
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea.corradini@unipi.it

http://pages.di.unipi.it/corradini/

Course pages:
http://pages.di.unipi.it/corradini/Didattica/AP-24/

AP-02: Motivations and Introduction

mailto:andrea.corradini@unipi.it
http://pages.di.unipi.it/corradini/
http://pages.di.unipi.it/corradini/Didattica/AP-23/

Software is Everywhere

2

Software is Everywhere (by ChatGPT)

3

Programming in the 21 century

Increased Software Complexity:

• Diverse Platforms and Environments

• Multiple Data Sources: Structured (DB) and
Unstructured (logs, social media feeds)

• Concurrency and Scalability

• Security and Compliance

• Collaboration and Group Development

• Rapid Technological Change

• Deployment and Maintenence

4

Complexity Prompts for Innovation

• Software Complexity requires innovative ways to
Manage, Simplify, Accelerate the Development Process

• Software Reuse is needed to reduce Development
Time, Lower Costs, and Improve Reliability

• Object-Oriented Programming allows ever larger
applications to be built, but limited support for reuse:
– Reuse granularity: only at the level of classes

– Inheritance induces tight coupling

– Difficulty in Cross-Project Reuse

– Interoperability issues for heterogeneous or multi-
language environments

5

Some Key Ingredients
for Complex Software

• Component models to ensure reusability

• Frameworks to support efficient development
of (component based) applications

• Advanced features of programming languages
supporting polymorphism

• Execution environments providing runtime
support for ever dynamic software systems

7

Course Objectives

• Understand programming language technology:
– Execution Models
– Run-time systems

• Analyze programming metaphors:
– Objects
– Components
– Patterns

• Learn advanced programming techniques
• Present state-of-the-art frameworks

incorporating these techniques
• Practice with all these concepts through small

projects

9

Course Syllabus

• Programming Language Pragmatics

• Run Time Support and Execution Environments: the Java
Virtual Machine

• Components based programming and Frameworks

• Polymorphism: a classification and examples in several
languages

• Functional languages: Haskell and advanced concepts

• Stream API and lambda-expressions in Java

• Ownership and Borrowing in Rust

• Scripting Languages and Python

10

Programming language pragmatics

• Syntax, Semantics and Pragmatics of PLs

• Programming languages and Abstract
Machines

• Interpretation vs. Compilation vs. Mixed

• Examples of Virtual Machines

• Examples of Compilation Schemes

11

Run-Time Systems and the JVM

• RTSs provide a Virtual Execution Environment
interfacing a program in execution with the OS.

• They support, among others:
– Memory Management, Thread Management
– Exception Handling and Security
– AOT and JIT Compilation
– Dynamic Link/Load
– Debugging Support and Reflection
– Verification

• A concrete example: the Java Virtual Machine

12

Component-based Programming

• Component models and frameworks, an
Introduction

• Examples of component-based frameworks:
– JavaBeans and NetBeans

– Spring and Spring Beans

– COM

– CLR and .NET

– OSGi and Eclipse

– Hadoop Map/Reduce

13

Software Frameworks
and Inversion of Control

Software Framework: A collection of common code
providing generic functionality that can be selectively
overridden or specialized by user code providing
specific functionality

Inversion of control: unlike in libraries, the overall
program's flow of control is not dictated by the caller,
but by the framework

Framework Design is a challenging task. It requires
mastering of design patterns, OO methods,
polymorphism…

14

Polymorphism and
Generic Programming

• A classification of Polymorphism

• Polymorphism in C++: inclusion polymorphism
and templates

• Java Generics

• The Standard Template Library: an overview

• Generics and inheritance: invariance,
covariance and contravariance

15

Functional programming and Haskell

• Introduction to Functional Programming

• Evaluation strategies (lambda-calculus)

• Haskell: main features

• Type Classes and overloading

• Monads

• Functional programming in Java

– Lambdas and Stream API

16

Main features of RUST

• Introduction to RUST

• Avoiding Aliasing + Mutability

• Ownership and Borrowing

• Lifetimes and the Borrow Checker

• Traits, generics, multi-threading

• Unsafe RUST

• Smart Pointers

17

Scripting Languages and Python

• Overview of scripting languages

• Main features of Python

• Imperative, functional and OO programming
in Python

• Higher-order functions and Decorators

• On the implementation of Python: the Global
Interpreter Lock

18

Design Patterns

19

Design Patterns in a few slides

• A fundamental concept in Software
Engineering & Programming, useful whenever
one is designing a solution to a problem

• We shall meet several Design Patterns along
the course (e.g., Observer or Publish-
Subscribe, Visitor, Template Method,…)

• Just a brief introduction…

20

Design Patterns: From Architecture to
Software Development

• Invented in the 1970's by architect Christopher Alexander:

"Each pattern describes a problem which occurs over
and over again in our environment, and then describes
the core of the solution to that problem, in such a way

that you can use this solution a million times over,
without ever doing it the same way twice"

Christopher Alexander, A Pattern Language, 1977

• The book includes 253 patterns for architectural design
• Common definition of a pattern:

“A solution to a problem in a context.”
• Patterns can be applied to many different areas of human

endehavour, including software development (where they
are more successful!)

