
The Standard Template Library Tutorial

184.437 Wahlfachpraktikum (10.0)

Johannes Weidl

Information Systems Institute
Distributed Systems Department

Technical University Vienna

Friday, 26. April 1996

Advisor Dipl. Ing. Georg Trausmuth
Professor DI Dr. Mehdi Jazayeri

"The Standard Template Library (STL) is a C++ programming library that
has been developed by Alexander Stepanov and Meng Lee at the Hewlett
Packard laboratories in Palo Alto, California. It was designed to enable a
C++ programmer to do generic programming and is based on the extensive
use of templates - also called parametrized types. This paper tries to give a
comprehensive and complete survey on the STL programming paradigm and
shall serve as step-by-step tutorial for the STL newcomer, who has
fundamental knowledge in C++ and the object-oriented paradigm."

STL Tutorial page 2 Johannes Weidl

CPQ[T ^U R^]cT]cb

1 Introduction __4

2 C++ basics ___4

2.1 Classes ___ 4

2.2 Function objects ___ 8

2.3 Templates___ 8
2.3.1 Function templates __ 9
2.3.2 Class templates __ 10
2.3.3 Template member functions __ 10
2.3.4 Template specialization__ 10

3 A STL overview __12

3.1 STL availability and information___ 13
3.1.1 FTP-Sites___ 13
3.1.2 URLs __ 13

3.2 What does STL consist of?__ 14

3.3 Compiling STL programs __ 15
3.3.1 Borland C++ 4.0 DOS-programs __ 15
3.3.2 Borland C++ 4.0 WINDOWS-programs __ 16
3.3.3 Borland C++ 4.5 DOS- and WINDOWS-programs __ 17

4 Learning STL__18

4.1 Containers ___ 18
4.1.1 Vector ___ 19
4.1.2 Exercises ___ 26

4.2 Iterators___ 27
4.2.1 Input Iterators and Output Iterators __ 28
4.2.2 Forward Iterators___ 31
4.2.3 Bidirectional Iterators ___ 32
4.2.4 Random Access Iterators___ 33
4.2.5 Exercises ___ 34

4.3 Algorithms and Function Objects __ 34
4.3.1 How to create a generic algorithm ___ 34
4.3.2 The STL algorithms __ 36
4.3.3 Exercises ___ 42

4.4 Adaptors __ 42
4.4.1 Container Adaptors ___ 43
4.4.2 Iterator Adaptors ___ 44
4.4.3 Function Adaptors__ 46

4.5 Allocators and memory handling ___ 47

5 The remaining STL components___49
5.1 How components work together___ 49
5.2 Vector ___ 49
5.3 List ___ 50
5.4 Deque ___ 50
5.5 Iterator Tags __ 50
5.6 Associative Containers__ 51

6 Copyright ___56

STL Tutorial page 3 Johannes Weidl

7 Literature ___56

STL Tutorial page 4 Johannes Weidl

 8]ca^SdRcX^]

Motivation. In the late 70s Alexander Stepanov first observed that some algorithms do not depend on
some particular implementation of a data structure but only on a few fundamental semantic properties
of the structure. Such properties can be - for example - the ability, to get from one element of the data
structure to the next, and to be able to step through the elements from the beginning to the end of the
structure. For a sort algorithm it is not essential if the elements to be sorted are stored in an array, a
linked list, etc. Stepanov examined a number of algorithms and found that most of them could be
abstracted away from a particular implementation and that this abstraction can be done in a way that
efficiency is not lost. Efficiency is an essential point that Stepanov emphasizes on, he is convinced that
no one would use an algorithm that becomes inefficient by instantiating it back.

The STL history. Stepanovs insight - which hasn’t had much influence on software development so far
- will lead to a new programming paradigm in future - so the hope of its discoverer. In 1985 Stepanov
developed a generic Ada library and was asked, if he could do this in C++ as well. But in 1987
templates (see section 2.3) - an essential technique for this style of programming - weren’t implemented
in C++ and so his work was delayed. In 1988 Stepanov moved to the HP Labs and 1992 he was
appointed as manager of an algorithm project. Within this project, Alexander Stepanov and Meng Lee
wrote a huge library - the Standard Template Library (STL) - with the intention to show that one can
have algorithms defined as generically as possible without losing efficiency.

STL and the ANSI/ISO C++ Draft Standard. The importance of STL is not only founded in its
creation or existence, STL was adopted into the draft standard at the July 14, 1994 ANSI/ISO C++
Standards Committee meeting. That means that if not happened till now anyway, compiler vendors will
soon be incorporating STL into their products. The broad availability of STL and the generic
programming idea give this new programming paradigm the chance to positively influence software
development - thus allow programmers to write code faster and to write less lines of code while focusing
more on problem solution instead of writing low-level algorithms and data structures.

Document arrangement. In section 2 STL-required C++ basics are taught, especially classes, function
object design and templates - also called parametrized types. In section 3 STL is overviewed and the key
concepts are explained. Section 4 teaches STL step-by-step. Section 5 deals with STL components not
explained in section 4. Section 6 contains copyright notices and section 7 shows the literature used.

! 2�� QPbXRb

STL specific C++ basics. This section gives a short survey on STL-required C++ basics, such as
classes, function objects and templates. It tries to point out the STL-specific aspects. For a fundamental
and comprehensive study and understanding of these topics read [1], §5 to §8.

!� 2[PbbTb

User-defined types. One reason to develop C into C++ was to enable and encourage the programmer to
use the object-oriented paradigm. "The aim of the C++ class concept [...] is to provide the programmer
with a tool for creating new types that can be used as conveniently as the built-in types", says Bjarne
Stroustrup, the father of C++, in [1]. It is stated that a class is a user-defined type:

STL Tutorial page 5 Johannes Weidl

class shape {
private:
 int x_pos;
 int y_pos;
 int color;
public:
 shape () : x_pos(0), y_pos(0), color(1) {}
 shape (int x, int y, int c = 1) : x_pos(x), y_pos(y), color(c) {}
 shape (const shape& s) : x_pos(s.x_pos), y_pos(s.y_pos), color(s.color) {}
 ∼ shape () {}
 shape& operator= (const shape& s) {
 x_pos = s.x_pos, y_pos = s.y_pos, color = s.color; return *this; }

 int get_x_pos () { return x_pos; }
 int get_y_pos () { return y_pos; }
 int get_color () { return color; }

 void set_x_pos (int x) { x_pos = x; }
 void set_y_pos (int y) { y_pos = y; }
 void set_color (int c) { color = c; }

 virtual void DrawShape () {}

 friend ostream& operator<< (ostream& os, const shape& s);
};

ostream& operator<< (ostream& os, const shape& s) {
os << "shape: (" << s.x_pos << "," << s.y_pos << "," << s.color << ")";
return os;

}

Examining the C++ class "shape". The keyword class begins the definition of the user-defined type.
The keyword private means that the names x_pos, y_pos and color can only be used by member
functions (which are functions defined inside the class definition). The keyword public starts the
public-section, which constitutes the interface to objects of the class, that means, names and member
functions in this section can be accessed by the user of the object. Because of the attributes being
private, the class has public member functions to get and set the appropriate values. These member
functions belong to the interface.
Note that a class is abstract, whereas the instantiation of a class leads to an object, which can be used
and modified:

shape MyShape (12, 10, 4);

int color = MyShape.get_color();
shape NewShape = MyShape;

where shape is the class name and MyClass is an object of the class shape.

shape () : x_pos(0), y_pos(0), color(1) {}

is the default constructor - the constructor without arguments. A constructor builds and initializes an
object, and there are more possible kinds of constructors:

shape (int x, int y, int c = 1) : x_pos(x), y_pos(y), color(c) {}

This is a constructor with three arguments where the third one is a default argument:

shape MyShape (10, 10);

results in: x_pos == 10, y_pos == 10, color == 1.

STL Tutorial page 6 Johannes Weidl

shape (const shape& s) : x_pos(s.x_pos), y_pos(s.y_pos), color(s.color) {}

This is an important constructor, the so-called copy-constructor. It is called when you write code like
this:

shape MyShape;
shape NewShape (MyShape);

After that, MyShape and NewShape have the same attributes, the object NewShape is copied from the
object MyShape using the copy constructor.
Note the argument const shape& s. The & means "reference to", when a function call takes place, the
shape is not copied onto the stack, but only a reference (pointer) to it. This is important, when the object
given as argument is huge, because then copying would be very inefficient.

∼ shape () {}

is the destructor. It is called, when an object is destroyed - for example when it goes out of scope. The
shape destructor has nothing to do, because inside the shape class no dynamically allocated memory is
used.

shape& operator= (const shape& s) {
 x_pos = s.x_pos, y_pos = s.y_pos, color = s.color; return *this; }

Operator overloading. In C++ it is possible to overload operators - that is to give them a new meaning
or functionality. There is a set of operators which can be defined as member functions inside a class.
Among these the assignment operator can be found, which is used when writing the following code:

shape MyShape, NewShape;
NewShape = MyShape;

Note that the operator= is called for the left object, i.e. NewShape, so there must be only one argument
in the declaration. This is true for all other C++ operators as well.
When a member function is called, the system automatically adds the this-pointer to the argument list.
The this-pointer points to the object, for which the member function is called. By writing return
*this, the concatenation of assignments gets possible:

shape OldShape, MyShape, NewShape;
NewShape = MyShape = OldShape;

int get_x_pos () { return x_pos; }

gives you the value of x_pos. An explicit interface function is necessary, because private mebers cannot
be accessed from outside the object.

virtual void DrawShape () {}

declarates a function with no arguments that draws the shape. Because a shape is abstract and we have
no idea of what it looks like precisely, there's no implementation for DrawShape. The keyword virtual
means that this member function can be overwritten in a derived class (see [1], §6). For example, a
class dot could be derived from shape. DrawShape then would be overwritten to draw the dot at the
position (x_pos,y_pos) and with the colour color.

STL Tutorial page 7 Johannes Weidl

Put-to operator. Now consider the definition of the operator<<:

ostream& operator<< (ostream& os, const shape& s) {
os << "shape: (" << s.x_pos << "," << s.y_pos << "," << s.color << ")";
return os;

}

The usual way in C++ to display information on the screen is to write:

cout << "Hello, World!";

With the upper code we overload the put-to-operator (operator<<) to be able to send shapes directly to
an output stream:

shape MyShape (5, 9);
cout << MyShape;

shows on the output screen: shape: (5,9,1)

friend ostream& operator<< (ostream& os, const shape& s);

Friend and inline. The keyword friend in front of a function declaration means that this function has
access to the private members of the class, where the declaration takes place. You can see that x_pos,
y_pos and color are used directly by operator<<. It’s also possible to define a whole class as friend
class.
Note that all member functions of shape are defined inside the class declaration. If so, the member
functions are all "inline". Inline means, that wherever the function is called, the compiler creates no
function call but inserts the code directly to decrease overhead.
To inline a member function defined outside the class the keyword inline must be used:

inline int shape::get_x_pos () { return x_pos; }

Nice Classes. For STL it’s wise to create classes that meet the requirements of Nice Classes. For
example, Borland C++ expects an object to be stored in a container to have an assignment operator
defined. Additionally, if a container holds its objects in a particular order, a operator like the operator<
must be defined (the latter to fix a half-order).

A class T is called nice iff it supports:

1. Copy constructor T (const T&)

2. Assignment operator T& operator= (const T&)
3. Equality operator int operator== (const T&, const T&)

4. Inequality operator int operator!= (const T&, const t&)

such that:

1. T a(b); assert (a == b);
2. a = b; assert (a == b);
3. a == a;
4. a == b iff b == a
5. (a == b) && (b == c) implies (a == c)
6. a != b iff ! (a == b)

STL Tutorial page 8 Johannes Weidl

A member function T::s(...) is called equality preserving iff

a == b implies a.s (...) == b.s (...)

A class is called Extra-Nice iff
all of its member functions are equality preserving

The theory of Nice Classes origins from a joint work between HP and Andrew Koenig from the Bell
Labs.

!�! 5d]RcX^] ^QYTRcb

The function-call operator. A function object is an object that has the function-call operator
(operator()) defined (or overloaded).
These function objects are of crucial importance when using STL.
Consider an example:

class less {
public:
 less (int v) : val (v) {}
 int operator () (int v) {
 return v < val;
 }
private:
 int val;
};

This function object must be created by specifying an integer value:

less less_than_five (5);

The constructor is called and the value of the argument v is assigned to the private member val. When
the function object is applied, the return value of the overloaded function call operator tells if the
argument passed to the function object is less than val:

cout << "2 is less than 5: " << (less_than_five (2) ? "yes" : "no");

Output: 2 is less than 5: yes

You should get familiar with this kind of programming, because when using STL you often have to pass
such function objects as arguments to algorithms and as template arguments when instantiating
containers, respectively.

