
1 
 

Assignment 2: Haskell & Python,   
 Version 1.0 - December 21, 2024 

 
This assignment is made of two parts, consisting of exercises on Haskell and on Python, 
respectively. It is distributed with an archive aux_files.zip containing some auxiliary files.  
This document is subject to changes. Check on the course web page that you are now reading the 
most recent version.  

Premise: the “ciao” of a string 
This definition will be used in some of the exercises below. Given a string str, we define its ciao 
(characters in alphabetical order) as the string having the same length of str and containing all 
the characters of str in lower case and alphabetical order. As an example, the ciao of “Hello” is 
“ehllo”. A ciao string is a string that is equal to its ciao. Clearly, two strings have the same ciao if 
and only if each one is an anagram of the other.  

Part 1: Multisets in Haskell 
This assignment requires you to implement a type constructor providing the functionalities of 
multisets (also known as bags), that is, collections of elements where the order does not count, but 
each element can occur several times. Your implementation must be based on the following 
concrete Haskell definition of the MSet type constructor: 
 
 data MSet a = MS [(a, Int)] 
            deriving (Show) 
 
Therefore an MSet contains a list of pairs whose first component is an element of the multiset, and 
the second component is its multiplicity, that is the number of occurrences of such element in the 
multiset. An MSet is well-formed if for each of its pairs (v,n) it holds n > 0, and if it does not 
contain two pairs (v,n) and (v',n') such that v = v'.   

Exercise 1: Constructors and operations 
The goal of this exercise is to write an implementation of multisets represented concretely as 
elements of the type constructor MSet.  

• Implement the following constructors: 
o empty, that returns an empty MSet 

• Implement the following operations:  

o add mset v, returning a multiset obtained by adding the element v to mset. 
Clearly, if v is already present its multiplicity has to be increased by one, otherwise 
it has to be inserted with multilplicity 1.  

o occs mset v,  returning the number of occurrences of v in mset (an Int). 

o elems mset, returning a list containing all the elements of mset.  

o subeq mset1 mset2, returning True if each element of mset1 is also an 
element of mset2 with the same multiplicity at least.  



2 
 

o union mset1 mset2, returning an MSet having all the elements of mset1 and 
of mset2, each with the sum of the corresponding multiplicites. 

• Class Constructor Instances 

o Define MSet to be an instance of the class constructor Eq, implementing equality as 
follows: two multisets are equal if they contain the same elements with the same 
multiplicity, regardless of the order. 

o Define MSet to be an instance of the constructor class Foldable. To this aim, 
choose a minimal set of functions to be implemented, as described in the 
documentation of Foldable. Intuitively, folding a multiset with a binary function 
should apply the function to the elements of the multiset, ignoring the multiplicities. 

o Define a function mapMSet that takes a function f :: a -> b and an MSet of 
type a as arguments, and returns the MSet of type b obtained by applying f to all 
the elements of its second argument. Explain (in a comment in the same file) why it 
is not possible to define an instance of Functor for MSet by providing mapMSet 
as the implementation of fmap. 

Important: All the operations of the present exercise that return an MSet must ensure that the 
result is well-formed, as defined above. Your code should not use the Haskell module 
Data.MultiSet or other similar modules, but it can use the functions of the Prelude. 
Solution format: A Haskell source file called MultiSet.hs containing a Module (see Section 
"Making our own modules") called MultiSet, defining the data type MSet (copy it from above) 
and at least all the functions described above. The module can include other functions as well, if 
convenient.  
Note: The file has to be adequately commented, and each function definition must be preceded by 
its type, as inferred by the Haskell compiler.  
 

Exercise 2: Testing multisets 
The goal of the exercise is testing the implemented functionalities. In a file named TestMSet.hs, 
import MultiSet.hs and 

1. Define a function readMSet that reads a text file whose name is passed as argument (as a 
string), and returns a new MSet containing the ciao of all the words of the file, each with 
the corresponding mutiplicity.  

2. Define a function writeMSet that given a multiset and a file name, writes in the file, one 
per line, each element of the multiset with its multiplicity in the format “<elem> - 
<multiplicity>”. 

3. Define a function main :: IO() which does the following: 
a. Using readMSet, from directory aux_files it loads files anagram.txt, 

anagram_s1.txt, anagram_s2.txt and margana2.txt in 
corresponding multisets, that we call m1, m2, m3 and m4 respectively; 

b. Exploiting also the functions imported from MultiSet.hs, it checks the 
following facts and prints a corresponding comment: 

i. Multisets m1 and m4 are not equal, but they have the same elements; 
ii. Multiset m1 is equal to the union of multisets m2 and m3; 

https://hackage.haskell.org/package/base-4.17.0.0/docs/Prelude.html#t:Foldable
https://hackage.haskell.org/package/Prelude-0.1.0.1/docs/Prelude.html
http://learnyouahaskell.com/modules
http://learnyouahaskell.com/modules


3 
 

c. Finally, using writeMSet it writes multisets m1 and m4 to files anag-out.txt 
and gana-out.txt, respectively.  

