
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-03: Languages and Abstract machines,
 Compilation and interpretation schemes

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Outline

• Programming languages and abstract
machines

• Implementation of programming languages

• Compilation and interpretation

• Intermediate virtual machines

2

Definition of Programming Languages

• A PL is defined via syntax, semantics and pragmatics

• The syntax is concerned with the form of programs:
how expressions, commands, declarations, and other
constructs must be arranged to make a well-formed
program.

• The semantics is concerned with the meaning of
(well-formed) programs: how a program may be
expected to behave when executed on a computer.

• The pragmatics is concerned with the way in which
the PL is intended to be used in practice.

3

Syntax

• Formally defined, but not always easy to find
– Java?

– https://docs.oracle.com/javase/specs/index.html

– Chapter 19 of Java Language Specification

• Lexical Grammar for tokens
– A regular grammar

• Syntactic Grammar for language constructs
– A context free grammar

• Used by the compiler for scanning and parsing

4

https://docs.oracle.com/javase/specs/index.html

Semantics

• Usually described precisely, but informally, in
natural language.

– May leave (subtle) ambiguities

• Formal approaches exist, often they are applied
to toy languages or to fractions of real languages

– Denotational [Scott and Strachey 1971]

– Operational [Plotkin 1981]

– Axiomatic [Hoare 1969]

• They rarely scale to fully-fledged programming
language

5

(Almost) Complete Semantics of PLs

• Notable exceptions exist:
– Pascal (part), Hoare Logic [C.A.R. Hoare and N. Wirth,

~1970]

– Standard ML, Natural semantics [R. Milner, M. Tofte
and R. Harper, ~1990]

– C, Evolving algebras [Y. Gurevich and J. Huggins, 1993]

– Java and JVM, Abstract State Machines [R. Stärk, J.
Schmid, E. Börger, 2001]

– Executable formal semantics using the K framework
of several languages (C, Java, JavaScript, PHP, Python,
Rust,…)
https://runtimeverification.com/blog/k-framework-an-overview/

6

https://runtimeverification.com/blog/k-framework-an-overview/

Pragmatics

• Includes coding conventions, guidelines for
elegant structuring of code, etc.

• Examples:

– Java Code Conventions
http://www.oracle.com/technetwork/java/codeconventions-150003.pdf

– Google Java Style Guide
https://google.github.io/styleguide/javaguide.html

• Also includes the description of the supported
programming paradigms

7

http://www.oracle.com/technetwork/java/codeconventions-150003.pdf
https://google.github.io/styleguide/javaguide.html

Programming Paradigms

A paradigm is a style of programming, characterized by a
particular selection of key concepts and abstractions

• Imperative programming: variables, commands,
procedures, …

• Object-oriented (OO) programming: objects, methods,
classes, …

• Concurrent programming: processes, communication..

• Functional programming: values, expressions,
functions, higher-order functions, …

• Logic programming: assertions, relations, …

Classification of languages according to paradigms can be
misleading

8

Implementation of a
Programming Language L

• Programs written in L must be executable

• Every language L implicitly defines an Abstract
Machine ML having L as machine language

• Implementing ML on an existing host machine
MO (via compilation, interpretation or both)
makes programs written in L executable

9

Programming Languages and Abstract Machines

• Given a programming language L, an Abstract Machine
ML for L is a collection of data structures and algorithms
which can perform the storage and execution of programs
written in L

• An abstraction of the concept of hardware machine

• Structure of an abstract machine:

Programs

Data

Memory

Operations and Data Structures for:

• Primitive data processing

• Sequence control

• Data transfer control

• Memory management

Interpreter

10

General structure of
the Interpreter

Sequence control

Data transfer control

Primitive data processing
& Memory management

start

stop

Fetch next instruction

Decode

Fetch operands

Choose

Execute op1 Execute op2 Execute opn Execute HALT...

Store the result

11

Data transfer control

The Machine Language of an AM

• Viceversa, each abstract machine M defines a
language LM including all programs which can be
executed by the interpreter of M

• Programs are particular data on which the interpreter
can act

• Components of M correspond to components of LM:
– Primitive data processing ➔ Primitive data types

– Sequence control ➔ Control structures

– Data transfer control ➔ Parameter passing and value return

– Memory management ➔ Memory management

12

An example: the Hardware Machine

• Language: Machine language
• Memory: Registers + RAM (+ cache)
• Interpreter: fetch, decode, execute loop
• Operations and Data Structures for:

• Primitive data processing
• Sequence control
• Data transfer control
• Memory management 13

The Java
Virtual

Machine

14

• Language: bytecode
• Memory Heap+Stack+Permanent
• Interpreter

The Java
Virtual

Machine

15

• Language: bytecode
• Memory Heap+Stack+Permanent
• Interpreter
• Operations and Data Structures for:

• Primitive data processing
• Sequence control
• Data transfer control
• Memory management

The core of a JVM interpreter is basically this:
do {

 byte opcode = fetch an opcode;

 switch (opcode) {

 case opCode1 :

 fetch operands for opCode1;

 execute action for opCode1;

 break;

 case opCode2 :

 fetch operands for opCode2;

 execute action for opCode2;

 break;

 case ...

