The Standard Template Library Tutorial

184.437 Wahlfachpraktikum (10.0)

Johannes Weidl

Information Systems Institute
Distributed Systems Department
Technical University Vienna

Advisor Dipl. Ing. Georg Trausmuth
Professor | DI Dr. Mehdi Jazayeri

Friday, 26. April 1996

"The Sandard Template Library (STL) is a C++ programming library that
has been developed by Alexander Stepanov and Meng Lee at the Hewlett
Packard laboratories in Palo Alto, California. It was designed to enable a
C++ programmer to do generic programming and is based on the extensive
use of templates - also called parametrized types. This paper tries to give a
comprehensive and complete survey on the STL programming paradigm and
shall serve as step-by-step tutorial for the STL newcomer, who has
fundamental knowledge in C++ and the object-oriented paradigm.”

Table of contents

1 Introduction 4
2 C++ basics 4
2.1 Classes 4
2.2 Function objects 8
2.3 Templates 8
2.3.1 Function templates 9
2.3.2 Class templates 10
2.3.3 Template member functions 10
2.3.4 Template specialization 10
3 A STL overview 12
3.1 STL availability and information 13
3.1.1 FTP-Sites 13
3.1.2URLs 13
3.2What does STL consist of? 14
3.3 Compiling STL programs 15
3.3.1 Borland C++ 4.0 DOS-programs 15
3.3.2 Borland C++ 4.0 WINDOWS-programs 16
3.3.3 Borland C++ 4.5 DOS- and WINDOWS-programs 17
4 Learning STL 18
4.1 Containers 18
4.1.1 Vector 19
4.1.2 Exercises 26
4.2 Iterators 27
4.2.1 Input Iterators and Output Iterators 28
4.2.2 Forward Iterators 31
4.2.3 Bidirectional Iterators 32
4.2.4 Random Access Iterators 33
4.2.5 Exercises 34
4.3 Algorithms and Function Objects 34
4.3.1 How to create a generic algorithm 34
4.3.2 The STL algorithms 36
4.3.3 Exercises 42
4.4 Adaptors 42
4.4.1 Container Adaptors 43
4.4.2 Iterator Adaptors 44
4.4.3 Function Adaptors 46
4.5 Allocator sand memory handling 47
5 Theremaining STL components 49
5.1 How components work together 49
5.2 Vector 49
5.3 List 50
5.4 Deque 50
5.5 Iterator Tags 50
5.6 Associative Containers 51
6 Copyright 56

STL Tutorial page 2

Johannes Weidl

7 Literature

56

STL Tutorial

page 3

Johannes Weidl

1 Introduction

Mativation. In the late 70s Alexander Stepanov first observed that some a gorithms do not depend on
some particular implementation of a data structure but only on afew fundamental semantic properties
of the structure. Such properties can be - for example - the ability, to get from one element of the data
structure to the next, and to be able to step through the elements from the beginning to the end of the
structure. For a sort algorithm it is not essential if the elements to be sorted are stored in an array, a
linked list, etc. Stepanov examined a number of agorithms and found that most of them could be
abstracted away from a particular implementation and that this abstraction can be donein away that
efficiency isnot lost. Efficiency isan essential point that Stepanov emphasizes on, heis convinced that
no one would use an agorithm that becomes inefficient by instantiating it back.

The STL history. Stepanovsinsight - which hasn’t had much influence on software development so far
- will lead to anew programming paradigm in future - so the hope of its discoverer. In 1985 Stepanov
developed ageneric Adalibrary and was asked, if he could do thisin C++ aswell. But in 1987
templates (see section 2.3) - an essential technique for this style of programming - weren’t implemented
in C++ and so hiswork was delayed. In 1988 Stepanov moved to the HP Labs and 1992 he was
appointed as manager of an algorithm project. Within this project, Alexander Stepanov and Meng Lee
wrote ahuge library - the Standard Template Library (STL) - with the intention to show that one can
have algorithms defined as generically as possible without losing efficiency.

STL and the ANSI/ISO C++ Draft Standard. The importance of STL isnot only founded in its
creation or existence, STL was adopted into the draft standard at the July 14, 1994 ANSI/ISO C++
Standards Committee meeting. That means that if not happened till now anyway, compiler vendors will
soon be incorporating STL into their products. The broad availability of STL and the generic
programming idea give this new programming paradigm the chance to positively influence software
development - thus allow programmers to write code faster and to write less lines of code while focusing
more on problem solution instead of writing low-level agorithms and data structures.

Document arrangement. In section 2 STL-required C++ basics are taught, especially classes, function
object design and templates - also called parametrized types. In section 3 STL is overviewed and the key
concepts are explained. Section 4 teaches STL step-by-step. Section 5 deals with STL components not
explained in section 4. Section 6 contains copyright notices and section 7 shows the literature used.