For reading and writing files you can use the functions readFile and writeFile of the Haskell 
Prelude (https://hackage.haskell.org/package/base-4.16.0.0/docs/Prelude.html). 
 
Solution format: A Haskell source file TestMSet.hs with the functions described above, which 
can be executed using runghc  
(see https://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/runghc.html ) 
 
Note: The file must be adequately commented, and each function definition has to be preceded by 
its type, as inferred by the Haskell compiler.  

Exercise 3: Decorators in Python 
The lecturer does not appreciate the fact that in Python type hints (also known as annotations) are 
ignored by the interpreter. On the other hand, he likes Python decorators. Therefore, he started 
writing some decorators to perform some very simple type checking. To this aim, he used the 
Python module inspect, supporting reflection.  

Unfortunately, the file containing the decorators (called type_checking_decorators.py) 
was lost, and the lecturer is left only with some test files and logs. Your assignment consists of 
writing the three lost decorators (called print_types, type_check and bb_type_check) 
so that the tests can be executed again producing essentially the same output. The test files are 
test1.py, test2.py and test3.py in directory aux_files. The log file logN.txt (with 
N ∈ {1,2,3}) shows the effect of executing python3 testN.py. In the log files, lines starting 
with ‘==>’ are printed by the code of the test file, the others are printed by the decorator. 

You can assume that the annotated functions only use positional arguments. As it can be seen from 
the examples, if a parameter does not have a type hint then its type is <class 
'inspect._empty'>. Here is a description of the three decorators.  
Decorator print_types uses introspection to print, for each argument of the decorated function, 
the type hint and the actual parameter of the function call, with its type. Here is an example of a 
simple function foo decorated with print_types, and the expected output of an invocation (the 
lines in yellow are printed by the decorator; see file log1.txt for more examples).   
>>> from type_checking_decorators import print_types 
>>> @print_types 
... def foo(x:int, y, z:float) -> str: 
...     return str(x) + str(y) + str(z) 
...  
>>> foo(5,' is ','similar to 5.0') 
Formal par 'x':<class 'int'>; actual par '5':<class 'int'> 
Formal par 'y':<class 'inspect._empty'>; actual par ' is ':<class 'str'> 
Formal par 'z':<class 'float'>; actual par 'similar to 5.0':<class 'str'> 
Result type <class 'str'>; actual result '5 is similar to 5.0':<class 'str'> 
'5 is similar to 5.0' 
 
Decorator type_check refines the behaviour of print_types as follows: (1) it only prints 
something for one parameter or for the result of the function call if there is a disagreement between 

https://hackage.haskell.org/package/base-4.16.0.0/docs/Prelude.html)
https://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/runghc.html
https://docs.python.org/3/library/inspect.html


4 
 

the value type and a type hint, otherwise nothing is printed; (2) each parameter is identified by its 
position in the parameter list starting from 0, not by its name. Here I show the effect of decorating 
the same function foo above with print_types. Note that when invoked, nothing is printed for 
the first parameter (because 5 is of type int), for the second (because y has no type hint), and for the 
result, which is a string as required; instead, the third parameter is not a float but a string, thus a 
message is printed.  See file log2.txt for more examples. 
>>> from type_checking_decorators import type_check 
>>> @type_check 
... def foo(x:int, y, z:float) -> str: 
...     return str(x) + str(y) + str(z) 
...      
>>> foo(5,' is ','similar to 5.0') 
Parameter '2' has value 'similar to 5.0', not of type '<class 'float'>' 
'5 is similar to 5.0' 
The third decorator bb_type_check (for “bounded-blocking type check”) enriches 
type_check in two ways: 1) if there is at least one disagreement between a value type and a type 
hint for one parameter, the function is blocked, i.e. it is not invoked at all and the decorated function 
returns None, without checking the result type; 2) the decorator can block the function at most 
max_block times, where max_block is a parameter of the decorator; after that, the function is 
invoked even if there is a type mismatch for one parameter, then the type of the result is checked 
against the type hint, if any, and the function result is printed. Example of use of the decorator (see 
file log3.txt for more examples): 
>>> from type_checking_decorators import bb_type_check 
>>> @bb_type_check(2) 
... def add(x:int,y:float)-> str: 
...     return x + y 
...      
>>> add(2.3,2.3) 
Parameter '0' has value '2.3', not of type '<class 'int'>' 
Function blocked. Remaining blocks: 1 
>>> add(2.3,2.3) 
Parameter '0' has value '2.3', not of type '<class 'int'>' 
Function blocked. Remaining blocks: 0 
>>> add(2.3,2.3) 
Parameter '0' has value '2.3', not of type '<class 'int'>' 
Result is '4.6', not of type '<class 'str'>' 
4.6 
 
Solution format: A single file called type_checking_decorators.py containing the 
definition of the decorators print_types, type_check and bb_type_check, such that  

• Running python3 testN.py (with N ∈ {1,2,3}) in a directory containing 
type_checking_decorators.py does not raise any exception/error, and 

• The output of python3 testN.py (with N ∈ {1,2,3}) is essentially the same of the 
corresponding file logN.txt.  


