
JVM & tools
Exercise 1
Write a simple Java program JustCreate that in a very long loop creates at each iteration
one object, discarding immediately any reference to it. Every 1000 iterations the program
must print the number of objects created since the beginning and must pause for 50
milliseconds (use e.g. Thread.sleep()).

Inspect the program execution with VisualVM, and try to tune the parameters so that the
heap occupancy profile has the shape of a shark's teeth.

Goal: Monitoring the heap occupation in VisualVM.

Exercise 2
As we have seen recently, the JVM has two instructions that can be used to compile
a switch statement: tableswitch and lookupswitch. Taking inspiration from the
examples seen at lesson, try to determine when your Java compiler
uses tableswitch and when it uses lookupswitch.

Does this depend only on the distance between the smallest and the largest constants in
the case clauses? Are other criteria considered as well?
Use javap -c -v ClassName.class or godbolt.org to disassemble the compiled
bytecode.

Goal: Reading disassembled bytecode to infer the compilation scheme for simple but non-
trivial high level control structures,

Exercise 3
Run the program WrongQueue and inspect its behaviour using VisualVM. Can you
explain the continuous growth of the heap? Find the code causing the bug and fix it.

Clearly, there are several ways to fix the bug: for this exercise, try to find one with minimal
“edit distance” from the source, i.e. the one obtained with the minimum amount of
character insertions or deletions.

Goal: Using VisualVM to inspect the memory consumed by a Java program; Reviewing
Java code to detect non-trivial errors; Fixing bugs.

Exercise 4
In the last lesson, the lecturer claimed that when compiling a switch based on a String
value, the Java compiler uses a hashing function for strings. Verify that this is true. Also,
try to understand the bytecode produced by the compiler: if the hash value coincides with

https://pages.di.unipi.it/corradini/Didattica/AP-23/ESER/01/WrongQueue.java

the hash of a string of a case clause, apparently an additional comparison between the two
strings is performed. Why is this necessary?

Using javap or godbolt.org, disassemble the compiled code to see if the lecturer is
right. Also, search in the Java or JVM Specification the precise place where this
compilation scheme is prescribed.

Goal: Reading disassembled bytecode; checking the Java/JVM specification.

Exercise 5
Exploring threads. Explore the threads of a running application using VisualVM. Write
a simple multi-threaded program which spawns a new thread every few second. Monitor
the threads, their state and the code they are executing using the thread monitor of
VisualVM and the Thread Dump facility. Look for information about the threads dedicated
to JIT compilation and to GC,