!�" CT_[PcTb

Static type checking. C++ is a language that supports static type checking. Static type checking helps
to catch many errors during compilation, because the programmer has to fix the type of a name used.
Any violation of the type model leads to an error message and cancels compilation. So, run-time errors
decrease.

STL Tutorial page 9 Johannes Weidl

!�"� 5d]RcX^] cT_[PcTb

Consider the following function:

void swap (int& a, int& b) {

 int tmp = a;
 a = b;
 b = tmp;
}

Swapping integers. This function let’s you swap the contents of two integer variables. But
when programming quite a big application, it is probable that you have to swap float, long or
char variables, or even shape variables - as defined in section 2. So, an obvious thing to do
would be to copy the piece of code (cut-n-paste!) and to replace all ints by shapes, wouldn’t
it?
A drawback of this solution is the number of similar code pieces, that have to be administered.
Additionally, when you need a new swap function, you must not forget to code it, otherwise
you get a compile-time error. And now imagine the overhead when you decide to change the
return type from void to int to get information, if the swap was successful - the memory
could be too low to create the local tmp variable, or the assignment operator (see shape) could
not be defined. You would have to change all x versions of swap - and go insane...

Templates or Parametrized types. The solution to this dark-drawn scenario are templates,
template functions are functions that are parametrized by at least one type of their arguments:

template <class T>
void swap (T& a, T& b) {
 T tmp = a;
 a = b;
 b = tmp;
}

Note that the ″T″ is an arbitrary type-name, you could use ″U″ or ″anyType″ as well. The
arguments are references to the objects, so the objects are not copied to the stack when the
function is called. When you write code like

int a = 3, b = 5;
shape MyShape, YourShape;

swap (a, b);
swap (MyShape, YourShape);

the compiler "instantiates" the needed versions of swap, that means, the appropriate code is
generated. There are different template instantiation techniques, for example manual
instantiation, where the programmer himself tells the compiler, for wich types the template
should be instantiated.

Function template examples. Other examples for function templates are:

template <class T>
T& min (T& a, T&b) { return a < b ? a : b; }

template <class T>
void print_to_cout (char* msg, T& obj) {
 cout << msg << ": " << obj << endl;
}

STL Tutorial page 10 Johannes Weidl

To use the last template function, objects given as the second argument must have the
operator<< defined, otherwise you will get a compile-time error.

!�"�! 2[Pbb cT_[PcTb

Class templates to build containers. The motivation to create class templates is closely
related to the use of containers. "However, container classes have the interesting property that
the type of objects they contain is of little interest to the definer of a container class, but of
crucial importance to the user of the particular container. Thus we want to have the type of
the contained object be an argument to a container class: [...]", [1], §8. That means that a
container - e.g. a vector - should be able to contain objects of any type. This is achieved by
class templates. The following example comes from [1], §1.4.3:

template <class T>
class vector {
 T* v;
 int sz;
public:
 vector (int s) { v = new T [sz = s]; }
 ∼ vector () { delete[] v; }
 T& operator[] (int i) { return v[i]; }
 int get_size() { return sz; }
};

Note that no error-checking is done in this example. You can instantiate different vector-
containers which store objects of different types:

vector<int> int_vector (10);
vector<char> char_vector (10);
vector<shape> shape_vector (10);

Take a look at the notation, the type-name is vector<specific_type>.

!�"�" CT_[PcT \T\QTa Ud]RcX^]b

By now there’s no compiler I know which could handle template member functions. This will
change in the very future, because template member functions are designated in the C++
standard.

!�"�# CT_[PcT b_TRXP[XiPcX^]

Cope with special type features. If there is a good reason, why a compiler-generated
template for a special type does not meet your requirements or would be more efficient or
convenient to use when implemented in another way, you can give the compiler a special
implementation for this type - this special implementation is called template specialization.
For example, when you know, that a shape-vector will always hold exactly one object, you
can specialize the vector-template as follows:

STL Tutorial page 11 Johannes Weidl

class vector<shape> {
 shape v;
public:
 vector (shape& s) : v(s) { }
 shape& operator[] (int i) { return v; }
 int get_size() { return 1; }
};

Let’s use it:

shape MyShape;
vector<shape> single_shape_vector (MyShape);

Template specializations can also be provided for template functions ([1], §r.14.5) and
template operators.

STL Tutorial page 12 Johannes Weidl

" 0 BC; ^eTaeXTf

STL is a component library. This means that it consists of components - clean and formally sound
concepts. Such components are for example containers - that are objects which store objects of an
arbitrary type - and algorithms. Because of the generic approach STL algorithms are able to work on
user-built containers and user-built algorithms can work on STL containers - if the user takes some
strict requirements for building his components into consideration. This technique - to guarantee the
interoperability between all built-in and user-built components - is referred to as "the orthogonal
decomposition of the component space". The idea behind STL can easily be shown by the following
consideration:

Imagine software components as a three-dimensional space. One dimension represents the data types
(int, double, char, ...), the second dimension represents the containers (array, linked-list, ...) and the
third dimension represents the algorithms (sort, merge, search, ...).

Figure 1: Component space

With this scenario given, i*j*k different versions of code have to be designed - a sort algorithm for an
array of int, the same sort algorithm for an array of double, a search algorithm for a linked-list of
double and so on. By using template functions that are parametrized by a data type, the i-axes can be
dropped and only j*k versions of code have to be designed, because there has to be only one linked-list
implementation which then can hold objects of any data-type. The next step is to make the algorithms
work on different containers - that means that a search algorithm should work on arrays as well as on
linked-lists, etc. Then, only j+k versions of code have to be created.

STL embodies the above concept and is thus expected to simplify software development by decreasing
development times, simplifying debugging and maintenance and increasing the portability of code.

STL consists of five main components. When I list them here, don’t get confused by the names and their
short description, they are explained one by one in detail later.

• Algorithm: computational procedure that is able to work on different containers
• Container: object that is able to keep and administer objects
• Iterator: abstraction of the algorithm-access to containers so that an algorithm is able to work

on different containers
• Function Object:

a class that has the function-call operator (operator()) defined
• Adaptor: encapsulates a component to provide another interface (e.g. make a stack out of a list)

At this point I recommend to read [2], chapters 1 to 4.

int, double, char, ...

array, linked-list, ...sort, merge, search, ...

i

jk

STL Tutorial page 13 Johannes Weidl

"� BC; PePX[PQX[Xch P]S X]U^a\PcX^]

"� � 5C?�BXcTb

The Hewlett Packard STL by Alexander Stepanov and Meng Lee can be found at:

ftp://butler.hpl.hp.com/pub/stl/stl.zip for Borland C++ 4.x
ftp://butler.hpl.hp.com/pub/stl/sharfile.Z for GCC

There are many other interesting things there, too. An alternative site is

ftp://ftp.cs.rpi.edu/stl

This document deals with the HP implementation of STL, but there are others to:

ObjectSpace STL<ToolKit>

FSF/GNU libg++ 2.6.2:
ftp://prep.ai.mit.edu/pub/gnu/libg++-2.6.2.tar.gz

Both work with the GNU C++ compiler GCC 2.6.3 that can be found at:
ftp://prep.ai.mit.edu/pub/gnu/gcc-2.6.3.tar.gz

Especially for the work with ObjectSpace STL<ToolKit> you should patch your GCC 2.6.3
with the template fix that can be found at

ftp://ftp.cygnus.com/pub/g++/gcc-2.6.3-template-fix

Many examples for the ObjectSpace STL<ToolKit> can be found at
ftp://butler.hpl.hp.com/pub/stl/examples.gz (also .zip)

"� �! DA;b

David Mussers STL-page:
http://www.cs.rpi.edu/∼ musser/stl.html

Mumit’s STL Newbie guide:
http://www.xraylith.wisc.edu/∼ khan/software/stl/STL.newbie.html

Joseph Y. Laurino’s STL page:
http://weber.u.washington.edu/∼ bytewave/bytewave_stl.html

STL Tutorial page 14 Johannes Weidl

"�! FWPc S^Tb BC; R^]bXbc ^U.

Here comes a list of the files included in the HP-STL .ZIP package with the HASH extension:

DOC.PS STL Document [2]
DOCBAR.PS STL Document [2] with changebars from the previous version
IMP.PS
FILES.DIF Differences to the files of the previous version
READ.ME Information file
README.OLD Information file of the previous version

ALGO.H algorithm implementations
ALGOBASE.H auxiliary algorithms for ALGO.H
ITERATOR.H iterator implementations and iterator adaptors
FUNCTION.H operators, functions objects and function adaptors
TREE.H implementation of a red-black tree for associative containers
BOOL.H defines bool type
PAIR.H defines pair type to hold two objects
TRIPLE.H defines triple type to hold three objects

HEAP.H heap algorithms
STACK.H includes all container adaptors
HASH.H hash implementation
HASHBASE.H hashbase implementation needed by hash
TEMPBUF.CPP auxiliary buffer for get_temporary_buffer: should be complied and linked if

get_temporary_buffer, stable_partition, inplace_merge or stable_sort are used
TEMPBUF.H get_temporary_buffer implementation
PROJECTN.H select1st and ident implementation
RANDOM.CPP random number generator, should be compiled and linked if random_shuffle is used

DEFALLOC.H default allocator to encapsulate memory model
BVECTOR.H bit vector (vector template specialization), sequence container
DEQUE.H double ended queue, seuqence container
LIST.H list, sequence container
MAP.H map, associative container
MULTIMAP.H multimap, associative container
SET.H set, associative container
MULTISET.H multiset, associative container
VECTOR.H vector, sequence container

Dos/Windows specific include files:

Huge memory model:
HUGALLOC.H, HDEQUE.H, HLIST.H, HMAP.H, HMULTMAP.H, HMULTSET.H, HSET.H, HVECTOR.H

Far memory model:
FARALLOC.H, FDEQUE.H, FLIST.H, FMAP.H, FMULTMAP.H, FMULTSET.H, FSET.H

Large memory model:
LNGALLOC.H, LBVECTOR.H, LDEQUE.H, LLIST.H, LMAP.H, LMULTMAP.H, LMULTSET.H, LSET.H

Near memory model:
NERALLOC.H, NMAP.H, NMULTMAP.H, NMULTSET.H, NSET.H

Table 1: STL include and documentation files

STL Tutorial page 15 Johannes Weidl

"�" 2^_X[X]V BC; _a^VaP\b

"�"� 1^a[P]S 2�� #�� 3>B�_a^VaP\b

Command Line.

Assume a C++ program named vector.cpp:

#define __MINMAX_DEFINED // use STL's generic min and max templates
#define __USE_STL // exclude BC++'s redundant operator definitions

// STL include files - include STL files first!
#include "vector.h"

// C++ standard include files
#include <stdlib.h> // stdlib min and max functions are skipped
#include <cstring.h> // only compilable with __USE_STL directive
#include <classlib\alloctr.h> // only compilable with __USE_STL directive
#include <iostream.h>

void main (void)
{
 vector<int> v(5);
 v[0] = 4;
 cout << "First vector element: " << v[0];
}

The compiler directive #define __MINMAX_DEFINED prevents the compilation of the min and
max functions in the Borland C++ include file <stdlib.h>, because STL provides its own
template min and max functions.
I recommend to include all STL include files before the Borland C++ standard include files,
although this causes some work to be done.
There are some changes to be made in the include files <bc4\include\cstring.h> and
<bc4\include\classlib\alloctr.h>, if you plan to use them. Some operator definitions
have to be taken out of compilation, for example by adding

#if !defined (__USE_STL) [...] #endif,

because STL generates these operators automatically using template operator definitions.

The code after adding the necessary #if directives (italic letters) is shown in the following
box. The line numbers indicate the operator-definition-positions in the original include files:

<bc4\include\cstring.h>:
line 724:
#if !defined(__USE_STL)
inline int _RTLENTRY operator != (const string _FAR &s1, const string
_FAR &s2) THROW_NONE
{ [...] }
#endif

line 850:
#if !defined(__USE_STL)
inline int _RTLENTRY operator <= (const string _FAR &s1, const string
_FAR &s2) THROW_NONE
{ [...] }
#endif

line 866:
#if !defined(__USE_STL)
inline int _RTLENTRY operator > (const string _FAR &s1, const string
_FAR &s2) THROW_NONE
{ [...] }
#endif

STL Tutorial page 16 Johannes Weidl

line 882:
#if !defined(__USE_STL)
inline _RTLENTRY operator >= (const string _FAR &s1, const string _FAR
&s2)THROW_NONE
{ [...] }
#endif

<bc4\include\classlib\alloctr.h>, line 44:

#if !defined(__USE_STL)
 friend void *operator new(unsigned, void *ptr)

 { return ptr; }
#endif

Compile and link .cpp files using STL with the following command:

bcc -I<path-to-stl-directory> <file>.cpp

Example:

bcc -Ic:\bc4\stl vector.cpp

It is also possible to include the STL include files after the Borland C++ standard include
files, then programs would even compile without having changes in
<bc4\include\cstring.h>. But STL provides a number of template functions that increase
genericity and template operator definitions that generate operator!= out of operator== and
operators >, >=, <= out of operator<, so it seems advisable to choose the practice shown
above.

