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Outline

• The JVM instruction set architecture

– Execution model

– Instruction format & Addressing modes

– Types and non-orthogonality of instructions

– Classes of instructions 

➔Chapter 2 and 3 of the JVM Specification
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The JVM interpreter loop

do { 

 atomically calculate pc and fetch opcode at pc; 

 if (operands) fetch operands; 

 execute the action for the opcode; 

} while (there is more to do); 

The JVM instruction set is the collection of all the 
possible instructions, identified by opcodes (8 bits 
long). 
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Instruction set properties

• 32 bit stack machine
• Variable length instruction set

– One-byte opcode followed by arguments

• Simple to very complex instructions
• Symbolic references
• Only relative branches
• Byte aligned (not word aligned), except for 

operands of tableswitch and 
lookupswitch

• Compactness vs. performance
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JVM Instruction Set

• Load and store (operand stack <-> local vars)

• Arithmetic

• Type conversion

• Object creation and manipulation

• Operand stack manipulation

• Control transfer

• Method invocation and return

• Monitor entry/exit



Instruction format

• Each instruction may have different “forms” 
supporting different kinds of operands.

• Example:  different forms of “iload” (i.e. push) 
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iload_0

iload_1

iload_2

iload_3

Assembly code

iload n

wide iload n

Binary instruction code layout

26

27

28

29

21 n

196 n21

Pushes local variable 0 on operand stack



Runtime memory

• Memory: 
– Local variable array (frame)
– Operand stack (frame)
– Object fields (heap)
– Static fields  (method area)

• JVM stack instructions 
• implicitly take arguments from the top of the operand stack of the 

current frame
• put their result on the top of the operand stack

• The operand stack is used to
• pass arguments to methods
• return a result from a method
• store intermediate results while evaluating expressions
• store local variables
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JVM Addressing Modes

• JVM supports three addressing modes

– Immediate addressing mode

• Constant is part of instruction

– Indexed addressing mode

• Accessing variables from local variable array

– Stack addressing mode

• Retrieving values from operand stack using pop
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Instruction-set: typed instructions

• JVM instructions are explicitly typed: different opCodes for 
instructions for integers, floats, arrays, reference types, etc.

• This is reflected by a naming convention in the first letter of 
the opCode mnemonics

• Example:  different types of “load” instructions
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iload

lload

fload

dload

aload

integer load
long load
float load
double load
reference-type load

i  int

l long

s short

b byte

c char

f float

d double

a for reference



Instruction-set: accessing arguments 
and locals in the Local Variable array

Instruction examples:

iload_1
iload_3
aload_5
aload_0

istore_1
astore_1
fstore_3

locals: indexes #args .. #args + #locals - 1

args: indexes 0 .. #args - 1

0:

1:

2:

3:

• A load instruction takes something from 
the args/locals area and pushes it onto the 
top of the operand stack.

• A store instruction pops something from 
the top of the operand stack and places it 
in the args/locals area.
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Opcode “pressure” and 
non-orthogonality

• Since op-codes are bytes, there are at most 256 
distinct ones

• Impossible to have for each instruction one opcode 
per type

• Careful selection of which types to support for each 
instruction

• Non-supported types have to be converted

• Result: non-orthogonality of the Instruction Set 
Architecture
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Type support in the JVM 
instruction set

• Design choice: almost no 
support for byte, char 
and short – using int as 
computational type

2.11 Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE
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Table 2.11.1-A. Type support in the Java Virtual Machine instruction set

opcode byte short int long float double char reference

Tipush bipush sipush

Tconst iconst lconst fconst dconst aconst

Tload iload lload fload dload aload

Tstore istore lstore fstore dstore astore

Tinc iinc

Taload baload saload iaload laload faload daload caload aaload

Tastore bastore sastore iastore lastore fastore dastore castore aastore

Tadd iadd ladd fadd dadd

Tsub isub lsub fsub dsub

Tmul imul lmul fmul dmul

Tdiv idiv ldiv fdiv ddiv

Trem irem lrem frem drem

Tneg ineg lneg fneg dneg

Tshl ishl lshl

Tshr ishr lshr

Tushr iushr lushr

Tand iand land

Tor ior lor

Txor ixor lxor

i2T i2b i2s i2l i2f i2d

l2T l2i l2f l2d

f2T f2i f2l f2d

d2T d2i d2l d2f

Tcmp lcmp

Tcmpl fcmpl dcmpl

Tcmpg fcmpg dcmpg

if_TcmpOP if_icmpOP if_acmpOP

Treturn ireturn lreturn freturn dreturn areturn



Specification of an instruction: iadd
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iadd iadd

Operation Add int

Format iadd

Forms iadd = 96 (0x60)

Operand

Stack

..., value1, value2 ®

..., result

Description Both value1 and value2 must be of type int. The values are popped

from the operand stack. The int result is value1 + value2. The

result is pushed onto the operand stack.

