7 dup

8 invokespecial #7

11 athrow

12 return

29

// Push argument 1 (i)

// If i==0, allocate instance and throw

// Create instance of TestExc

// One reference goes to its constructor

// Method TestExc.<init>()V

// Second reference is thrown

// Never get here if we threw TestExc

• athrow looks in the method for a catch block for the thrown
exception using the exception table

• If it exists, the operand stack is cleared and control passed to the
first instruction

• Otherwise the current frame is discarded and the same exception
is thrown on the caller

• If no method catches the exception, the thread is aborted

try-catch

• Sample Code

• Can compile to

void catchOne() {

 try {

 tryItOut();

 } catch (TestExc e) {

 handleExc(e);

 }}

0 aload_0

1 invokevirtual #6

4 return

5 astore_1

6 aload_0

7 aload_1

8 invokevirtual #5

11 return

Exception table:

From To Target Type

0 4 5 Class TestExc

30

• Compiles a catch clause like another method
• The table records boundaries of try and is used by athrow to dispatch the

control

// Beginning of try block

// Method Example.tryItOut()V

// End of try block; normal return

// Store thrown value in local var 1

// Push this

// Push thrown value

// Invoke handler method:

// Example.handleExc(LTestExc;)V

// Return after handling TestExc

• Compilation of finally more tricky

Other Instructions

• Handling synchronization: monitorenter,

monitorexit

• verifying instances: instanceof

• checking a cast operation: checkcast

• No operation: nop

31

Limitations of the Java Virtual Machine

• Max number of entries in constant pool: 65535 (count in ClassFile
structure)

• Max number of fields, of methods, of direct superinterfaces: 65535
(idem)

• Max number of local variables in the local variables array of a
frame: 65535, also by the 16-bit local variable indexing of the JVM
instruction set.

• Max operand stack size: 65535
• Max number of parameters of a method: 255
• Max length of field and method names: 65535 characters by the

16-bit unsigned length item of the CONSTANT_Utf8_info structure
• Max number of dimensions in an array: 255, by the size of the

dimensions opcode of the multianewarray instruction and by the
constraints imposed on the multianewarray, anewarray, and
newarray instructions

32

JIT Compilation
in the OpenJDK HotSpot JVM

33

JIT Compilation vs
AOT Compilation and Interpretation

• AOT (Ahead Of Time) Compilation leads to better
performance in general
– Allocation of variables without variable lookup at run time
– Aggressive code optimization to exploit hardware features

• Interpretation facilitates interactive debugging and
testing
– Interpretation leads to better diagnostics of a

programming problem
– Procedures can be invoked from command line by a user
– Variable values can be inspected and modified by a user

• Just-In-Time Compilation tries to obtain the
advantages of both

34

JIT Compilation: not only in the JVM

• “Dynamic compilation” first described in a paper
by J. McCarthy on LISP in 1960

• Present for example in
• Java: JVM (Java Virtual Machine)

• C#: CLR (Common Language Runtime)

• Android: DVM (Dalvik Virtual Machine) or ART
(Android RunTime)

• JIT compiler has access to dynamic runtime
information, enabling it to make better
optimizations (such as inlining functions)

35

JIT vs AOT Compilation

• Primary difference: a just-in-time compiler runs in the same
process as the application and competes with the application
for resources.

• Therefore compilation time is more important for a JIT
compiler than for an AOT compiler.

• But JIT compilation can exploit new possibilities for
optimization, such as deoptimization and speculation.

• A Java-based JIT compiler takes bytecode as input and
translate it into machine code that the CPU executes directly.

• A Java JIT compiler also differs from an AOT compiler because
the JVM verifies class files at load time. When it's time to
compile, there's little need for parsing or verification.

36

HotSpot's JIT execution model

Based on four observations:

1. Most code is only executed uncommonly, so getting it compiled
would waste resources that the JIT compiler needs.

2. Only a subset of methods is run frequently.

3. The interpreter is ready right away to execute any code.

4. Compiled code is much faster, but it is only available after the
compilation process is over, which takes resources and time.

The resulting execution model is:

1. Code starts executing interpreted with no delay.

2. Methods that are found commonly executed (hot) are JIT
compiled.

3. Once compiled code is available, the execution switches to it.

37

Identifying and compiling
hot code in HotSpot

• The interpreter instruments the code that it executes,
keeping:
– a per-method count of the number of times a method is entered;
– a per-method count of the times a branch back to the start of a loop is

taken in the method.

• On method entry, the two numbers are added: if the
result crosses a threshold, the method is enqueued for
compilation.

• A compiler deamon thread then processes the
compilation request. While compilation is in progress,
interpreted execution continues.

• Once the compiled code is available, the interpreter
branches off to it.

38

Multi-tiered execution

There is a trade-off:
• “fast-to-start-but-slow-to-execute” interpreter vs “slow-to-

start-but-fast-to-execute” compiled code.
• The compiler can be designed to optimize less (the code is

available sooner but doesn't perform as well) or more
(faster code at a later time).

• A practical design that leverages this observation is to have
a multi-tier system.

• HotSpot has a three-tiered system consisting of the
interpreter, the quick compiler, and the optimizing
compiler. Each tier represents a different trade-off
between the delay of execution and the speed of
execution.