IDE (Integrated Development Environment).

Create a project specifying "DOS-Standard" as target-platform. Specify the STL-directory
under "options/project/directories" (german: "Optionen/Projekt/Verzeichnisse") as include-
directory. Use the #define __MINMAX_DEFINED statement when <stdlib.h> is included, use
#define __USE_STL when <cstring.h> and <classlib\alloctr.h> are included.

"�"�! 1^a[P]S 2�� #�� F8=3>FB�_a^VaP\b

As under DOS, the #define __MINMAX_DEFINED statement is needed when <stdlib.h> is
included. Use #define __USE_STL to compile your programs, when using <cstring.h> and
<classlib\alloctr.h>. Don’t forget to specify the STL-directory as include-directory
under "options/project/directories" (german: "Optionen/Projekt/Verzeichnisse").

Example program:

#define __MINMAX_DEFINED // use STL's generic min and max templates
#define __USE_STL // exclude BC++'s redundant operator definitions

// STL include files
#include "vector.h"
#include "algo.h"

// C++ standard include files
#include <stdlib.h> // stdlib min and max functions are skipped
#include <cstring.h> // only compilable with __USE_STL directive
#include <classlib\alloctr.h> // only compilable with __USE_STL directive

// OWL2 include files

STL Tutorial page 17 Johannes Weidl

#include <owl\owlpch.h>
#include <owl\applicat.h>

int OwlMain(int /*argc*/, char* /*argv*/ [])
{
 return TApplication("Compiled with STL include files").Run();
}

I encountered some problems when compiling windows programs that make extensive use of
STL containers. The compiler comes up with the error messages "code segment exceeds
64k" and "text segment exceeds 64k". The problem can be fixed by using the statements
#pragma codeseg <codeseg_name> code and #pragma codeseg <textseg_name>
text, respectively.

"�"�" 1^a[P]S 2�� #�$ 3>B� P]S F8=3>FB�_a^VaP\b

For programs written in Borland C++ 4.5 all information given in sections 3.3.1 and 3.3.2 can
be applied but there are some further points:

• The first include file has to be <classlib\defs.h>, because there Borland C++ defines
its bool type.

• Then, all STL include files have to be included (before any Borland C++ include files).
• Note, that the line numbers of operators that have to be commented out by a #define

__USE_STL directive in the include files <cstring.h> and <classlib\alloctr.h> are
not the same as given in section 3.3.1 for the appropriate Borland C++ 4.0 include files.

• A further operator has to be excluded by a #define __USE_STL directive in the include
file <owl\bitset.h> (found at the end of the include file), if it is used.

DOS-example (analogous for Windows):

#define __MINMAX_DEFINED // use STL's generic min and max templates
#define __USE_STL // exclude BC++'s redundant operator definitions

#include <classlib\defs.h> // use BC++4.5 bool definition

// STL include files
#include "vector.h"

// C++ standard include files
#include <stdlib.h>
#include <cstring.h>
#include <classlib\alloctr.h>
#include <owl\bitset.h>
#include <iostream.h>

void main (void)
{
 vector<int> v(1, 4);
 cout << v[0];
}

STL Tutorial page 18 Johannes Weidl

;TPa]X]V BC;

#� 2^]cPX]Tab

As Bjarne Stroustrup says, "One of the most useful kinds of classes is the container class, that is, a
class that holds objects of some (other) type", [1], §8.1. Containers form one crucial component of STL.
To sum up elements of a special type in a data structure, e.g. temperature values of an engine over a
definite distance of time, is a crucial task when writing any kind of software. Containers differ in the
way how the elements are arranged and if they are sorted using some kind of key.

In STL you find Sequence Containers and Associative Containers. As described in [2], "A sequence is
a kind of container that organizes a finite set of objects, all of the same type, into a strictly linear
arrangement". STL provides three basic kinds of Sequence Containers: Vectors, Lists and Deques,
where Deque is an abbreviation for Double Ended Queue.

Figure 2: Sequence Container

As Stepanov states, "Associative containers provide an ability for fast retrieval of data based on keys".
The elements are sorted and so fast binary search is possible for data retrieval. STL provides four basic
kinds of Associative Containers. If the key value must be unique in the container, this means, if for each
key value only one element can be stored, Set and Map can be used. If more than one element are to be
stored using the same key, Multiset and Multimap are provided.

Figure 3: Associative Container

Here is a summary including all containers provided by STL:

Sequence Containers Vector
Deque
List

Associative Containers Set
Multiset
Map
Multimap

Table 2: STL Containers

Andy Mary Peter TomJohn

John Peter Mary AndyTom

STL Tutorial page 19 Johannes Weidl

#� � ETRc^a

Assume we want to develop a Graphical User Interface for a control station in an electric
power station. The single elements, like turbines, pipes and electrical installations are shown
on a screen. For each power station element we derive a special class from the shape class in
section 2 to represent its look on the screen. The class hierarchy could look like this:

Figure 4: Example shape class hierarchy

We store all shapes that are shown on a certain screen in the appropriate shape-container, e.g.
all turbine objects that are shown on the main screen in a turbine-container. When the screen
is called, the containers are used to draw a representation of the appropriate part of the power
station.

In C++ one could use an array:

turbine main_screen_turbines [max_size];

where max_size is the maximum number of turbine objects that can be stored in the
main_screen_turbines array.

When you use STL, you would choose this:

#include <vector.h>

typdef int turbine; // so we don´t have to define the turbine class

int main() {

vector<turbine> main_screen_turbines;
return 0;

}

Note: To make this little example run you have to read section 3.3 on how to compile STL
programs. To use a vector in your program, include vector.h. In the following
examples only the essential code lines are presented and most of the include stuff and
the main function are omitted.

As you can see, you don’t have to specify a maximum size for the vector, because the vector
itself is able to dynamically expand its size. The maximum size the vector can reach - i.e. the
maximum number of elements it is able to store - is returned by the member function
max_size() of the vector class:

shape

turbine hornpipe switch

electrical switch mechanical switch

STL Tutorial page 20 Johannes Weidl

vector<turbine>::size_type max_size = main_screen_turbines.max_size();

Note: Many member functions described in the vector-section can be found among the rest of
the STL containers, too. The description applies to those containers accordingly and
will be referenced when discussing these containers.

size_type is an unsigned integral type, this could be for example unsigned long. The type
that determines the size of the different containers is encapsulated by a typedef to abstract
from the actual memory model used. For example:

typedef unsigned long size_type;

if the size is expressible by the built in type unsigned long.

STL abstracts from the specific memory model used by a concept named allocators. All the
information about the memory model is encapsulated in the Allocator class. Each container
is templatized (parametrized) by such an allocator to let the implementation be unchanged
when switching memory models.

template <class T, template <class U> class Allocator = allocator>
class vector {

...
};

The second template argument is a default argument that uses the pre-defined allocator
"allocator", when no other allocator is specified by the user. I will describe allocators in
detail in section 4.5.

If you want to know the actual size of the vector - i.e. how many elements it stores at the
moment - you have to use the size() member function:

vector<turbine> main_screen_turbines;

vector<turbine>::size_type size = main_screen_turbines.size();
cout << "actual vector size: " << size;

Output: actual vector size: 0

Like size_type describes the type used to express the size of a container, value_type gives
you the type of the objects that can be stored in it:

vector<float> v;
cout << "value type: " << typeid1 (vector<float>::value_type).name();

Output: value type: float

A container turns out useless if no object can be inserted into or deleted from it. The vector, of
course, provides member functions to do these jobs and it does quite a bit more:
It is guaranteed that inserting and erasing at the end of the vector takes amortized constant
time whereas inserting and erasing in the middle takes linear time.
As stated in [3], R-5, "In several cases, the most useful characterization of an algorithm’s
computing time is neither worst case time nor average time, but amortized time. [...]
Amortized time can be a useful way to describe the time taken by an operation on some

1 To use typeid include typeinfo.h

STL Tutorial page 21 Johannes Weidl

container in cases where the time can vary widely as a sequence of the operations is done, but
the total time for a sequence of N operations has a better bound than just N times the worst-
case time." To understand this, remember that a vector is able to automatically expand its
size. This expansion is done, when an insert command is issued but no room is left in the
storage allocated. In that case, STL allocates room for 2n elements (where n is the actual size
of the container) and copies the n existing elements into the new storage. This allocation and
the copying process take linear time. Then the new element is inserted and for the next n-1
insertions only constant time is needed. So you need O(n) time for n insertions, averaged over
the n insert operations this results in O(1) time for one insert operation. This more accurately
reflects the cost of inserting than using the worst-case time O(n) for each insert operation.

Of course amortized constant time is about the same overhead as you have when using C/C++
arrays but note that it is important to be about the same - and not more.
For the authors of STL complexity considerations are very important because they are
convinced that component programming and especially STL will only be accepted when there
is no (serious) loss of efficiency when using it.
Maybe there are users who can afford to work inefficiently but well designed - most can not.

The following table shows the insert and erase overheads of the containers vector, list and
deque. Think of these overheads when choosing a container for solving a specific task.

Table 3: Insert and erase overheads for vector, list and deque

Before we look at the insert functionality, there is another thing to consider. When a vector is
constructed using the default constructor (the default constructor is used when no argument is
given at the declaration), no memory for elements is allocated:

vector<int> v;

We can check this using the member function capacity(), which shows the number of
elements for which memory has been allocated:

vector<int>::size_type capacity = v.capacity();
cout << "capacity: " << capacity;

Output: capacity: 0

At the first glance this doesn’t make any sense but it gets clear when you consider, that the
vector class itself is able to allocate memory for the objects inserted. In C++ you would fill
your turbine array as follows:

turbine turb;
turbine main_screen_turbines [max_size];

main_screen_turbines[0] = turb;

In STL you can use this syntax, too:

Container insert/erase overhead
at the beginning in the middle at the end

Vector linear linear amortized constant
List constant constant constant
Deque amortized constant linear amortized constant

STL Tutorial page 22 Johannes Weidl

turbine turb;
vector<turbine> main_screen_turbines (10); // allocate memory for 10
 // elements
main_screen_turbines[0] = turb;

Now, we don’t use the default constructor but specify a number that tells the vector for how
many elements memory should be allocated. Then we use the overloaded subscribe operator
(operator[]) to insert a turbine object into the vector.

Note: If you use the subscribe operator with an index, for which no memory has been
allocated (this is true for all indices when declaring a vector without specifying a vector
size), the result will be undefined!

To avoid memory allocation stuff the vector provides different member functions to insert
elements into the vector. These insert functions do automatic memory allocation and - if
necessary - expansion. To append an element at the end of a vector use push_back():

vector<int> v;

v.push_back (3);
cout << v.capacity() << endl;
cout << v[0];

Output: 2048 2

3

Three different (overloaded) kinds of insert() member functions can be used. Here comes
the first:

vector<int> v;

v.insert (v.end(), 3);
cout << v.capacity() << endl;
cout << v[0];

Output: 2048
3

This first kind of the insert() member function needs two arguments: an iterator "pointing"
to a definite container position and an element which is to be inserted.
The element is inserted before the specified iterator-position, that is before the element the
specified iterator points to.
The term iterator needs some explanation. There are two member functions which return so-
called iterators: begin() and end().
Iterators are a generalization of the C++ pointers. An iterator is a kind of pointer but indeed
more than a pointer. Like a pointer is dereferenced by the expression *pointer, an iterator has
the dereference operator* defined which returns a value of a specific type - the value type of
the iterator. Additionally, like a pointer can be incremented by using the operator++, an
iterator can be incremented in the same way. Iterators most often are associated with a
container. In that case, the value type of the iterator is the value type of the container and
dereferencing the iterator returns an object of this value type. Look at this example to get a
feeling how iterators behave:

2 This value depends on the environment (memory model) used

STL Tutorial page 23 Johannes Weidl

vector<int> v(3);

v[0] = 5;
v[1] = 2;
v[2] = 7;

vector<int>::iterator first = v.begin();
vector<int>::iterator last = v.end();

while (first != last)

 cout << *first++ << " ";

Output: 5 2 7

v.begin() returns an iterator to the first element in the vector. The iterator can be
dereferenced and incremented like a C++ pointer.
Please note, that v.end() doesn’t return an iterator that points to the last element in the vector
- as now could be supposed - but past the last element (however, in the STL code such an
iterator is named last). Accordingly it is called past-the-end iterator. A user is not supposed
to dereference such an iterator, because the result would be undefined. The while loop checks
if the first iterator is equal to the last iterator. If not, the iterator is dereferenced to get the
object it is pointing to, then it is incremented. So, all vector elements are written to cout.