The result is the 32 low-order bits of the true mathematical result

in a sufficiently wide two's-complement format, represented as a

value of type int. If overflow occurs, then the sign of the result

may not be the same as the sign of the mathematical sum of the

two values.

Despite the fact that overflow may occur, execution of an iadd

instruction never throws a run-time exception.



Computational Types
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THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary 2.11
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The mapping between Java Virtual Machine actual types and Java Virtual Machine

computational types is summarized by Table 2.11.1-B.

Certain Java Virtual Machine instructions such as pop and swap operate on the

operand stack without regard to type; however, such instructions are constrained

to use only on values of certain categories of computational types, also given in

Table 2.11.1-B.

Table 2.11.1-B. Actual and Computational types in the Java Virtual Machine

Actual type Computational type Category

boolean int 1

byte int 1

char int 1

short int 1

int int 1

float float 1

reference reference 1

returnAddress returnAddress 1

long long 2

double double 2

2.11.2 Load and Store Instructions

The load and store instructions transfer values between the local variables (§2.6.1)

and the operand stack (§2.6.2) of a Java Virtual Machine frame (§2.6):

• Load a local variable onto the operand stack: iload, iload_<n>, lload,

lload_<n>, fload, fload_<n>, dload, dload_<n>, aload, aload_<n>.

• Store a value from the operand stack into a local variable: istore, istore_<n>,

lstore, lstore_<n>, fstore, fstore_<n>, dstore, dstore_<n>, astore, astore_<n>.

• Load a constant on to the operand stack: bipush, sipush, ldc, ldc_w, ldc2_w,

aconst_null, iconst_m1, iconst_<i>, lconst_<l>, fconst_<f>, dconst_<d>.

• Gain access to more local variables using a wider index, or to a larger immediate

operand: wide.

Instructions that access fields of objects and elements of arrays (§2.11.5) also

transfer data to and from the operand stack.



Compiling Constants, Local Variables, 
and Control Constructs 

• Sample Code

• Can compile to

• Pushing constants on the operand stacks

• Incrementing local variable, comparing 

void spin() {

       int i;

       for (i = 0; i < 100; i++) {

           ; // Loop body is empty

       }

} 

0 iconst_0

1 istore_1

2 goto 8

5 iinc 1 1

8 iload_1

9 bipush 100

11 if_icmplt 5 

14 return

15

// Push int constant 0

// Store into local variable 1 (i=0)

// First time through don't increment

// Increment local variable 1 by 1 (i++)

// Push local variable 1 (i)

// Push int constant 100

// Compare and loop if less than (i < 100)

// Return void when done



int vs. double: lack of opcodes for double 
requires longer bytecode 

• Sample Code

• Can compile to

void dspin() {

       double i;

       for (i = 0.0; i < 100.0; i++) {

           ;   // Loop body is empty

       }

} 

0 dconst_0

1 dstore_1

2 goto 9

5 dload_1

6 dconst_1

7 dadd

8 dstore_1

9 dload_1

10 ldc2_w #4 

13 dcmpg

14 iflt 5 

17 return 16

// Push double constant 0.0

// Store into local variables 1 and 2

// First time through don't increment

// Push local variables 1 and 2

// Push double constant 1.0

// Add; there is no dinc instruction

// Store result in local variables 1 and 2

// Push local variables 1 and 2

// Push double constant 100.0

// There is no if_dcmplt instruction

// Compare and loop if less than(i < 100.0)

// Return void when done



Accessing literals in the Constant Pool

• Sample Code

• Can compile to

void useManyNumeric() {

       int i = 100;

       int j = 1000000;

       long l1 = 1;

       long l2 = 0xffffffff;

       double d = 2.2;

       ...do some calculations...  }

0 bipush 100 

2 istore_1 

3 ldc #1

5 istore_2 

6 lconst_1

7 lstore_3 

8 ldc2_w #6

11 lstore 5

13 ldc2_w #8

16 dstore 7

...
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// Push small int constant with bipush