21

(Software) Design Patterns

• A (software) design pattern is a general,
reusable solution to a commonly occurring
problem within a given context in software
design.

• Different abstraction levels:
– Complex design for an entire application or

subsystem

– Solution to a general design problem in a
particular context

– Simple reusable design class such as linked list,
hash table, etc.

22

Patterns solve software structural problems

like:

• Abstraction

• Encapsulation

• Information hiding

• Separation of concerns

• Coupling and cohesion

• Separation of interface and implementation

• Single point of reference

• Divide and conquer

23

Patterns also solve non-functional problems

like:

• Changeability

• Interoperability

• Efficiency

• Reliability

• Testability

• Reusability

24

Main components of a Design Pattern

• Name: meaningful text that reflects the problem,
e.g. Bridge, Mediator, Visitor

• Problem addressed: intent of the pattern,
objectives achieved within certain constraints

• Context: circumstances under which it can occur,
used to determine applicability

• Forces: constraints or issues that solution must
address, forces may conflict!

• Solution: the static and dynamic relationships
among the pattern components. Structure,
participants, collaboration. Solution must resolve
all forces!

25

The 23 Design Patterns of the Gang of Four

26
3

Tabella dei pattern GoF

comportamentali

creazionali strutturali

Behavioural

Creational Structural

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides
Design Patterns: Elements of Reusable

Object-Oriented Software [1995]

5.5. Pattern: Singleton (Creational)

Name: Singleton

Problem:

How can we guarantee that one and only one

instance of a class can be created?

Context: In some applications it is important

to have exactly one instance of a class, e.g. sales of

one company.

27

Forces: Can make an object globally accessible as a
global variable, but this violates encapsulation.
Could use class (static) operations and attributes, but
polymorphic redefinition is not always possible.

Solution:
Create a class with a class operation getInstance().
When class is first accessed, this creates relevant
object instance and returns object identity to client.
On subsequent calls of getInstance(), no new
instance is created, but identity of existing object is
returned.

28

Singleton Structure

Singleton

-uniqueInstance

-singletonData

+getInstance()

+getSingletonData()

+singletonOperation()

-Singleton()

Object identifier for singleton
instance, class scope or static

Returns object identifier for
unique instance, class-scope
or static

Private constructor only accessible
via getInstance()

getInstance() {

 if (uniqueInstance == null)

 { uniqueInstance = new Singleton() }

 return uniqueInstance

}

29

class Singleton {

 private static Singleton uniqueInstance = null;

 private Singleton() { .. } // private constructor

 public static Singleton getInstance() {

 if (uniqueInstance == null)

 uniqueInstance = new Singleton(); //call constructor

 return uniqueInstance;

 }

}

Example: Code

30

Comments

• To specify a class has only one instance, we make
it inherit from Singleton.

+ controlled access to single object instance
through Singleton encapsulation

+ Can tailor for any finite number of instances

+ namespace not extended by global variables

- access requires additional message passing

- Pattern limits flexibility, significant redesign if
singleton class later gets many instances

31

	Slide 1: 301AA - Advanced Programming
	Slide 2: Software is Everywhere
	Slide 3: Software is Everywhere (by ChatGPT)
	Slide 4: Programming in the 21 century
	Slide 5: Complexity Prompts for Innovation
	Slide 7: Some Key Ingredients for Complex Software
	Slide 9: Course Objectives
	Slide 10: Course Syllabus
	Slide 11: Programming language pragmatics
	Slide 12: Run-Time Systems and the JVM
	Slide 13: Component-based Programming
	Slide 14: Software Frameworks and Inversion of Control
	Slide 15: Polymorphism and Generic Programming
	Slide 16: Functional programming and Haskell
	Slide 17: Main features of RUST
	Slide 18: Scripting Languages and Python
	Slide 19: Design Patterns
	Slide 20: Design Patterns in a few slides
	Slide 21: Design Patterns: From Architecture to Software Development
	Slide 22: (Software) Design Patterns
	Slide 23
	Slide 24
	Slide 25
	Slide 26: The 23 Design Patterns of the Gang of Four
	Slide 27: 5.5. Pattern: Singleton (Creational)
	Slide 28
	Slide 29: Singleton Structure
	Slide 30
	Slide 31: Comments