Figure 5: Range specified by iterators

A range [i, j) given by the iterators i and j is valid, if j is reachable from i, that means
if there is a finite sequence of applications of operator++ to i that makes i==j;
Ranges given by two iterators are very important in STL, because STL algorithms largely
work in the following way:

sort (begin-iterator, past_the_end-iterator)

where begin-iterator specifies the first element in the range and past_the_end-iterator
points past the last element of the range to be sorted.
The range is correctly specified by the expression [begin-iterator, past_the_end-
iterator).

object of type
value_type

AndyJohn Peter MaryTom

iterator returned by
member function
begin()

iterator returned by
member function
end()

range [begin(), end())

STL Tutorial page 24 Johannes Weidl

A valid sort command for our vector-example would be:

sort3 (v.begin(), v.end());

Using iterators as intermediates, we are able to seperate the algorithms from the container
implementations:

Figure 6: Orthogonal decomposition of the component space

After this short survey on iterators, which will be described in very detail in the next section,
we focus on the vector container again.
We learned that specifying a number when declaring a vector reserves memory for elements.
Additionally to that, you can give the elements for which memory is reserved an initial value:

vector<int> v(3, 17);
for (int i = 0; i < 3; i++) cout << v[i] << " ";

Output: 17 17 17

It is possible to construct a vector out of another or to assign one vector to another vector:

vector<float> v (5, 3.25);

vector<float> v_new1 (v); // construct v_new1 out of v
vector<float> v_new2 = v; // assign v to vnew2
vector<float> v_new3 (v.begin(), v.end());

// construct v_new3 out of the elements of v

The last version uses iterators to specify the range out of which the v_new3 vector should be
constructed. The three v_new - vectors are all equal:

(v_new1 == v_new2) && (v_new2 == v_new3) && (v_new1 == v_new3) ? \
cout << "equal" : cout << "different";

Output: equal

To be able to compare vectors, an equality operator== for vectors is provided.

To swap two vectors, a special member function is provided which needs merely constant
time, because only internal pointers are manipulated.

3 To use algorithms in your programs you have to include algo.h

Container

Algorithm

Iterator Iterator

Object

STL Tutorial page 25 Johannes Weidl

vector<int> v (1, 10);
vector<int> w (1, 20);

v.swap (w);
cout << v[0];

Output: 20

With the member function empty() one can test if a vector is empty, i.e. if its size is zero:

vector<char> v;
v.empty() ? cout << "empty" : cout << "not empty";

Output: empty

The first and the last element are returned when invoking front() and back():

vector<int> v (10, 5);
v.push_back (7);
cout << v.front() << " " << v.back();

Output: 5 7

With pop_back() the last element is returned and deleted from the vector.

vector<int> v (1, 2);
int value = v.pop_back ();
cout << value << endl;
v.empty() ? cout << "empty" : cout << "not empty";

Output: 2
empty

Additionally to the insert() member function that takes an iterator and an element as
arguments, two more versions are provided:

vector<int> v;
v.insert (v.begin(), 2, 5); // vector v: 5 5

vector<int> w (1, 3);
w.insert (w.end(), v.begin(), v.end()); // vector w: 3 5 5

The second argument of the first version specifies how many copies of an element - given as
third argument - should be inserted before the specified iterator-position (first argument). The
second version takes additionally to the inserting position w.end() two iterators that specify
the range which is to be inserted.

Using the erase() member function, it is possible to erase single elements or ranges
(specified by two iterators) from a vector. Accordingly, there are two versions of erase().
Erasing at the end of the vector takes constant time whereas erasing in the middle takes linear
time.

vector<float> v (4, 8.0); // vector v: 8.0 8.0 8.0 8.0
v.erase (v.begin()); // vector v: 8.0 8.0 8.0
v.erase (v.begin(), v.end()); // vector v:

STL Tutorial page 26 Johannes Weidl

The first version erases the first vector element. The second version erases all remaining
elements so the vector gets empty.

When inserting in or erasing from a container, there is something to take into consideration. If
you have an iterator pointing e.g. to the end of a vector and you insert an element at its
beginning, the iterator to the end gets invalid. Only iterators before the insertion point remain
valid. If no place is left and expansion takes place, all iterators get invalid. This is clear,
because new memory is allocated, the elements are copied and the old memory is freed.
Iterators aren’t automatically updated and get invalid, that means the result of operations
using such iterators is undefined. Take this into consideration when inserting or erasing and
then using iterators earlier defined on this container. The following table shows the validity of
the containers vector, list and deque after inserting and erasing an element, respectively.

Table 4: Iterator validity after inserting or erasing

Now we are able to store objects in a container (at least in the vector) that provides several
means to administer and maintain it. To apply algorithms to the elements in the vector we have
to understand the iterator concept which is described in detail in the next section.

#� �! 4gTaRXbTb

This section contains specifications for exercises dealing with the topics in section 4.1.
Solving these tasks should give you the possibility to apply your lections learned and compare
your solutions with the ones given in the solutions part of this tutorial.

Exercise 4.1.1: Write a STL program that declares a vector of integer values, stores five
arbitrary values in the vector and then prints the single vector elements to cout. Be sure
to have read section 3.3 on how to compile STL programs.

Exercise 4.1.2: Write a STL program that takes an arbitrary sequence of binary digits (integer
values 0 and 1) from cin and stores them into a container. When receiving a value
different from 0 or 1 from cin stop reading. Now, you should have a container storing a
sequence of 0’s and 1’s. After finishing the read-process, apply a "bit-stuffing" algorithm
to the container. Bit-stuffing is used to transmit data from a sender to a receiver. To
avoid bit sequences in the data, which would erroneously be interpreted as the stop flag
(here: 01111110), it is necessary to ensure that six consecutive 1’s in the data are splitted
by inserting a 0 after each consecutive five 1’s. Hint: Complexity considerations
(inserting in the middle of a vector takes linear time!) and the fact, that inserting into a
vector can make all iterators to elements invalid should make you choose the STL
container list. A list of integers is defined like a vector by list<int> l; All
operations explained in the vector section are provided for the list, too. Get an iterator to
the first list element. As long as this iterator is different from the end() iterator
increment the iterator and dereference it to get the appropriate binary value. Note that an

Container operation iterator validity
vector inserting reallocation necessary - all iterators get invalid

no reallocation - all iterators before insert point remain valid
erasing all iterators after erasee point get invalid

list inserting all iterators remain valid
erasing only iterators to erased elements get invalid

deque inserting all iterators get invalid
erasing all iterators get invalid

STL Tutorial page 27 Johannes Weidl

element is always inserted before a specified iterator-position and that this insertion
doesn’t affect all the other iterators defined when using a list.

Exercise 4.1.3: Refine Exercise 4.1.2 and print the original bit sequence and the "bit-stuffed"
bit sequence to cout. Use the hint from Exercise 4.1.2 to form a loop for the output
procedure.

Exercise 4.1.4: Refine Exercise 4.1.3 and print out the absolute and relative expansion of the
bit sequence. The absolute expansion is the expasion measured in bits (e.g. the bit-
stuffed sequence has increased by 5 bits), the relative expansion is the percentage of the
expansion (e.g. the relative expansion between the "new" and "old" sequence is 5.12%).

Exercise 4.1.5: Refine Exercise 4.1.4 and write the inverse algorithm to the one in Exercise
4.1.2 that the receiver has to perform to get the initial binary data representation. After
the bit-stuffing and bit-unstuffing compare your list with the original one using the
equality operator==. If the lists are equal, you did a fine job. Note: It is advisable to
include a plausibility test in your unstuff algorithm. After a sequence of five consecutive
ones there must be a zero, otherwise something went wrong in the stuffing algorithm.

#�! 8cTaPc^ab

"Iterators are a generalization of pointers that allow a programmer to work with different data structures
(containers) in a uniform manner", [2]. From the short survey in section 4.1.1 we know that iterators are
objects that have operator* returning a value of a type called the value type of the iterator.

Since iterators are a generalization of pointers it is assumed that every template function that takes
iterators as arguments also works with regular pointers.

There are five categories of iterators. Iterators differ in the operations defined on them. Each iterator is
designed to satisfy a well-defined set of requirements. These requirements define what operations can be
applied to the iterator. According to these requirements the iterators can be assigned to the five
categories. Iterator categories can be arranged from left to right to express that the iterator category on
the left satisfies the requirements of all the iterator categories on the right (and so could be called more
powerful).

Figure 7: Iterator categories

Random Access
Iterators

Bidirectional
Iterators

Forward
Iterators

Input
Iterators

Output
Iterators

means, iterator category on the left satisfies the requirements of all iterator categories
on the right

STL Tutorial page 28 Johannes Weidl

This arrangement means that a template function wich expects for example a bidirectional iterator can
be provided with a random access iterator, but never with a forward iterator. Imagine an algorithm that
needs random access to fulfil his task, but is provided with a method that only allows to pass through
the elements successively from one to the next. It simply won’t work.

Iterators that point past the last element of a range are called past-the-end iterators. Iterators for which
the operator* is defined are called dereferenceable. It is never assumed that past-the-end iterators are
dereferenceable. An iterator value (i.e. an iterator of a specific iterator type) that isn’t associated with a
container is called singular (iterator) value. Pointers can also be singular. After the declaration of an
uninitialized pointer with

int* x;

x is assumed to be singular. Dereferenceable and past-the-end iterators are always non-singular.

All the categories of iterators have only those functions defined that are realizeable for that category in
(amortized) constant time. This underlines the efficiency concern of the library.

Because random access in a linked list doesn’t take constant time (but linear time), random access
iterators cannot be used with lists. Only input/output iterators up to bidirectional iterators are valid for
the use with the container list. The following table shows the iterators that can be used with the
containers vector, list and deque (of course all iterators that satisfy the requirements of the listed
iterators can be used as well):

Container Iterator Category
vector random access iterators
list bidirectional iterators
deque random access iterators

Table 5: Most powerful iterator categories that can be used with vector, list and deque

Iterators of these categories are returned when using the member functions begin or end or declaring an
iterator with e.g. vector<int>::iterator i;
The iterator categories will be explained starting with the input iterators and output iterators.

#�!� 8]_dc 8cTaPc^ab P]S >dc_dc 8cTaPc^ab

An input iterator has the fewest requirements. It has to be possible to declare an input iterator.
It also has to provide a constructor. The assignment operator has to be defined, too. Two input
iterators have to be comparable for equality and inequality. operator* has to be defined and
it must be possible to increment an input iterator.

Input Iterator Requirements:

• constructor
• assignment operator
• equality/inequality operator
• dereference operator
• pre/post increment operator

STL Tutorial page 29 Johannes Weidl

Output iterators have to satisfy the following requirements:

Output Iterator Requirements:

• constructor
• assignment operator
• dereference operator
• pre/post increment operator

These abstract requirements should get clear if you look at special input and output iterators
provided by the library - the istream iterator and the ostream iterator.

"To make it possible for algorithmic templates to work directly with input/output streams,
appropriate iterator-like template classes are provided", [2]. These template classes are named
istream_iterator and ostream_iterator. Assume we have a file filled with 0’s and 1’s.
We want to read the values from a file and write them to cout. In C++ one would write:

ifstream4 ifile ("example_file");
int tmp;

while (ifile >> tmp) cout5 << tmp;

Output (example): 110101110111011

Note: The 0’s and 1’s in the file have to be separated by whitespaces (blank, tab, newline,
formfeed or carriage return).

Using an istream and an ostream iterator in combination with the algorithm copy enables us to
write the following:

ifstream ifile ("example_file");

copy (istream_iterator6<int, ptrdiff_t> (ifile),
 istream_iterator<int, ptrdiff_t> (),

 ostream_iterator<int> (cout));

The output will be the same as in the above C++ example. copy is an algorithm that takes two
iterators to specify the range from which elements are copied and a third iterator to specify the
destination where the elements should be copied to. The template function looks as follows:

template <class InputIterator, class OutputIterator>
OutputIterator copy (InputIterator first, InputIterator last,

 OutputIterator result);

The template arguments have semantic meaning, they describe the iterator categories of that
iterators provided to the function at least have to be. The iterators specifying the input range
have to be at least input iterators, that means that it must be possible to increment and
dereference them to get the appropriate values. The iterator specifying the result position has
to be at least of the output iterator category. Since forward, bidirectional and random access
iterators satisfy the requirements of input and output iterators, they can be used instead with
the same functionality.