// Push large int (1000000) with ldc

// A tiny long value uses fast lconst_1

// Push long 0xffffffff (that is, int -1)

// Any long can be pushed with ldc2_w

// Push double constant 2.200000

...do those calculations…



Parameter passing: Receiving Arguments 

• Sample Code

• Can compile to

int addTwo(int i, int j) {

       return i + j;

} 

0 iload_1

1 iload_2

2 iadd

3 ireturn
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// Push value of local variable 1 (i)

// Push value of local variable 2 (j)

// Add; leave int result on operand stack

// Return int result

• Local variable 0 used for this in instance methods

• Sample Code

• Can compile to

static int addTwo(int i, int j) {

       return i + j;

} 

0 iload_0

1 iload_1

2 iadd

3 ireturn



Invoking Methods

• Sample Code

• Can compile to

int add12and13() {

       return addTwo(12, 13);

}

0 aload_0

1 bipush 12

3 bipush 13

5 invokevirtual #4

8 ireturn
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// Push local variable 0 (this)

// Push int constant 12

// Push int constant 13

// Method Example.addtwo(II)I

// Return int on top of operand stack;

// it is the int result of addTwo()

• invokevirtual  causes the allocation of a new frame, pops the 
arguments from the stack into the local variables of the callee 
(putting this in 0), and passes the control to it by changing the pc

• A resolution of the symbolic link is performed 
• ireturn pushes the top of the current stack to the stack of the 

caller, and passes the control to it. Similarly for  dreturn, …
• return  just passes the control to the caller



Other kinds of method invocation
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• invokestatic – for calling methods with “static” modifiers
– this is not passed, arguments are copied to local vars from 0

• invokespecial – for calling constructors, which are not 
dynamically dispatched, private methods or superclass 
methods.
– this is always passed

• invokeinterface – same as invokevirtual, but used when 
the called method is declared in an interface (requires a 
different kind of method lookup)

• invokedynamic – introduced in Java SE 7 to support 
dynamic typing
– We shall discuss it when presenting lambdas



Working with objects

• Sample Code

• Can compile to

Object create() {

       return new Object();

}

0 new #1 // Class java.lang.Object

3 dup

4 invokespecial #4 // Method java.lang.Object.<init>()V

7 areturn
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• Objects are manipulated essentially like data of 
primitive types, but through references using the 
corresponding instructions (e.g. areturn)



Method void setIt(int)

0 aload_0

1 iload_1

2 putfield #4 // Field Example.i I 

5 return

Method int getIt()

0 aload_0

1 getfield #4 // Field Example.i I 

4 ireturn

Accessing fields (instance variables)

• Sample Code

• Can compile to

void setIt(int value) {

i = value;

}

int getIt() {

return i; 

}

22

• Requires resolution of the symbolic reference in the constant pool
• Computes the offset of the field in the class, and uses it to access 

the field in this
• Similar for static variables, using putstatic and getstatic



Using Arrays

• Sample Code

• Can compile to

void createBuffer() {

       int buffer[];

       int bufsz = 100;

       int value = 12;

       buffer = new int[bufsz];

       buffer[10] = value;

       value = buffer[11];

}

0 bipush 100

2 istore_2

3 bipush 12

5 istore_3

6 iload_2

7 newarray int

9 astore_1 

10 aload_1 

11 bipush 10 

13 iload_3

14 iastore 

15 aload_1 

16 bipush 11 

18 iaload

19 istore_3 

20 return
23

// Push int constant 100 (bufsz)

// Store bufsz in local variable 2

// Push int constant 12 (value)

// Store value in local variable 3

// Push bufsz and...

// ... create new int array of that length

// Store new array in buffer

// Push buffer

// Push int constant 10

// Push value

// Store value at buffer[10]

// Push buffer

// Push int constant 11

// Push value at buffer[11]...

// ...and store it in value



Compiling switches (1)

• Sample Code

• Can compile to

int chooseNear(int i) {

   switch (i) {

   case 0:  return  0;

   case 1:  return  1;

   case 2:  return  2;

   default: return -1;

} }

0 iload_1

1 tableswitch 0 to 2:

0: 28

1: 30

2: 32

default:34

28 iconst_0 

29 ireturn 

30 iconst_1 

31 ireturn 

32 iconst_2 

33 ireturn 

34 iconst_m1 

35 ireturn
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// Push local variable 1 (argument i)

// Valid indices are 0 through 2

// If i is 0, continue at 28

// If i is 1, continue at 30

// If i is 2, continue at 32

// Otherwise, continue at 34

// i was 0; push int constant 0...