} while (more to do)

Implementing an Abstract Machine

• Each abstract machine can be implemented in hardware or in
firmware, but if high-level this is not convenient in general
– Exception: Java Processors, …

• Abstract machine M can be implemented over a host machine
MO, which we assume to be already implemented

• The components of M are realized using data structures and
algorithms implemented in the machine language of MO

• Two main cases:

– The interpreter of M coincides with the interpreter of MO

• M is an extension of MO

• other components of the machines can differ

– The interpreter of M is different from the interpreter of MO

• M is interpreted over MO

• other components of the machines may coincide 16

Hierarchies of Abstract Machines

• Implementation of an AM with another can be
iterated, leading to a hierarchy (onion skin model)

• Example:
22 1 Abstract Machines

Fig. 1.8 A hierarchy of

abstract machines

A canonical example of a hierarchy of this kind in a context that is seemingly

distant from programming languages is the hierarchy5 of communications protocols

in a network of computers, such as, for example, the ISO/OSI standard.

In a context closer to the subject of this book, we can consider the example shown

in Fig. 1.8.

At the lowest level, we have a hardware computer, implemented using physical

electronic devices (at least, at present; in the future, the possibility of biological

devices will be something that must be actively considered). Above this level, we

could have the level of an abstract, microprogrammed machine. Immediately above

(or directly above the hardware if the firmware level is not present), there is the ab-

stract machine provided by the operating system which is implemented by programs

written in machine language. Such a machine can be, in turn, seen as a hierarchy of

many layers (kernel, memory manager, peripheral manager, file system, command-

language interpreter) which implement functionalities that are progressively more

remote from the physical machine: starting with the nucleus, which interacts with

the hardware and manages process state changes, to the command interpreter (or

shell) which allows users to interact with the operating system. In its complexity,

therefore, the operating system on one hand extends the functionality of the physical

machine, providing functionalities not present on the physical machine (for exam-

ple, primitives that operate on files) to higher levels. On the other hand, it masks

some hardware primitives (for example, primitives for handling I/O) in which the

higher levels in the hierarchy have no interest in seeing directly. The abstract ma-

chine provided by the operating system forms the host machine on which a high-

level programming language is implemented using the methods that we discussed in

previous sections. It normally uses an intermediate machine, which, in the diagram

(Fig. 1.8), is the Java Virtual machine and its bytecode language. The level provided

by the abstract machine for the high-level language that we have implemented (Java

5In the literature on networks, one often speaks of a stack rather than, more correctly, of a hierarchy.

17

Implementing a Programming Language

• L high level programming language

• ML abstract machine for L

• MO host machine

• Pure Interpretation
– ML is interpreted over MO

– Not very efficient, mainly because of the interpreter (fetch-decode
phases)

18

Implementing a Programming Language

• Pure Compilation
– Programs written in L are translated into equivalent programs

written in LO, the machine language of MO

– The translated programs can be executed directly on MO
• ML is not realized at all

– Execution more efficient, but the produced code is larger

• Two limit cases that almost never exist in reality 19

Compilation versus Interpretation
• Compilers efficiently fix decisions that can be taken at compile

time to avoid to generate code that makes this decision at run
time
– Type checking at compile time vs. runtime
– Static allocation
– Static linking
– Code optimization

• Compilation leads to better performance in general
– Allocation of variables without variable lookup at run time
– Aggressive code optimization to exploit hardware features

• Interpretation facilitates interactive debugging and testing
– Interpretation leads to better diagnostics of a programming

problem
– Procedures can be invoked from command line by a user
– Variable values can be inspected and modified by a user

20

Compilation + Interpretation

• All implementations of programming languages
use both. At least:
– Compilation (= translation) from external to internal

representation

– Interpretation for I/O operations (runtime support)

• Can be modeled by identifying an Intermediate
Abstract Machine MI with language LI

– A program in L is compiled to a program in LI

– The program in LI is executed by an interpreter for MI

21

Compilation + Interpretation
with Intermediate Abstract Machine

• The “pure” schemes as limit cases

22

Virtual Machines as Intermediate
Abstract Machines

• Several language implementations adopt a compilation
+ interpretation schema, where the Intermediate
Abstract Machine is called Virtual Machine

• Adopted by Pascal, Java, Smalltalk-80, C#, functional
and logic languages, and some scripting languages
– Pascal compilers generate P-code that can be interpreted

or compiled into object code

– Java compilers generate bytecode that is interpreted by
the Java virtual machine (JVM). The JVM may translate
bytecode into machine code by just-in-time (JIT)
compilation

23

Compilation and Execution on
Virtual Machines

• Compiler generates intermediate program

• Virtual machine interprets the intermediate
program

Virtual
Machine

Compiler
Source

Program
Intermediate

Program

Input Output

Run on VM
Compile on X

Run on X, Y, Z, …
24

25

• Microsoft compilers for C#, F#, … generate
CIL code (Common Intermediate Language)
conforming to CLI (Common Language
Infrastructure).