4 To use ifstream include fstream.h
5 To use streams like cin and cout and operator<<, operator>> for streams include iostream.h
6 To use istream_iteator or ostream_iterator include iterator.h
If you have to include algo.h (as in this example), iterator.h is already included by algo.h

STL Tutorial page 30 Johannes Weidl

Dereferencing an output iterator has to result in a lvalue, that means it has to be possible to
assign a value to the dereferenced output iterator (that is as you know an object of the value
type of the iterator). For output iterators, the only valid use of the operator* is on the left
side of the assignment statement:

a is an output iterator, t is a value of value type T

*a = t; valid
t = *a; invalid

For output iterators, the three following conditions should hold:

• Assignment through the same value of the iterator should happen only once.

ostream_iterator<int> r (cout);
*r = 0;
*r = 1;

is not a valid code sequence.

• Any iterator value sould be assigned before it is incremented.

ostream_iterator<int> r (cout);
r++;
r++;

is not a valid code sequence.

• Any value of an output iterator may have at most one active copy at any given time.

// i and j are output iterators
// a and b are values written to a iterator position
i = j;
*i++ = a;
*j = b;

is not a valid code sequence.

For both input and output iterators algorithms working on them are assumed to be single pass
algorithms. Such algorithms are never assumed to attempt to pass the same iterator twice.

For input iterators r and s, r==s does not imply ++r == ++s:

ifstream ifile ("example_file") // example_file: 0 1 2 3

istream_iterator<int, ptrdiff_t> r (ifile);
istream_iterator<int, ptrdiff_t> s (ifile);

(r==s) ? cout << "equal" : cout << "not equal";
cout << endl;

++r;
++s;

cout << *r << endl;
cout << *s << endl;

(r==s) ? cout << "equal" : cout << "not equal";
cout << endl;

STL Tutorial page 31 Johannes Weidl

Output: equal
2
3
equal

Note: For input two input iterators a and b, a == b implies *a == *b. For istream iterators,
this condition doesn't hold.

When incrementing an input iterator, a value is read from the input stream and stored
temporarily in the input iterator object. Dereferencing the input iterator returns the value
stored.

The constructor of the istream iterator takes an input stream as its argument from which
values are read. To yield an end-of-stream iterator which represents the end of file (EOF) of the
input stream, the default constructor has to be used. To successfully construct an istream
iterator, two template arguments have to be provided, too. The first argument specifies the
type of the elements read from the input stream, the second is ptrdiff_t, that is the type of
the difference of two pointers in the actual memory model (see section 4.5 - allocators).

The constructor of the ostream iterator can take one or two arguments. However, the first
argument specifies the output stream to which values are written. The alternative second
argument is a string which is printed between the written values. ostream_iterator takes a
template argument which determines the type of the values written to the output stream.

It will often be asked to copy elements from an input stream (e.g. a file) directly into a
container:

vector<int> v;
ifstream ifile ("example_file");

copy (istream_iterator<int, ptrdiff_t> (ifile),
 istream_iterator<int, ptrdiff_t> (),

 back_inserter(v));

The function back_inserter returns a back_insert_iterator. This is a so-called iterator
adaptor (explained in detail in section 4.4) and is a kind of past-the-end iterator to the
container. The container, for which a back insert iterator is to be created, has to be handed
over to back_inserter. When a value is written to the back insert iterator, it is appended to
the specified container as its last element. If, for example, v.end() is used instead of the back
insert iterator in the example above, all the values inserted will be written to the same vector
position (v.end()), because v.end() isn't incremented after writing to it. This increment is
internally done by the back insert iterator by calling the container member function
push_back.

#�!�! 5^afPaS 8cTaPc^ab

Forward iterators have to satisfy the following requirements:

STL Tutorial page 32 Johannes Weidl

Forward Iterator Requirements:

• constructor
• assignment operator
• equality/inequality operator
• dereference operator
• pre/post increment operator

The difference to the input and output iterators is that for two forward iterators r and s, r==s
implies ++r==++s. A difference to the output iterators is that operator* is also valid on the
left side of the assignment operator (t = *a is valid) and that the number of assignments to a
forward iterator is not restricted.

So, multi-pass one-directional algorithms can be implemented on containers that allow the
use of forward iterators (look at Table 5). As an example for a single-pass one-directional
algorithm find_linear is presented. It iterates through the elements of a container and
returns the iterator position where a value provided to find_linear is found, otherwise the
past-the-end iterator is returned. The overhead of find_linear is statistically n/2.

template<class ForwardIterator, class T>
ForwardIterator find_linear (ForwardIterator first,
 ForwardIterator last, T& value) {
 while (first != last) if (*first++ == value) return first;
 return last;
}

vector<int> v (3, 1);
v.push_back (7); // vector v: 1 1 1 7

vector<int>::iterator i = find_linear (v.begin(), v.end(), 7);
if (i != v.end()) cout << *i; else cout << "not found";

Output: 7

#�!�" 1XSXaTRcX^]P[8cTaPc^ab

In addition to forward iterators, bidirectional iterators satisfy the following requirements:

Bidirectional Iterator Requirements (additional to forward iterators’):

• pre/post decrement operator

Bidirectional iterators allow algorithms to pass through the elements forward and backward.

list<int> l (1, 1);
l.push_back (2); // list l: 1 2

list<int>::iterator first = l.begin();
list<int>::iterator last = l.end();

while (last != first) {
 --last;
 cout << *last << " ";
}

Output: 2 1

STL Tutorial page 33 Johannes Weidl

The bubble sort algorithm serves as an example for a multi-pass algorithm using bidirectional
iterators.

template <class BidirectionalIterator, class Compare>
void bubble_sort (BidirectionalIterator first, BidirectionalIterator last,
 Compare comp)
{
 BidirectionalIterator left_el = first, right_el = first;
 right_el++;

 while (first != last)
 {

 while (right_el != last) {
 if (comp(*right_el, *left_el)) iter_swap (left_el, right_el);
 right_el++;
 left_el++;
 }
 last--;
 left_el = first, right_el = first;
 right_el++;
 }
}

The binary function object Compare has to be provided by the user of bubble_sort.
Compare, which implements a binary predicate, takes two arguments and returns the result
(true or false) of the predicate provided with the two arguments.

list<int> l;
// fill list
bubble_sort (l.begin(), l.end(), less<int>()); // sort ascendingly
bubble_sort (l.begin(), l.end(), greater<int>());// sort descendingly

#�!�# AP]S^\ 0RRTbb 8cTaPc^ab

In addition to bidirectional iterators, random access iterators satisfy the following
requirements:

Random Access Iterator Requirements (additional to bidirectional iterators’):

• operator+ (int)
• operator+= (int)
• operator- (int)
• operator-= (int)
• operator- (random access iterator)
• operator[] (int)
• operator < (random access iterator)
• operator > (random access iterator)
• operator >= (random access iterator)
• operator <= (random access iterator)

Random access iterators allow algorithms to have random access to elements stored in a
container which has to provide random access iterators, like the vector.

STL Tutorial page 34 Johannes Weidl

vector<int> v (1, 1);
v.push_back (2); v.push_back (3); v.push_back (4); // vector v: 1 2 3 4

vector<int>::iterator i = v.begin();
vector<int>::iterator j = i + 2; cout << *j << " ";
i += 3; cout << *i << " ";
j = i - 1; cout << *j << " ";
j -= 2;
cout << *j << " ";
cout << v[1] << endl;
(j < i) ? cout << "j < i" : cout << "not (j < i)"; cout << endl;
(j > i) ? cout << "j > i" : cout << "not (j > i)"; cout << endl;
i = j;
i <= j && j <= i ? cout << "i and j equal" : cout << "i and j not equal";
cout << endl;
j = v.begin();
i = v.end();
cout << "iterator distance end - begin =^ size: " << (i - j);

Output: 3 4 3 1 2
j < i
not (i > j)
i and j equal
iterator distance end - begin =^ size: 4

An algorithm that needs random access to container elements to work with O(ld n) is the
binary search algorithm. In section 4.3 algorithms and function objects are explained and it is
shown how they work together in a very advantageous way.

#�!�$ 4gTaRXbTb

Exercise 4.2.1: Refine Exercise 4.1.5 by reading the original bit sequence out of a user built
file bit_seq. Additionally, store the bit-stuffed bit sequence in the file bit_stff (note that
the integer values in the input and output stream have to be separated by whitespaces).
Hint: The output file bit_stff has to be declared as ofstream, which is defined like
ifstream in fstream.h.

#�" 0[V^aXcW\b P]S 5d]RcX^] >QYTRcb

All the algorithms provided by the library are parametrized by iterator types and are so seperated from
particular implementations of data structures. Because of that they are called generic algorithms.

#�"� 7^f c^ RaTPcT P VT]TaXR P[V^aXcW\

I want to evolve a generic binary search algorithm out of a conventional one. The starting
point is a C++ binary search algorithm which takes an integer array, the number of elements
in the array and the value searched for as arguments. binary_search returns a constant
pointer to the element - if found - the nil pointer else.

STL Tutorial page 35 Johannes Weidl

const int* binary_search (const int* array, int n, int x) {

 const int* lo = array, *hi = array + n, *mid;
 while(lo != hi) {
 mid = lo + (hi - lo) / 2;
 if (x == *mid) return mid;
 if (x < *mid) hi = mid; else lo = mid + 1;
 }
 return 0;
}

Let us look at the assumptions this algorithm makes about its environment. binary_search
only works with integer arrays. To make it work with arrays of arbitrary types we transform
binary_search in a template function.

template<class T>
const T* binary_search (const T* array, int n, const T& x) {

 const T* lo = array, *hi = array + n, *mid;
 while(lo != hi) {
 mid = lo + (hi - lo) / 2;
 if (x == *mid) return mid;
 if (x < *mid) hi = mid; else lo = mid + 1;
 }
 return 0;
}

Now the algorithm is designed for use with arrays of different types. In case of not finding the
value searched for, a special pointer - nil - is returned. This requires that such a value exists.
Since we don’t want to make this assumption, in case of an unsuccessful search we return the
pointer array + n (yes, a past-the-end pointer) instead.

template<class T>
const T* binary_search (const T* array, int n, const T& x) {

 const T* lo = array, *hi = array + n, *mid;
 while(lo != hi) {
 mid = lo + (hi - lo) / 2;
 if (x == *mid) return mid;
 if (x < *mid) hi = mid; else lo = mid + 1;
 }
 return array + n;
}

Instead of handing over array as pointer to the first element and a size, we could also specify
a pointer to the first and past the last element to approach STL’s iterator concept.

template<class T>
const T* binary_search (T* first, T* last, const T& value) {

 const T* lo = array, *hi = array + n, *mid;
 while(lo != hi) {
 mid = lo + (hi - lo) / 2;
 if (value == *mid) return mid;
 if (value < *mid) hi = mid; else lo = mid + 1;
 }
 return last;
}

To specify a pointer to the end of a container instead of handing over its size has the
advantage that it has not to be possible to compute last out of first with first+n. This is
important for containers that don’t allow random access to their elements. Because our
binary_search needs random access to the elements of the container, this is of little

STL Tutorial page 36 Johannes Weidl

importance in our example. Another advantage is that the difference type (here int) doesn’t
have to be explicitly handed over, so the user of binary_search doesn’t even have to know it.
The difference type is the type which is used to express the type of the difference of two
arbitrary iterators (pointers), for example last - first could be of the type signed long.

The last step to fully adapt the algorithm to the STL style is to change the first and last pointer
type from pointers to the value type to an appropriate iterator type. By this step, the
information of how the algorithm steps from one element to the next is torn away from the
algorithm implementation and is hidden in the iterator objects. Now, no assumptions about the
mechanism to iterate through the elements are made. This mechanism is handed over to the
algorithm by the iterator objects. So, the algorithm is separated from the container it works on,
all the operations that deal with iterators are provided by the iterator objects themselves.

Since binary_search needs random access to the elements of the container it is called for and
so iterators handed over to binary_search have to satisfy the requirements of random access
iterators, we name the type of first and last "RandomAccessIterator":

template<class RandomAccessIterator, class T>
RandomAccessIterator binary_search (RandomAccessIterator first,

 RandomAccessIterator last,
 const T& value) {

 RandomAccessIterator not_found = last, mid;
 while(first != last) {
 mid = first + (last - first) / 2;
 if (value == *mid) return mid;
 if (value < *mid) last = mid; else first = mid + 1;
 }
 return not_found;
}

The only assumptions the algorithm makes are the random access to elements of type T
between the two iterators (pointers) first and last and that operator== and operator< are
defined for type T and the value type of the iterator.