// ...and return it

// i was 1; push int constant 1...

// ...and return it

// i was 2; push int constant 2...

// ...and return it

// otherwise push int constant -1...

// ...and return it
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tableswitch tableswitch

Operation Access jump table by index and jump

Format tableswitch

<0-3 byte pad>

defaultbyte1

defaultbyte2

defaultbyte3

defaultbyte4

lowbyte1

lowbyte2

lowbyte3

lowbyte4

highbyte1

highbyte2

highbyte3

highbyte4

jump offsets...

Forms tableswitch = 170 (0xaa)

Operand

Stack

..., index ®

...

Description A tableswitch is a variable-length instruction. Immediately after

the tableswitch opcode, between zero and three bytes must act

as padding, such that defaultbyte1 begins at an address that is a

multiple of four bytes from the start of the current method (the

opcode of its first instruction). Immediately after the padding are

bytes constituting three signed 32-bit values: default, low, and

high. Immediately following are bytes constituting a series of high

- low + 1 signed 32-bit offsets. The value low must be less than or

equal to high. The high - low + 1 signed 32-bit offsets are treated
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<0-3 byte pad>
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lowbyte1

lowbyte2

lowbyte3

lowbyte4

highbyte1

highbyte2

highbyte3

highbyte4

jump offsets...

Forms tableswitch = 170 (0xaa)
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...

Description A tableswitch is a variable-length instruction. Immediately after

the tableswitch opcode, between zero and three bytes must act

as padding, such that defaultbyte1 begins at an address that is a

multiple of four bytes from the start of the current method (the

opcode of its first instruction). Immediately after the padding are

bytes constituting three signed 32-bit values: default, low, and

high. Immediately following are bytes constituting a series of high

- low + 1 signed 32-bit offsets. The value low must be less than or

equal to high. The high - low + 1 signed 32-bit offsets are treated
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as a 0-based jump table. Each of these signed 32-bit values is

constructed as (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4.

The index must be of type int and is popped from the operand

stack. If index is less than low or index is greater than high, then

a target address is calculated by adding default to the address of

the opcode of this tableswitch instruction. Otherwise, the offset

at position index - low of the jump table is extracted. The target

address is calculated by adding that offset to the address of the

opcode of this tableswitch instruction. Execution then continues

at the target address.

The target address that can be calculated from each jump table

offset, as well as the one that can be calculated from default, must

be the address of an opcode of an instruction within the method

that contains this tableswitch instruction.

Notes The alignment required of the 4-byte operands of the tableswitch

instruction guarantees 4-byte alignment of those operands if and

only if the method that contains the tableswitch starts on a 4-byte

boundary.



Compiling switches (2)

• Sample Code

• Can compile to

int chooseFar(int i) {

   switch (i) {

   case -100: return -1;

   case 0:    return  0;

   case 100:  return  1;

   default:   return -1;

} }

0 iload_1

1 lookupswitch 3:

    -100: 36

      0: 38

     100: 40

 default: 42

36 iconst_m1 

37 ireturn 

38 iconst_0 

39 ireturn 

40 iconst_1 

41 ireturn 

42 iconst_m1 

43 ireturn
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• lookupswitch is used when the cases of 
the switch are sparse

• Each case is a pair <value: address>, 
instead of an offset in the table of 
addresses

• Cases are sorted, so binary search can be 
used

Note that only switches on int are 
supported: for other types conversions 
(char, byte, short) or non-trivial translations 
(String, using hashcode) are needed



Operand stack  manipulation

• Sample Code

• Can compile to

public long nextIndex() {

       return index++;

}

   private long index = 0;

0 aload_0

1 dup

2 getfield #4

5 dup2_x1

6 lconst_1

7 ladd

8 putfield #4

11 lreturn
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// Push this

// Make a copy of it

// One of the copies of this is consumed

// pushing long field index,

// above the original this

// The long on top of the operand stack is

// copied into the operand stack below the

// original this

// Push long constant 1

// The index value is incremented...

// ...and the result stored in the field

// The original value of index is on top of

// the operand stack, ready to be returned
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dup2_x1 dup2_x1

Operation Duplicate the top one or two operand stack values and insert two

or three values down

Format dup2_x1

Forms dup2_x1 = 93 (0x5d)

Operand

Stack

Form 1:

..., value3, value2, value1 ®

..., value2, value1, value3, value2, value1

where value1, value2, and value3 are all values of a category 1

computational type (§2.11.1).

