

1

AP-24 – Programming Assignment #1- v1
November 25, 2024

This programming assignment consists of two exercises, on Java Beans and Java Reflection and
Annotations, respectively.

Exercise 1 (Java Beans) – The Matching Pairs game
The Matching Pair game (aka Concentration) is a game where some cards are laid face down on a
surface and two cards are flipped face up over each turn. The goal of the game is to turn over pairs of
matching cards. When a matching pair is found, it is eliminated from the game, and when all cards
are eliminated, the game terminates. See the following Wikipedia page for more information:
https://en.wikipedia.org/wiki/Concentration_(card_game).

The goal of the assignment is to implement a board which allows one player to play the game.
Optionally, support for more players can be provided. The board and the other components of the
game must be realized as Java beans, and they have to interact among themselves according to the
Publish-Subscribe (or Observer) design pattern, using events and event listeners as much as possible.

Functional requirements
The game starts showing the Board (a bean which extends JFrame), on which eight Cards are
displayed face down, together with a Shuffle and an Exit button, a Controller label, and a
Counter label.

Card is a bean extending JButton, it has a property value and a property state that must be
bound and constrained. The state property can hold one out of three values: excluded (in this
case the card is red), face_down (the card is green) and face_up (the card shows its value).
The value of a Card is an integer. At the beginning of the game, and each time the Shuffle
button is clicked, each card is initialized with a value. The Board is responsible of providing such
values, by first generating a random sequence of length 8, made of 4 integers each repeated twice.
Next the Board must fire an event shuffle wrapping the sequence of values. Each Card must be
registered as listeners to shuffle, so that it can take its new value from the sequence.
Clicking on a card has the effect of changing its state. Note: the state of the card can only be changed
by invoking the setState method, which must take into account that State is both bound and
constrained. If the card is face_down, clicking on it changes to face_up (thus displaying the
value). Instead, if the state is excluded or face_up, it changes to face_down (but as said later,
this change will be vetoed).

The Controller is a label showing the number of already matched pairs (initially 0) and
implementing the logic of the game. When a first card is turned face_up, it records its value v1.
When a second card is turned face_up with v2, the Controller fires a matched event with
value true (and increments the displayed value) if v1==v2, otherwise with value false. The
matched event has to be delayed half a second to allow the player to see v2.

https://en.wikipedia.org/wiki/Concentration_(card_game)

2

Each card ignores the matched event unless it is face_up: in that case, if the value is true it
changes state to excluded, otherwhise to face_down.
The Controller is registered as VetoableChangeListener to each Card. It must forbid
the change of state if it is triggered by clicking on the card when it is excluded or face_up.
The value displayed by the Controller must be reset to 0 every time the shuffle event is fired.

The Counter label displays the total number of times some card is turned face_up. It is reset to
0 every time the shuffle event is fired.
The Exit button asks a confirmation to the player, and if positive it terminates the game, otherwise
it has no effect.

Other requirements
At startup the Board creates all the other beans, and it registers them as listeners to events as needed.
All beans should interact using the Observer design pattern (using events and event listeners). If this
looks not reasonable in certain situations, other forms of interactions (e.g. invoking public methods)
are allowed, but they must be clearly justified in comments along the code, where they are used.
Note that from the specification it follows that when all cards become excluded, they cannot
change state: At that point only the Exit and Shuffle buttons are reactive.

Optional extensions
1. Make the number of cards of the game parametric. Define a constant N set to 4 in Board and

use 2xN as the number of cards everywhere. Then it must be possible to change N to a different
value and to recompile the Board only, to play with a different even number of cards.

2. Add a Challenge label that displays the best score seen since the start of the game, that is
the smallest number of moves (flipped cards) that was needed to complete one round of the
game.

Solution format
Suitably commented source files for the beans and one jar archive for each bean.

3

Exercise 2 (Java Reflections/Annotations) – Unit testing with args
Write the Java program RunTests that takes as argument from the command line the name of a
Java class, say MyClass. RunTest loads class MyClass using the reflection API, and it creates
an instance t of MyClass. Next, it must invoke on t all the non-private instance methods of
MyClass which are annotated by @Testable, checking if it satisfies the annotated
@Specification. These two annotations are defined as follows (copy the text in suitable files):

• Testable annotation:

import java.lang.annotation.*;

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.METHOD)

public @interface Testable {}

• Specification annotation:

import java.lang.annotation.*;

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.METHOD)

public @interface Specification {

 String[] argTypes () default {}; //

 String[] argValues () default {};

 String resType () default "";

 String resVal () default "";

}

The @Specification annotation provides the list of actual arguments to be used to invoke the
method, and the expected result. Array argTypes lists the argument’s types (each of which can be
"int", "double", "bool" or "string"), and array argValues lists the argument’s values,
using their string representation. For example, "42" represents the integer 42 if the corresponding
type is "int", the floating point number 42.0 if the type is "double", or the string "42" if the
type is "string". The boolean values are represented by "true" and "false". String
"resType" is the expected type of the method’s result (one of "int", "double", "bool"
or "string", or the empty string indicating void). String resVal is the expected result of the
method. The default values of the @Specification attributes indicate that the method must be
invoked with no arguments and that it does not return a value.

To report the outcome of the tests, your program RunTests must use the class Report.java.
Such class cannot be modified, but a “package” statement can be added as a first line. For each
@Testable method, RunTests must invoke method Report.report(…) exactly once. The
second and the third arguments are the method name and the @Specification object annotating
the method. The first argument is one of the four possible values of the enumeration
Report.TEST_RESULT, describing the outcome of the test. More precisely, the first argument
should be:

(1) Report.TEST_RESULT.WrongArgs, if the method to be tested cannot be invoked
because the provided arguments are incorrect (e.g., the length of argTypes or of

4

argValues is not equal to the number of arguments of the method, or the types do not
correspond, or some elements of argValues cannot be converted to the expected type);

(2) Report.TEST_RESULT.WrongResultType, if the method could be invoked using
the provided arguments, but the expected result type is incorrect (e.g., the type is different
from the return type of the method, or resValue cannot be converted to the expected type,
for example. resValue=="3a" and resType=="int");

(3) Report.TEST_RESULT.TestFailed, if the method can be tested (because neither (1)
nor (2) hold), but the expected result is not equal to the value returned by invoking the method;

(4) Report.TEST_RESULT.TestSucceeded, if the method can be tested and its
invocation returns the expected result.

The RunTestsAssignment.zip archive contains the following files to be used to debug your
program:

• Report.java, to be used as described above;

• MathOpsTests_simple.java, containing some method definitions annotated for testing:
the specifications are well-formed, so cases (1) and (2) above should not show up;

• RunTests_MathOpsTests_simple.output, a text file containing the expected output of
running RunTest with MathOpsTests_simple as argument;

• MathOpsTests.java, containing more method definitions annotated for testing;

• RunTests_MathOpsTests.output, a text file containing the expected output of running
RunTest with MathOpsTests as argument;

Solution format
A well-commented RunTests.java file. I will check that the program produces the expected
output on the two test classes above.