This generic binary search algorithm hasn’t lost anything of its functionality, especially not
when dealing with built in types.

int x[10]; // array of ten integer values
int search_value; // value searched for

// initialize variables

int* i = binary_search (&x[0], &x[10], search_value);
if (i == &x[10]) cout << "value not found"; else cout << "value found";

All the STL algorithms are constructed like our example algorithm - they try to make as few
assumptions as possible about the environment they are run in.

STL Tutorial page 37 Johannes Weidl

#�"�! CWT BC; P[V^aXcW\b

The algorithms delivered with the library are divided into four groups:

group algorithm type
1 mutating sequence operations
2 non-mutating sequence operations
3 sorting and related operations
4 generalized numeric operations

Table 6: STL algorithm types

Group 1 contains algorithms which don’t change (mutate) the order of the elements in a
container, this has not to be true for algorithms of group 2.

The algorithm for_each of group 1 takes two iterators and a function f of type Function as
arguments:

template <class InputIterator, class Function>
Function for_each (InputIterator first, InputIterator last, Function f);

The template argument f of type Function must not be mixed up with a "pure" C++ function,
because such a function can only be used in a roundabout way (see section 4.4.3). The
template function for_each expects a function object (section 2.2) as argument. f is assumed
not to apply any non-constant function through the dereferenced iterator.

for_each applies f to the result of dereferencing every iterator in the range [first, last)
and returns f. If f returns a value, it is ignored. The following example computes the sum of
all elements in the range [first, last).

template <class T>
class sum_up {

public:
void operator() (const T& value) { sum += value; }
const T& read_sum() { return sum; }

 private:
static T sum;

};

int sum_up<int>::sum;

void main(void) {

deque7<int> d (3,2);
sum_up<int> s;
for_each (d.begin(), d.end(), s);
cout << s.read_sum();

}

Output: 6

Group 1 also contains an algorithm find, which is very similar to find_linear from section
4.2.2.

7 To use a deque include deque.h

STL Tutorial page 38 Johannes Weidl

template <class InputIterator, class T>
InputIterator find(InputIterator first, InputIterator last,

 const T& value);

find takes a range and a reference to a value of arbitrary type. It assumes that operator==
for the value type of the iterator and T is defined. Additionally to find an algorithm named
find_if is provided, which takes a predicate pred of type Predicate.

template <class InputIterator, class Predicate>
InputIterator find_if(InputIterator first, InputIterator last,

 Predicate pred);

find_if (like find) returns the first iterator i in the range [first, last), for which the
following condition holds: pred(*i) = true. If such an iterator doesn’t exist, a past-the end
iterator is returned.

template <class T>
class find_first_greater {

public:
find_first_greater() : x(0) {}
find_first_greater(const& xx) : x(xx) {}
int operator() (const T& v) { return v > x; }

private:
T x;

};

vector<int> v;
// fill vector with 1 2 3 4 5
vector<int>::iterator i = find_if (v.begin(), v.end(),

 find_first_greater<int> (3));
i != v.end()? cout << *i : cout << "not found";

Output: 4

Generally, if there is a version of an algorithm which takes a predicate, it gets the name of the
algorithm with the suffix _if.

Some algorithms, like adjacent_find, take a binary predicate binary_pred of type
BinaryPredicate. adjacent_find returns the first iterator i, for which the following
condition holds: binary_pred (*i, *(i+1)) == true.

template <class InputIterator, class BinaryPredicate>
InputIterator adjacent_find(InputIterator first, InputIterator last,

 BinaryPredicate binary_pred);

For example, if you want to find the first pair of values, whose product is odd, you could write
this:

template <class T>
class prod_odd {

public:
int operator() (const T& v1, const T& v2)

{ return v1%2 != 0 && v2%2 != 0; }
};

list<int> l;
// fill list with 2 9 6 13 7
list<int>::iterator i = adjacent_find (l.begin(), l.end(),
 prod_odd<int>());
if (i != l.end()) { cout << *i << " "; i++; cout << *i++; }
else cout << "not found";

STL Tutorial page 39 Johannes Weidl

Output: 13 7

Algorithms can work in place, that means they do their work within the specified range.
Some algorithms have an additional version which copies well-defined elements to an output
iterator result. When such a version is provided, the algorithm gets the suffix _copy (which
precedes a probable suffix _if). For example there is replace_copy_if, which assigns to
every iterator in the range [result, result+(last-first)) either a new value (which
has to be specified) or the original value. This depends on a predicate given as argument.

template <class Iterator, class OutputIterator, class Predicate, class T>
OutputIterator replace_copy_if(Iterator first, Iterator last,

 OutputIterator result, Predicate pred,
 const T& new_value);

All the operations in group 3 have two versions. One that takes a function object comp of type
Compare and another that uses operator< to do the comparison. operator< and comp,
respectively, have to induce a total ordering relation on the values to ensure that the
algorithms work correctly.

vector<int> v;
// fill v with 3 7 5 4 2 6
sort (v.begin(), v.end());
sort (v.begin(), v.end(), less<int>());
sort (v.begin(), v.end(), greater<int>());

Output: 2 3 4 5 6 7
2 3 4 5 6 7
7 6 5 4 3 2

Since the library provides function objects for all of the comparison operators in the language
we can use less to sort the container ascendingly and greater to sort it descendingly.
All the provided function objects are derived either from unary_function or from
binary_function to simplify the type definitions of the argument and result types.

template <class Arg, class Result>
struct unary_function {
 typedef Arg argument_type;
 typedef Result result_type;
};

template <class Arg1, class Arg2, class Result>
struct binary_function {
 typedef Arg1 first_argument_type;
 typedef Arg2 second_argument_type;
 typedef Result result_type;
};

STL provides function objects for all of the arithmetic operations in the language. plus,
minus, times, divides and modulus are binary operations whereas negate is a unary
operation. As examples, look at plus and negate, the other functions objects are defined
accordingly.

template <class T>
struct plus : binary_function<T, T, T> {
 T operator()(const T& x, const T& y) const { return x + y; }
};

template <class T>

STL Tutorial page 40 Johannes Weidl

struct negate : unary_function<T, T> {
 T operator()(const T& x) const { return -x; }
};

The mentioned comparison function objects are equal_to, not_equal_to, greater, less,
greater_equal and less_equal, they are all binary function objects. less shall serve as
example.

template <class T>
struct less : binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const { return x < y; }
};

Additionally, the binary function objects logical_and and logical_or exist, logical_not
is a unary function object.

template <class T>
struct logical_and : binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const { return x && y; }
};

template <class T>
struct logical_not : unary_function<T, bool> {
 bool operator()(const T& x) const { return !x; }
};

The rest of the function object implementations can be found in [2], 6.

In group 4, the algorithm accumulate takes a binary operation binary_op of type
BinaryOperation. The algorithm accumulate does the same as for_each used with the
function object sum_up (presented earlier in this section).

template <class InputIterator, class T>
T accumulate(InputIterator first, InputIterator last, T init);

For each iterator i in [first, last), acc = acc + *i is computed, then acc is returned.
acc can be initialized with a starting value. Instead of operator+, an arbitrary binary
operation can be defined by the user, or a STL function object can be used.

vector<int> v;
v.push_back (2); v.push_back (5);
cout << accumulate (v.begin(), v.end(), 10, divides<int>());

Output: 1

I want to present an example which implements a spell-checker. For this purpose we assume
the following:

• The dictionary is stored in a file
• The text to check is stored in a file
• The words of the text should be checked against dictionary
• Every word not found or misspelled should be displayed

We decide to use a non-associative container (see section 4.1, introduction), which holds the
dictionary. The dictionary is assumed to be sorted. Now, we express the spell-checker
functionality in pseudo code.

STL Tutorial page 41 Johannes Weidl

for every word in text
check against dictionary
if not in dictionary write to output

This pseudo code can be expressed in different way:

copy every word of text to output
that is not in the dictionary

The last pseudo code variation can more directly be translated into a STL program. Since we
need a mechanism that tells us if a word is or is not in the dictionary, we encapsulate this
functionality in a function object.

template <class bidirectional_iterator, class T>
class nonAssocFinder {
public:
 nonAssocFinder(bidirectional_iterator begin,
 bidirectional_iterator end) :

_begin(begin), _end(end) {}

bool operator() (const T& word) {
return binary_search(_begin, _end, word); }

private:
bidirectional_iterator _begin;
bidirectional_iterator _end;

};

The function object nonAssocFinder is initialized with the iterators begin and end that have
to be at least of the bidirectional iterator category. The function call operator takes a word and
returns a boolean value, which states if the word has been found in the dictionary (the type
bool is defined by STL). This boolean value is returned by the STL algorithm
binary_search.

template <class ForwardIterator, class T>
bool binary_search(ForwardIterator first, ForwardIterator last,

 const T& value);

The first thing we do in our program is to define a dictionary as a vector of type string and
fill it out of an input stream.

typedef vector<string8> dict_type;

ifstream dictFile("dict.txt");
ifstream wordsFile("words.txt");

dict_type dictionary;

copy (istream_iterator<string, ptrdiff_t>(dictFile),
 istream_iterator<string, ptrdiff_t>(),

 back_inserter(dictionary));

8 To use the string type include cstring.h

STL Tutorial page 42 Johannes Weidl

Then we use the STL algorithm remove_copy_if to achieve the functionality wanted.

template <class InputIterator, class OutputIterator, class Predicate>
OutputIterator remove_copy_if(InputIterator first, InputIterator last,

 OutputIterator result, Predicate pred);

remove_copy_if writes all elements referred to by the iterator i in the range [first, last)
to the output iterator result, for which the following condition does not hold:
pred(*i) == true. The algorithm returns the end of the resulting range. The rest of the
spell-checker program proves to be a single statement.

remove_copy_if (
 istream_iterator<string, ptrdiff_t>(wordsFile),
 istream_iterator<string, ptrdiff_t>(),
 ostream_iterator<string>(cout, "\n"),
 nonAssocFinder<dict_type::iterator,
 dict_type::value_type>

(dictionary.begin(), dictionary.end()));

remove_copy_if reads words from the input stream wordsFile and writes the words for
which nonAssocFinder returns false (i.e. which are either not found or misspelled) to cout.

The components used are:

• algorithms: copy and remove_copy_if
• container: vector
• user defined: function object nonAssocFinder

Now you should have the basics to understand the chapter on algorithms in [2], 10. Since this
document is very theoretical, the algorithms in combination with a description and examples
can be found in [4], 6. A complete STL example can be found in [4], 5.

#�"�" 4gTaRXbTb

Exercise 4.3.1: Fill two containers with the same number of integer values. Create a new
container, whose elements are the sum of the appropriate elements in the original
container. Hint: The library provides an algorithm and a function object to do the
exercise.

Exercise 4.3.2: Write a generator object which can be used with the STL algorithm generate
(group 2) to fill containers with certain values. It should be possible to specify a starting
value and a step size, so that the first element in the container is the starting value and
every further element is the sum of the preceding element and the step size.

#�# 0SP_c^ab

As stated in [2], 11, "Adaptors are template classes that provide interface mappings". Adaptors are
classes that are based on other classes to implement a new functionality. Member functions can be
added or hidden or can be combined to achieve new functionality.

STL Tutorial page 43 Johannes Weidl

#�#� 2^]cPX]Ta 0SP_c^ab

Stack. A stack can be instantiated either with a vector, a list or a deque. The member
functions empty, size, top, push and pop are accessible to the user.

stack9<vector<int> > s1;
stack<list<int> > s2;
stack<deque<int> > s3;

s1.push(1); s1.push(5);
cout << s1.top() << endl;
s1.pop();
cout << s1.size() << endl;
s1.empty()? cout << "empty" : cout << "not empty";

Output: 5
1
not empty

top returns the element on the top of the stack, pop removes the top element from the stack.
For comparison of two stacks, operator== and operator< are defined.

Queue. A queue can be instantiated with a list or a deque.

queue<list<int> > q1;
queue<deque<int> > q2;

Its public member functions are empty, size, front, back, push and pop. front returns the
next element from the queue, pop removes this element. back returns the last element pushed
to the queue with push. As with the stack, two queues can be compared using operator==
and operator<.

Priority queue. A priority queue can be instantiated with a vector or a deque. A priority
queue holds the elements added by push sorted by using a function object comp of type
Compare.