39

The three tiers of execution

• Java code starts execution in the interpreter.
• When a method becomes warm (threshold: ≈1.500), it's

enqueued for compilation by the quick compiler.
• Execution switches to that compiled code when it's ready.
• Method executing in the second tier is still instrumented:

when it becomes hot (threshold: ≈10.000), then it's
enqueued for compilation by the optimizing compiler.

• Execution continues in the second-tier compiled code until
the faster code is available.

In HotSpot, for historical reasons, the second tier is known as
C1 or the client compiler and the optimizing tier is known as
C2, or the server compiler.

40

Deoptimization and speculation

Usually method executions (can) pass in three phases:

But deoptimization can happen: the execution of the compiled method is
stopped at some point, and the execution resumes in the interpreter at exactly
the same point.

Two main possible causes:

• Corner cases in code

• Speculation:The compiler makes some assumption to generate better code: If
an assumption is invalidated, then the thread that executes a method that
makes the assumption deoptimizes in order to not execute code that's
erroneous (being based on wrong assumptions).

41

Example of Speculation:
Null checks in the C2 tier

• In Java, field or array access is usually guarded by a null check.
Here is an example in pseudocode:

• It's very uncommon for a NPE to not be caused by a
programming error, so C2 speculates that NPEs never occur:

• Clearly, if the object is null, execution must return to the
interpreter which will throw the NPE.

42

Example of speculation:
Class hierarchy analysis (CHA)

• Call in compiledMethod
is virtual (subject to dynamic
binding)

• If C is loaded but none of its
sublcasses, the call can be
“devirtualized” invoking
C.virtualMethod

• JIT compilation of compileMethod can exploit this

• But if later a subclass of C is loaded, the compiled
method could be incorrect: the method is marked for
deoptimization

43

Deoptimization and safepoints

• Methods are compiled: deoptimization is only possible at
locations known as safepoints.

• The JVM has to be able to reconstruct the state of
execution so the interpreter can resume the thread where
the compiled execution stopped.

• At a safepoint, a mapping exists between elements of the
interpreter state (locals, locked monitors, and so on) and
their location in compiled code, such as a register, stack,
etc.

• Conflicting requirements: common enough safepoints,
ensuring immediate deoptimization, vs rare enough
safepoints, leaving the compiler the freedom to optimize
between two of them.

44

Resources

• How the JIT compiler boosts Java performance
in OpenJDK, by Roland Westrelin
https://developers.redhat.com/articles/2021/06/23/how-jit-
compiler-boosts-java-performance-openjdk

• “Just In Time” to understand, by Gabriele
Pappalardo
https://pages.di.unipi.it/corradini/Didattica/AP-
21/SLIDES/GabrielePappalardo-
Just_In_Time_to_understand.pdf

45

https://developers.redhat.com/articles/2021/06/23/how-jit-compiler-boosts-java-performance-openjdk
https://developers.redhat.com/articles/2021/06/23/how-jit-compiler-boosts-java-performance-openjdk
https://pages.di.unipi.it/corradini/Didattica/AP-21/SLIDES/GabrielePappalardo-Just_In_Time_to_understand.pdf
https://pages.di.unipi.it/corradini/Didattica/AP-21/SLIDES/GabrielePappalardo-Just_In_Time_to_understand.pdf
https://pages.di.unipi.it/corradini/Didattica/AP-21/SLIDES/GabrielePappalardo-Just_In_Time_to_understand.pdf

	Slide 1: 301AA - Advanced Programming
	Slide 2: Outline
	Slide 3: The JVM interpreter loop
	Slide 4: Instruction set properties
	Slide 5: JVM Instruction Set
	Slide 6: Instruction format
	Slide 7: Runtime memory
	Slide 8: JVM Addressing Modes
	Slide 9: Instruction-set: typed instructions
	Slide 10: Instruction-set: accessing arguments and locals in the Local Variable array
	Slide 11: Opcode “pressure” and non-orthogonality
	Slide 12
	Slide 13: Specification of an instruction: iadd
	Slide 14: Computational Types
	Slide 15: Compiling Constants, Local Variables, and Control Constructs
	Slide 16: int vs. double: lack of opcodes for double requires longer bytecode
	Slide 17: Accessing literals in the Constant Pool
	Slide 18: Parameter passing: Receiving Arguments
	Slide 19: Invoking Methods
	Slide 20: Other kinds of method invocation
	Slide 21: Working with objects
	Slide 22: Accessing fields (instance variables)
	Slide 23: Using Arrays
	Slide 24: Compiling switches (1)
	Slide 25
	Slide 26: Compiling switches (2)
	Slide 27: Operand stack manipulation
	Slide 28
	Slide 29: Throwing Exceptions
	Slide 30: try-catch
	Slide 31: Other Instructions
	Slide 32: Limitations of the Java Virtual Machine
	Slide 33: JIT Compilation in the OpenJDK HotSpot JVM
	Slide 34: JIT Compilation vs AOT Compilation and Interpretation
	Slide 35: JIT Compilation: not only in the JVM
	Slide 36: JIT vs AOT Compilation
	Slide 37: HotSpot's JIT execution model
	Slide 38: Identifying and compiling hot code in HotSpot
	Slide 39: Multi-tiered execution
	Slide 40: The three tiers of execution
	Slide 41: Deoptimization and speculation
	Slide 42: Example of Speculation: Null checks in the C2 tier
	Slide 43: Example of speculation: Class hierarchy analysis (CHA)
	Slide 44: Deoptimization and safepoints
	Slide 45: Resources