Form 2:

..., value2, value1 ®

..., value1, value2, value1

where value1 is a value of a category 2 computational type and

value2 is a value of a category 1 computational type ( §2.11.1).

Description Duplicate the top one or two values on the operand stack and insert

the duplicated values, in the original order, one value beneath the

original value or values in the operand stack.



Throwing Exceptions

• Sample Code

• Can compile to

void cantBeZero(int i) throws TestExc 

{

       if (i == 0) {

           throw new TestExc();

       }}

0 iload_1

1 ifne 12

4 new #1

7 dup

8 invokespecial #7

11 athrow

12 return
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// Push argument 1 (i)

// If i==0, allocate instance and throw

// Create instance of TestExc

// One reference goes to its constructor

// Method TestExc.<init>()V

// Second reference is thrown

// Never get here if we threw TestExc

• athrow looks in the method for a catch block for the thrown 
exception using the exception table

• If it exists, the operand stack is cleared and control passed to the 
first instruction

• Otherwise the current frame is discarded and the same exception 
is thrown on the caller

• If no method catches the exception, the thread is aborted



try-catch

• Sample Code

• Can compile to

void catchOne() {

       try {

           tryItOut();

       } catch (TestExc e) {

           handleExc(e);

       }}

0 aload_0

1 invokevirtual #6

4 return

5 astore_1

6 aload_0

7 aload_1

8 invokevirtual #5

11 return

Exception table:

From To Target  Type

0    4  5       Class TestExc

30

• Compiles a catch clause like another method
• The table records boundaries of try and is used by athrow to dispatch the 

control

// Beginning of try block

// Method Example.tryItOut()V

// End of try block; normal return

// Store thrown value in local var 1

// Push this

// Push thrown value

// Invoke handler method:

// Example.handleExc(LTestExc;)V

// Return after handling TestExc

• Compilation of finally more tricky



Other Instructions

• Handling synchronization: monitorenter, 

monitorexit

• verifying instances: instanceof 

• checking a cast operation: checkcast 

• No operation: nop
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Limitations of the Java Virtual Machine 

• Max number of entries in constant pool: 65535 (count in ClassFile 
structure) 

• Max number of fields, of methods, of direct superinterfaces: 65535 
(idem)

• Max number of local variables in the local variables array of a 
frame: 65535, also by the 16-bit local variable indexing of the JVM 
instruction set. 

• Max operand stack size: 65535
• Max number of parameters of a method: 255
• Max length of field and method names: 65535 characters by the 

16-bit unsigned length item of the CONSTANT_Utf8_info structure 
• Max number of dimensions in an array: 255, by the size of the 

dimensions opcode of the multianewarray instruction and by the 
constraints imposed on the multianewarray, anewarray, and 
newarray instructions
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JIT Compilation 
in the OpenJDK HotSpot JVM
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JIT Compilation vs 
AOT Compilation and Interpretation

• AOT (Ahead Of Time) Compilation leads to better 
performance in general
– Allocation of variables without variable lookup at run time
– Aggressive code optimization to exploit hardware features

• Interpretation facilitates interactive debugging and 
testing
– Interpretation leads to better diagnostics of a 

programming problem
– Procedures can be invoked from command line by a user
– Variable values can be inspected and modified by a user

• Just-In-Time Compilation tries to obtain the 
advantages of both
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JIT Compilation: not only in the JVM

• “Dynamic compilation” first described in a paper 
by J. McCarthy on LISP in 1960

• Present for example in 
• Java: JVM (Java Virtual Machine)

• C#: CLR (Common Language Runtime)

• Android: DVM (Dalvik Virtual Machine) or ART 
(Android RunTime)

• JIT compiler has access to dynamic runtime 
information, enabling it to make better 
optimizations (such as inlining functions)
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JIT vs AOT Compilation

• Primary difference: a just-in-time compiler runs in the same 
process as the application and competes with the application 
for resources. 

• Therefore compilation time is more important for a JIT 
compiler than for an AOT compiler.

• But JIT compilation can exploit new possibilities for 
optimization, such as deoptimization and speculation. 

• A Java-based JIT compiler takes bytecode as input and 
translate it into machine code that the CPU executes directly. 