// use less as compare object
priority_queue<vector<int>, less<int> > pq1;
// use greater as compare object
priority_queue<deque<int>, greater<int> > pq2;

vector v(3, 1);

// create a priority_queue out of a vector, use less as compare object
priority_queue<deque<int>, less<int> > pq3 (v.begin(), v.end());

top returns the element with the highest priority, pop removes this element. The element with
the highest priority is determined by the sorting order imposed by comp. Note, that a priority
queue internally is implemented using a heap. So, when less is used as compare object, the
element with the highest priority h will be one of the elements for which the following
condition holds: less (h, x) == false for all elements x in the priority queue.

Additionally, the member functions empty and size are provided. Note that no comparison
operators for priority queues are provided. For the implementations of the container adaptors,
read [2], 11.1.

9 To use a stack , queue or priority_queue include stack.h

STL Tutorial page 44 Johannes Weidl

#�#�! 8cTaPc^a 0SP_c^ab

Reverse Iterators. For the bidirectional and random access iterators corresponding reverse
iterator adaptors that iterate through a data structure in the opposite direction are provided.

list<int> l;
// fill l with 1 2 3 4
reverse_bidirectional_iterator10<list<int>::iterator,

 list<int>::value_type,
 list<int>::reference_type,
 list<int>::difference_type> r (l.end());

cout << *r << " ";
r++;
cout << *r << " ";
r --;
cout << *r;

Output: 4 3 4

list<int> l;
// fill l with 1 2 3 4

copy (reverse_iterator<int*, int, int&, ptrdiff_t> (l.end()),
 reverse_iterator<int*, int, int&, ptrdiff_t> (l.begin()),
 ostream_iterator<int> (cout, " "));

Output: 4 3 2 1

For all the sequence containers (vector, list and deque) the member functions rbegin and
rend are provided, which return the appropriate reverse iterators.

list<int> l;
// fill l with 1 2 3 4

copy (l.rbegin(), l.rend(), ostream_iterator<int> (cout, " "));

Output: 4 3 2 1

Insert Iterators. A kind of iterator adaptors, called insert iterators, simplify the insertion into
containers. The principle is that writing a value to an insert iterator inserts this value into the
container out of which the insert iterator was constructed. To define the position, where the
value is inserted, three different insert iterator adaptors are provided:

• back_insert_iterator

• front_insert_iterator

• insert_iterator

back_insert_iterator and front_insert_iterator are constructed out of a container
and insert elements at the end and at the beginning of this container, respectively. A
back_insert iterator requires the container out of which it is constructed to have
push_back defined, a front_insert_iterator correspondingly requires push_front.

deque<int> d;

back_insert_iterator<deque<int> > bi (d);
front_insert_iterator<deque<int> > fi (d);

10 To use reverse_bidirectional_iterator or reverse_iterator include iterator.h

STL Tutorial page 45 Johannes Weidl

insert_iterator is constructed out of a container and an iterator i, before which the values
written to the insert iterator are inserted.

deque<int> d;
insert_iterator<deque<int> > i (d, d.end());

Insert iterators satisfy the requirements of output iterators, that means that an insert iterator
can always be used when an output iterator is required. operator* returns the insert iterator
itself.

The three functions back_inserter, front_inserter and inserter return the appropriate
insert iterators.

template <class Container>
back_insert_iterator<Container> back_inserter(Container& x) {
 return back_insert_iterator<Container>(x);
}

template <class Container>
front_insert_iterator<Container> front_inserter(Container& x) {
 return front_insert_iterator<Container>(x);
}

template <class Container, class Iterator>
insert_iterator<Container> inserter(Container& x, Iterator i) {
 return insert_iterator<Container>(x, Container::iterator(i));
}

ifstream f ("example"); // file example: 1 3
deque<int> d;
copy (istream_iterator<int, ptrdiff_t>(f),

 istream_iterator<int, ptrdiff_t>(),
 back_inserter(d));

vector<int> w (2,7);
copy (w.begin(), w.end(), front_inserter (d));

insert_iterator<deque<int> > i = inserter (d, ++d.begin());
*i = 9;

Ouptut: 7 9 7 1 3

Raw Storage Iterator. A raw_storage_iterator enables algorithms to store results into
uninitialized memory.

vector<int> a (2, 5);
vector<int> b (2, 7);
int *c = allocate((ptrdiff_t) a.size(), (int*)0);

transform (a.begin(), a.end(), b.begin(),
raw_storage_iterator<int*, int> (c), plus<int>());

copy (&c[0], &c[2], ostream_iterator<int> (cout, " "));

Output: 12 12

The function allocate is provided by the STL allocator (see 4.5), transform is an algorithm
of group 2 (see 4.3.2). To use a raw storage iterator for a given type T, a construct function
must be defined, which puts results directly into uninitialized memory by calling the
appropriate copy constructor. The following construct function is provided by STL:

STL Tutorial page 46 Johannes Weidl

template <class T1, class T2>
inline void construct(T1* p, const T2& value) {
 new (p) T1(value);
}

int a[10] = {1, 2, 3, 4, 5};
copy (&a[0], &a[5], raw_storage_iterator<int*, int> (&a[5]));

#�#�" 5d]RcX^] 0SP_c^ab

Negators. The negators not1 and not2 are functions which take a unary and a binary
predicate, respectively, and return their complements.

template <class Predicate>
unary_negate<Predicate> not1(const Predicate& pred) {
 return unary_negate<Predicate>(pred);
}

template <class Predicate>
binary_negate<Predicate> not2(const Predicate& pred) {
 return binary_negate<Predicate>(pred);
}

The classes unary_negate and binary_negate only work with function object classes which
have argument types and result type defined. That means, that Predicate::argument_type
and Predicate::result_type for unary function objects and
Predicate::first_argument_type, Predicate::second_argument_type and
Predicate::result_type for binary function objects must be accessible to instantiate the
negator classes.

vector<int> v;
// fill v with 1 2 3 4
sort (v.begin(), v.end(), not2 (less_equal<int>()));

Output: 4 3 2 1

Binders. "The binders bind1st and bind2nd take a function object f of two arguments and a
value x and return a function object of one argument constructed out of f with the first or
second argument correspondingly bound to x.", [2],11.3.2. Imagine that there is a container
and you want to replace all elements less than a certain bound with this bound.

vector<int> v;
// fill v with 4 6 10 3 13 2
int bound = 5;

replace_if (v.begin(), v.end(), bind2nd (less<int>(), bound), bound);

// v: 5 6 10 5 13 5

bind2nd returns a unary function object less that takes only one argument, because the
second argument has previously been bound to the value bound. When the function object is
applied to a dereferenced iterator i, the comparison *i < bound is done by the function-call
operator of less.

Adaptors for pointers to functions. The STL algorithms and adaptors are designed to take
function objects as arguments. If a usual C++ function shall be used, it has to be wrapped in a
function object.

STL Tutorial page 47 Johannes Weidl

The function ptr_fun takes a unary or a binary function and returns the corresponding
function object. The function-call operator of these function objects simply calls the function
with the arguments provided.
For example, if a vector of character pointers is to be sorted lexicographically with respect to
the character arrays pointed to, the binary C++ function strcmp can be transformed into a
comparison object and can so be used for sorting.

vector<char*> v;
char* c1 = new char[20]; strcpy (c1, "Tim");
char* c2 = new char[20]; strcpy (c2, "Charles");
char* c3 = new char[20]; strcpy (c3, "Aaron");
v.push_back (c1); v.push_back (c2); v.push_back (c3);

sort (v.begin(), v.end(), ptr_fun (strcmp));
copy (v.begin(), v.end(), ostream_iterator<char*> (cout, " "));

Output: Aaron Charles Tim

Note: The above example causes memory leaks, because the memory allocated with new is not
automatically deallocated. See section 4.5 for a solution.

#�$ 0[[^RPc^ab P]S \T\^ah WP]S[X]V

"One of the common problems in portability is to be able to encapsulate the information about the
memory model.", [2], 7. This information includes the knowledge of

• pointer types
• type of their difference (difference type ptrdiff_t)
• type of the size of objects in a memory model (size type size_t)
• memory allocation and deallocation primitives.

STL provides allocators which are objects that encapsulate the above information. As mentioned in
section 4.1.1, all the STL containers are parametrized in terms of allocators. So, containers don't have
any memory model information coded inherently but are provided with this information by taking an
allocator object as argument.

The idea is that changing memory models is as simple as changing allocator objects. The allocator
allocator, which is defined in defalloc.h, is used as default allocator object. The compiler vendors
are expected to provide allocators for the memory models supported by their product. So, for Borland
C++ allocators for different memory models are provided (see 3.2).

For every memory model there are corresponding allocate, deallocate, construct and destroy
template functions defined. allocate returns a pointer of type T* to an allocated buffer, which is no
less than n*sizeof(T).

template <class T>
inline T* allocate(ptrdiff_t size, T*);

deallocate frees the buffer allocated by allocate.

template <class T>
inline void deallocate(T* buffer);

STL Tutorial page 48 Johannes Weidl

construct puts results directly into uninitialized memory by calling the appropriate copy constructor.

template <class T1, class T2>
inline void construct(T1* p, const T2& value) {
 new (p) T1(value);
}

destroy calls the destructor for a specified pointer.

template <class T>
inline void destroy(T* pointer) {
 pointer->~T();
}

If you have a container of pointers to certain objects, the container destructor calls a special destroy
function to call all the single pointer destructors and free the memory allocated. To make this work
under Borland C++, a template specialization must be provided.

class my_int {
public:
 my_int (int i = 0) { ii = new int(i); }
 ~my_int () { delete ii; }
private:
 int* ii;
};

// the following template specialization is necessary when using Borland C++

inline void destroy (my_int** pointer) {
 (*pointer)->~my_int();
}

void main (void) {

 vector<my_int*> v (10);
 for (int i = 0; i < 10; i++) { v[i] = new my_int(i); }

 // allocated my_int memory and vector v are destroyed at end of scope
}

When you use a container of pointers to objects which do not have an explicit destructor defined, a
function like seq_delete can be implemented to free all the memory allocated.

template <class ForwardIterator>
inline void seq_delete (ForwardIterator first, ForwardIterator last) {

 while (first != last) delete *first++;
}

vector<char*> v;
char* c1 = new char[20]; strcpy (c1, "Tim");
char* c2 = new char[20]; strcpy (c2, "Charles");
v.push_back (c1); v.push_back (c2);

seq_delete (v.begin(), v.end());

// vector v is destroyed at the end of scope

STL Tutorial page 49 Johannes Weidl

$ CWT aT\PX]X]V BC; R^_^]T]cb

The remaining STL components and topics not dealt with yet will be described here.

$� 7^f R^_^]T]cb f^aZ c^VTcWTa

To make it clear how all STL components work together the relations between the components
are topic of this section.

Containers store objects of arbitrary types. Containers are parametrized by allocators.
Allocators are objects which encapsulate information about the memory model used. They
provide memory primitives to handle memory accesses uniformly. Every memory model has
its characteristic, tailor-made allocator. Containers use allocators to do their memory
accesses. A change of the memory model used leads to a change of the allocator object given
as an argument to the container. This means, that on the code level a container object is
invariant under different memory models.
An algorithm is a computation order. So, two algorithms should differ in the computations
done by them, not in the access method used to read input data and write output data. This can
be achieved when data is accessed in a uniform manner. STL provides a uniform data access
mechanism for its algorithms - iterators. Different iterators provide different access modes.
The basic input and output unit is the range, which is a well-defined sequence of elements.
Function objects are used in combination with algorithms to encapsulate, for example,
predicates, functions and operations to extend the algorithms' utility.
Adaptors are interface mappings, they implement new objects with different or enhanced
functionality on the basis of existing components.
It has to be said that this decomposition of the component space is arbitrary to a certain extent
but designed to be as orthogonal as possible. This means that interferences between
components are reduced as far as possible.

The clean, orthogonal and transparent design of the library shall help to

• simplify application design and redesign
• decrease the lines of code to be written
• increase the understandability and maintainability
• provide a basis for standard certifying and quality assurance as in other areas of system

architecture, design and implementation.

$�! ETRc^a

Additionally to the member functions described in section 4.1.1, a reserve member function
is provided, which informs the vector of a planned change in size. This enables the vector to
manage the storage allocation accordingly. reserve does not change the size of the vector and
reallocation happens if and only if the current capacity is less than the argument of reserve.

void reserve(size_type n);

After a call of reserve, the capacity (i.e. the allocated storage) of the vector is greater or
equal to the argument of reserve if reallocation has happened, equal to its previous value
otherwise. This means, that if you use reserve with a value greater than the actual value of
capacity, reallocation happens and afterwards, the capacity of the vector is greater or equal to
the value given as argument to reserve.