• It can be executed in .NET , .NET Core, or
other Virtual Execution Systems (like Mono)

• CIL is compiled to the target machine

Other Intermediate Machines

LLVM is a compiler infrastructure designed as a set
of reusable libraries with well-defined interfaces:

• Implemented in C++

• Several front-ends

• Several back-ends

• First release: 2003

26

Other Intermediate Machines

• The LLVM IR (Intermediate
representation) can also be
interpreted

• LLVM IR much lower-level
than Java bytecodes or CIL

Advantages of intermediate abstract
machine (examples for JVM)

• Portability: Compile the Java source,
distribute the bytecode and execute on any
platform equipped with JVM

• Interoperability: for a new language L, just
provide a compiler to JVM bytecode; then it
could exploit Java libraries

– By design in Microsoft CLI

– De facto for several languages on JVM

27

Other Compilation Schemes
• Pure Compilation and Static Linking

• Adopted by the typical Fortran systems

• Library routines are separately linked
(merged) with the object code of the program

Compiler
Source

Program
Incomplete

Object Code

LinkerStatic Library

Object Code

_printf

_fget

_fscan

…

extern printf();

Binary

Executable

28

Compilation, Assembly, and
Static Linking

• Facilitates debugging of the compiler

Compiler
Source

Program
Assembly

Program

LinkerStatic Library

Object Code

Binary

Executable

Assembler

_printf

_fget

_fscan

…

extern printf();

29

Compilation, Assembly, and
Dynamic Linking

• Dynamic libraries (DLL, .so, .dylib) are linked at
run-time by the OS (via stubs in the executable)

Compiler
Source

Program
Assembly

Program

Incomplete
Executable

Input

Output

Assembler

Shared Dynamic Libraries
_printf, _fget, _fscan, …

extern printf();

30

Exploring the Compiler Explorer

• https://www.godbolt.org

• A very useful tool to test and compare compilers

• Dozens of programming languages

• Hundreds of compilers

• Rich set of functionalities

31

https://www.godbolt.org/

Summary: Languages and Abstract Machines
Compilation and interpretation schemes

• Reading: Ch. 1 of Programming Languages: Principles and
Paradigms by M. Gabbrielli and S. Martini

• Syntax, Semantics and Pragmatics of PLs
– Programming paradigms belong to Pragmatics

• Programming languages and Abstract Machines
• Interpretation vs. Compilation vs. Mixed
• Examples of Virtual Machines
• Examples of Compilation Schemes
• Compiler explorer by Matt Godbolt
→ Next topic: Runtime Support and the JVM

32

	Slide 1: 301AA - Advanced Programming
	Slide 2: Outline
	Slide 3: Definition of Programming Languages
	Slide 4: Syntax
	Slide 5: Semantics
	Slide 6: (Almost) Complete Semantics of PLs
	Slide 7: Pragmatics
	Slide 8: Programming Paradigms
	Slide 9: Implementation of a Programming Language L
	Slide 10: Programming Languages and Abstract Machines
	Slide 11: General structure of the Interpreter
	Slide 12: The Machine Language of an AM
	Slide 13: An example: the Hardware Machine
	Slide 14: The Java Virtual Machine
	Slide 15: The Java Virtual Machine
	Slide 16: Implementing an Abstract Machine
	Slide 17: Hierarchies of Abstract Machines
	Slide 18: Implementing a Programming Language
	Slide 19: Implementing a Programming Language
	Slide 20: Compilation versus Interpretation
	Slide 21: Compilation + Interpretation
	Slide 22: Compilation + Interpretation with Intermediate Abstract Machine
	Slide 23: Virtual Machines as Intermediate Abstract Machines
	Slide 24: Compilation and Execution on Virtual Machines
	Slide 25
	Slide 26
	Slide 27: Advantages of intermediate abstract machine (examples for JVM)
	Slide 28: Other Compilation Schemes
	Slide 29: Compilation, Assembly, and Static Linking
	Slide 30: Compilation, Assembly, and Dynamic Linking
	Slide 31: Exploring the Compiler Explorer
	Slide 32: Summary: Languages and Abstract Machines Compilation and interpretation schemes