• A Java JIT compiler also differs from an AOT compiler because 
the JVM verifies class files at load time. When it's time to 
compile, there's little need for parsing or verification.
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HotSpot's JIT execution model

Based on four observations:

1. Most code is only executed uncommonly, so getting it compiled 
would waste resources that the JIT compiler needs.

2. Only a subset of methods is run frequently.

3. The interpreter is ready right away to execute any code.

4. Compiled code is much faster, but it is only available after the 
compilation process is over, which takes resources and time.

The resulting execution model is:

1. Code starts executing interpreted with no delay.

2. Methods that are found commonly executed (hot) are JIT 
compiled.

3. Once compiled code is available, the execution switches to it.
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Identifying and compiling 
hot code in HotSpot

• The interpreter instruments the code that it executes, 
keeping:
– a per-method count of the number of times a method is entered;
– a per-method count of the times a branch back to the start of a loop is 

taken in the method. 

• On method entry, the two numbers are added: if the 
result crosses a threshold, the method is enqueued for 
compilation. 

• A compiler deamon thread then processes the 
compilation request. While compilation is in progress, 
interpreted execution continues. 

• Once the compiled code is available, the interpreter 
branches off to it.
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Multi-tiered execution

There is a trade-off: 
• “fast-to-start-but-slow-to-execute” interpreter vs “slow-to-

start-but-fast-to-execute” compiled code. 
• The compiler can be designed to optimize less (the code is 

available sooner but doesn't perform as well) or more 
(faster code at a later time). 

• A practical design that leverages this observation is to have 
a multi-tier system.

• HotSpot has a three-tiered system consisting of the 
interpreter, the quick compiler, and the optimizing 
compiler. Each tier represents a different trade-off 
between the delay of execution and the speed of 
execution.
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The three tiers of execution

• Java code starts execution in the interpreter.
• When a method becomes warm (threshold: ≈1.500), it's 

enqueued for compilation by the quick compiler. 
• Execution switches to that compiled code when it's ready. 
• Method executing in the second tier is still instrumented: 

when it becomes hot (threshold: ≈10.000), then it's 
enqueued for compilation by the optimizing compiler. 

• Execution continues in the second-tier compiled code until 
the faster code is available. 

In HotSpot, for historical reasons, the second tier is known as 
C1 or the client compiler and the optimizing tier is known as 
C2, or the server compiler.
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Deoptimization and speculation

Usually method executions (can) pass in three phases:

But deoptimization can happen: the execution of the compiled method is 
stopped at some point, and the execution resumes in the interpreter at exactly 
the same point.

Two main possible causes:

• Corner cases in code

• Speculation:The compiler makes some assumption to generate better code: If 
an assumption is invalidated, then the thread that executes a method that 
makes the assumption deoptimizes in order to not execute code that's 
erroneous (being based on wrong assumptions).
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Example of Speculation: 
Null checks in the C2 tier

• In Java, field or array access is usually guarded by a null check. 
Here is an example in pseudocode: 

• It's very uncommon for a NPE to not be caused by a 
programming error, so C2 speculates that NPEs never occur:

• Clearly, if the object is null, execution must return to the 
interpreter which will throw the NPE.
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Example of speculation:
Class hierarchy analysis (CHA)

• Call in compiledMethod 
is virtual (subject to dynamic 
binding)

• If C is loaded but none of its 
sublcasses, the call can be 
“devirtualized” invoking 
C.virtualMethod

• JIT compilation of compileMethod can exploit this

• But if later a subclass of C is loaded, the compiled 
method could be incorrect: the method is marked for 
deoptimization
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Deoptimization and safepoints

• Methods are compiled: deoptimization is only possible at 
locations known as safepoints.

• The JVM has to be able to reconstruct the state of 
execution so the interpreter can resume the thread where 
the compiled execution stopped. 

• At a safepoint, a mapping exists between elements of the 
interpreter state (locals, locked monitors, and so on) and 
their location in compiled code, such as a register, stack, 
etc.

• Conflicting requirements: common enough safepoints,  
ensuring immediate deoptimization, vs rare enough 
safepoints, leaving the compiler the freedom to optimize 
between two of them. 
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Resources

• How the JIT compiler boosts Java performance 
in OpenJDK, by Roland Westrelin
https://developers.redhat.com/articles/2021/06/23/how-jit-
compiler-boosts-java-performance-openjdk

• “Just In Time” to understand, by Gabriele 
Pappalardo
https://pages.di.unipi.it/corradini/Didattica/AP-
21/SLIDES/GabrielePappalardo-
Just_In_Time_to_understand.pdf
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