STL Tutorial page 50 Johannes Weidl

To make it clear, why such a member function is provided, remember that reallocation
invalidates all the references, pointers and iterators referring to the elements in the sequence.
The use of reserve guarantees that no reallocation takes place during the insertions that
happen after a call of reserve until the time when the size of the vector reaches the capacity
caused by the call of reserve.
With this in mind, take a look at exercise 4.1.1. We decided to use a list for storing the single
"bits", because inserting into a list never invalidates any of the iterators to this container,
which was essential for the bit-stuff algorithm to work. Now, knowing of the existence of
reserve, we can use this member function to reserve a certain vector capacity and are so in a
position to use a vector as well. After the call of reserve, we can insert elements into the
vector till capacity is reached being sure that no reallocation will happen. The argument n of
reserve has to be computed by considering a maximum number of bits to be bit-stuffed and
the worst case expansion, which happens when bit-stuffing a sequence only consisting of 1's.

$�" ;Xbc

Unlike a vector, a list doesn't provide random access to its elements. So, the member functions
begin, end, rbegin and rend return bidirectional iterators. In addition to the member
functions push_back and pop_back, list provides push_front and pop_front to add and
remove an element at its beginning, because these operations can be done in constant time.

The container list provides special mutative operations. It is possible to splice two lists into
one (member function: splice), that is to insert the content of one list before an iterator
position of another. Two lists can be merged (merge) into one using operator< or a compare
function object, a list can be reversed (reverse) and sorted (sort). It is also possible to
remove all but first element from every consecutive group of equal elements (unique).
For an exact description of all these member functions read [2], 8.1.2.

$�# 3T`dT

As a vector, a deque supports random access iterators. But in addition to the vector, which
only allows constant time insert and erase operations at the end, a deque supports the constant
time execution of these operations at the end as well as at the beginning. Insert and erase in
the middle take constant time.
Because of these constant insert and erase operations at the beginning, a deque provides the
member functions push_front and pop_front. Note, that insert, push, erase and pop
invalidate all the iterators and references to the deque.
Further information concerning the deque can be found in [2], 8.1.3.

$�$ 8cTaPc^a CPVb

Every iterator i must have an expression iterator_tag(i) defined, which returns the most
specific category tag that describes its behaviour.

The available iterator tags are: input_iterator_tag, output_iterator_tag,
forward_iterator_tag, bidirectional_iteerator_tag,

random_access_iterator_tag.

The most specific iterator tag of a built in pointer would be the random access iterator tag.

template <class T>

STL Tutorial page 51 Johannes Weidl

inline random_access_iterator_tag iterator_category (const T*) {
return random_access_iterator_tag();

}

A user defined iterator which satisfies, for example, the requirements of a bidirectional iterator
can be included into the bidirectional iterator category.

template <class T>
inline bidirectional_iterator_tag iterator_category (const MyIterator<T>&)
{

return bidirectional_iterator_tag();
}

Iterator tags are used as "compile time tags for algorithm selection", [2], 5.6. They enable the
compiler to use the most efficient algorithm at compile time.

Imagine the template function binary_search which could be designed to work with
bidirectional iterators as well as with random access iterators. To use the tag mechanism, the
two algorithms should be implemented as follows:

template<class BidirectionalIterator, class T>
BidirectionalIterator binary_search (BidirectionalIterator first,
 BidirectionalIterator last,
 const T& value,
 bidirectional_iterator_tag) {

// more generic, but less efficient algorithm
}

template<class RandomAccessIterator, class T>
RandomAccessIterator binary_search (RandomAccessIterator first,

 RandomAccessIterator last,
 const T& value,

 random_access_iterator_tag) {
// more efficient, but less generic algorithm

}

To use binary_search, a kind of stub function has to be written:

template<class BidirectionalIterator, class T>
inline BidirectionalIterator binary_search (BidirectionalIterator first,
 BidirectionalIterator last,
 const T& value) {

binary_search (first, last, value, iterator_category(first));
}

At compile time, the compiler will choose the most efficient version of binary_search. The
tag mechanism is fully transparent to the user of binary_search.

$�% 0bb^RXPcXeT 2^]cPX]Tab

"Associative containers provide an ability for fast retrieval of data based on keys.", [2], 8.2.
Associative containers, like sequence containers, are used to store data. But in addition to that
associative containers are designed with an intention to optimize the retrieval of data by
organizing the single data records in a specialized structure (e.g. in a tree) using keys for
identification. The library provides four different kinds of associative containers: set,
multiset, map and multimap.
set and map support unique keys, that means that those containers may contain at most one
element (data record) for each key. multiset and multimap support equal keys, so more than

STL Tutorial page 52 Johannes Weidl

one element can be stored for each key. The difference between set (multiset) and map
(multimap) is that a set (map) stores data which inherently contains the key expression. map
(multimap) stores the key expression and the appropriate data separately, i.e. the key has not
to be part of the data stored.

Imagine we have objects that encapsulate the information of an employee at a company. An
employee class could look like this:

class employee_data {
public:

employee_data() : name (""), skill(0), salary(0) {}
employee_data(string n, int s, long sa) :
 name (n), skill (s), salary (sa) {}

string name;
int skill;
long salary;

 friend ostream& operator<< (ostream& os, const employee_data& e);
};

ostream& operator<< (ostream& os, const employee_data& e) {
os << "employee: " << e.name << " " << e.skill << " " << e.salary;
return os;

}

If we want to store employee data in a set (multiset), the key has to be included in the
object stored:

class employee {
public:
 employee (int i, employee_data e) :
 identification_code (i), description (e) {}

int identification_code; // key expression to identify an employee
employee_data description;

bool operator< (const employee& e) const {
 return identification_code < e.identification_code; }

};

Now we are able to declare a set (multiset) of employees:

set11 <employee, less<employee> > employee_set;

multiset12 <employee, less<employee> > employee_multiset;

Using a set (multiset), employee is both the key type and the value type of the set
(multiset).

All associative containers are parametrized on a class Key, which is used to define key_type,
and a so-called comparison object of class Compare, for example:

11 To use a set include set.h
12 To use a multiset include multiset.h

STL Tutorial page 53 Johannes Weidl

template <class Key, class Compare = less<Key>,
 template <class U> class Allocator = allocator>
class set {

typedef Key key_type;
typedef Key value_type;

 ...
};

If we want to store employee data in a map (multimap), the key type is int and the value type
is pair<const int, employee_data>:

map13 <int, employee_data, less<int> > employee_map;

multimap14 <int, employee_data, less<int> > employee_multimap;

template <class Key, class T, class Compare = less<Key>,
 template <class U> class Allocator = allocator>
class map {

typedef Key key_type;
typedef pair<const Key, T> value_type;

 ...
};

Two keys k1 and k2 are considered to be equal if for the comparison object comp, comp(k1,
k2) == false && comp(k2, k1) == false, so equality is imposed by the comparison
object and not by operator==.

The member function key_comp returns the comparison object out of which the associative
container has been constructed. value_comp returns an object constructed out of the
comparison object to compare values of type value_type. All associative containers have the
member functions begin, end, rbegin, rend, empty, size, max_size and swap defined.
These member functions are equivalent to the appropriate sequence container member
functions. An associative container can be constructed by specifying no argument (less<Key>
is used as default comparison object) or by specifying a comparison object. It can be
constructed out of a sequence of elements specified by two iterators or another associative
container. operator= (assignment operator) is defined for all associative containers.
Associative containers provide bidirectional iterators.

Now we want to store some employee data in the set. We can use the insert member
function:

employee_data ed1 ("john", 1, 5000);
employee_data ed2 ("tom", 5, 2000);
employee_data ed3 ("mary", 2, 3000);

employee e1 (1010, ed1);
employee e2 (2020, ed2);
employee e3 (3030, ed3);

pair<set <employee, less<employee> >::iterator, bool>
result = employee_set.insert (e1);

if (result.second) cout << "insert ok"; else cout << "not inserted";
cout << endl << (*result.first).description.name << endl;

result = employee_set.insert (e1);
if (result.second) cout << "insert ok"; else cout << "not inserted";

13 To use a map include map.h
14 To use a multimap include multimap.h

STL Tutorial page 54 Johannes Weidl

pair<map <int, employee_data, less<int> >::iterator, bool>
result1 = employee_map.insert (make_pair (1010, ed1));

multiset <employee, less<employee> >::iterator
result2 = employee_multiset.insert (e1);

multimap <int, employee_data, less<int> >::iterator
 result3 = employee_multimap.insert (make_pair (1010, ed1));

Output: insert ok
john
not inserted

Note: For users of Borland C++ it has to be said that the above map and multimap insert
operations can only be compiled with a change in the code in map.h and multimap.h.
Instead of "typedef pair<const Key, T> value_type" I used "typedef
pair<Key, T> value_type".

insert takes an object of type value_type and returns a pair consisting of an iterator and a
bool value. The bool value indicates whether the insertion took place. In case of an associative
container supporting unique keys, the iterator points to the element with the key equal to the
key of the element specified as argument, in case of an associative container supporting equal
keys to the newly inserted element. insert does not affect the validity of iterators and
references to the container.

A second version of insert takes a range specified by two iterators and inserts the
appropriate elements into the associative container (the return value is void):

pair<int, employee_data> a[2] = { make_pair (2020, ed2),
 make_pair (3030, ed3) };
employee_map.insert (&a[0], &a[2]);

The find member function takes a key value and returns an iterator, which indicates the
success of the search operation:

map <int, employee_data, less<int> >::const_iterator i
 = employee_map.find (3030);

if (i == employee_map.end()) cout << "not found";
else cout << (*i).second.name;

Output: mary

map is the only associative container with provides the subscribe operator (oprator[]) to
address elements directly:

employee_data d = employee_map[2020];
cout << d;

Output: tom 5 2000

The erase member function can take a value of type key_type, a single iterator or a range
specifying the element or elements to be erased:

employee_map.erase (3030);
employee_map.erase (employee_map.begin());
employee_map.erase (employee_map.begin(), employee_map.end());

STL Tutorial page 55 Johannes Weidl

if (employee_map.empty()) cout << "employee_map is empty";

Output: employee_map is empty

erase invalidates only the iterators and references to the erased elements.

Since it doesn't make sense to store more than one employee under an employee key, for the
demonstration of an associative container supporting equal keys a slightly different example is
used. A number of employees is stored under the same key which represents a department
code. We can use the employee_multimap container declared earlier in this section:

// employee_multimap is empty
employee_multimap.insert (make_pair(101, ed1)); // department code 101
employee_multimap.insert (make_pair(101, ed2));
employee_multimap.insert (make_pair(102, ed3)); // department code 102

count takes a key value and returns the number of elements stored under this key value.

multimap <int, employee_data, less<int> >::size_type count
= employee_multimap.count (101);

cout << count;

Output: 2

lower_bound (k) with k of type key_type returns an iterator pointing to the first element
with key not less than k. upper_bound (k) returns an iterator pointing to the first element
with key greater than k. equal_range (k) returns a pair of iterators with the first iterator
being the return value of lower_bound (k) and the second being the return value of
upper_bound (k).

ostream& operator<< (ostream& os, const pair<int, employee_data>& p) {
os << "employee: " << p.second.name << " " << p.second.skill << " " <<

 p.second.salary;
return os;

}

typedef multimap <int, employee_data, less<int> >::iterator j;

pair<j, j> result = employee_multimap.equal_range (101);

copy (result.first,
 result.second,
 ostream_iterator<pair<int, employee_data> > (cout , "\n"));

Output: john 1 5000
tom 5 2000

STL Tutorial page 56 Johannes Weidl

% 2^_haXVWc

The spell-checker example from section 4.3 is a Copyright 1995 of M. Jazayeri and G.Trausmuth - TU
Wien.

All code pieces with a shaded frame are subject to the following copyright notice by Hewlett Packard:

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation. Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose. It is provided "as is" without express or implied warranty.
 *
 */

This tutorial is permitted to be used for academic and teaching purposes in whole or in part if the
following copyright notice is preserved:

Copyright  1995, 1996 Johannes Weidl - TU Wien

All other use, especially if commercial, can only be granted by the author himself - feel free to contact
me.

& ;XcTaPcdaT

[1] Stroustrup, Bjarne: The C++ programming language -- 2nd ed.
June, 1993

[2] Lee, Meng; Stepanov, Alex: The Standard Template Library
HP Labaratories, 1501 Page Mill Road, Palo Alto, CA 94304
February 7, 1995

[3] STL++
The Enhanced Standard Template Library, Tutorial & Reference Manual
Modena Software Inc., 236 N. Santa Cruz Ave, Suite 213, Los Gatos CA 95030
1994

[4] Standard Template Library Reference
Rensselaer Polytechnic Institute, 1994
includes as chapter 6
The STL Online Algorithm Reference
Cook, Robert Jr.; Musser, David R.; Zalewski, Kenneth J.
online at http://www.cs.rpi.edu/∼ musser/stl.html