2 C++ basics

STL specific C++ basics. This section gives a short survey on STL-required C++ basics, such as
classes, function objects and templates. It tries to point out the STL-specific aspects. For afundamental
and comprehensive study and understanding of these topics read [1], 85 to §8.

2.1 Classes

User-defined types. One reason to develop C into C++ was to enable and encourage the programmer to
use the object-oriented paradigm. "The aim of the C++ class concept [...] is to provide the programmer
with atool for creating new types that can be used as conveniently as the built-in types’, says Bjarne
Stroustrup, the father of C++, in[1]. It is stated that a class is a user-defined type:

STL Tutorial page 4 Johannes Weidl

cl ass shape {

private:
i nt Xx_pos;
int y_pos;
int color;
public:

shape () : x_pos(0), y_pos(0), color(1) {}
shape (int x, int y, int ¢ = 1) : x_pos(x), y_pos(y), color(c) {}
shape (const shape& s) : X_pos(s.x_pos), y_pos(s.y_pos), color(s.color) {}
(shape () {}
shape& operator= (const shape& s) {
X_pOS = S.X_poOS, y_pos = s.y_pos, color = s.color; return *this; }

int get_x_pos () { return x_pos; }
int get_y _pos () { return y_pos; }
int get_color () { return color; }

void set_x_pos (int x) { x_pos
void set_y pos (int y) { y_pos
void set_color (int c) { color

(I |
o< X
o

virtual void DrawShape () {}

friend ostream& operator<< (ostrean& os, const shape& s);

I

ostrean®& operator<< (ostream& os, const shape& s) {
0S << "shape: (" << s.X_pos << "," << s.y pos << "," << s.color << ")";
return os;

}

Examining the C++ class" shape" . The keyword cl ass begins the definition of the user-defined type.
The keyword pri vat e meansthat the namesx_pos, y_pos and col or can only be used by member
functions (which are functions defined inside the class definition). The keyword publ i ¢ startsthe
public-section, which constitutes the interface to objects of the class, that means, names and member
functionsin this section can be accessed by the user of the object. Because of the attributes being
private, the class has public member functions to get and set the appropriate values. These member
functions belong to the interface.

Note that a class is abstract, whereas the instantiation of a class leads to an object, which can be used
and modified:

shape MyShape (12, 10, 4);

int color = MyShape. get_col or();
shape NewShape = MyShape;

where shape isthe class name and Myd ass iSsan object of the class shape.

|shape () : x_pos(0), y_pos(0), color(1l) {}

isthe default constructor - the constructor without arguments. A constructor builds and initializes an
object, and there are more possible kinds of constructors:

|shape (int x, int y, int ¢ =1) : x_pos(x), y_pos(y), color(c) {}

Thisisaconstructor with three arguments where the third one is a default argument:

[shape MyShape (10, 10);

resultsin: x_pos == 10,y _pos == 10, col or == 1.

STL Tutorial page 5 Johannes Weidl

|shape (const shape& s) : x_pos(s.x_pos), y_pos(s.y_pos), color(s.color) {}

Thisisan important constructor, the so-called copy-constructor. It is called when you write code like
this.

shape M Shape;
shape NewShape (MyShape);

After that, MyShape and Newshape have the same attributes, the object Newshape is copied from the
object Myshape using the copy constructor.

Note the argument const shape& s. The & means "reference to", when afunction call takes place, the
shape is not copied onto the stack, but only areference (pointer) to it. Thisisimportant, when the object
given as argument is huge, because then copying would be very inefficient.

|Cshape () {3

isthe destructor. It is called, when an object is destroyed - for example when it goes out of scope. The
shape destructor has nothing to do, because inside the shape class no dynamically allocated memory is
used.

shape& operator= (const shape& s) {
X_pOS = S.X_poOS, y_pos = s.y_pos, color = s.color; return *this; }

Operator overloading. In C++ it is possible to overload operators - that is to give them a new meaning
or functionality. Thereis aset of operators which can be defined as member functions inside a class.
Among these the assignment operator can be found, which is used when writing the following code:

shape MyShape, NewShape;
NewShape = MyShape;

Note that the oper at or = iscalled for the left object, i.e. Newshape, so there must be only one argument
in the declaration. Thisistruefor al other C++ operators as well.

When amember function is called, the system automatically addsthet hi s-pointer to the argument list.
Thet hi s-pointer points to the object, for which the member function is called. By writing r et ur n

*t hi s, the concatenation of assignments gets possible:

shape 4 dShape, M/Shape, NewShape;
NewShape = MyShape = A dShape;

int get_x_pos () { return x_pos; }

givesyou the value of x_pos. An explicit interface function is necessary, because private mebers cannot
be accessed from outside the object.

[virtual void DrawsShape () {}

declarates a function with no arguments that draws the shape. Because a shape is abstract and we have
no idea of what it looks like precisdly, there's no implementation for Dr awsShape. The keyword vi r t ual
means that this member function can be overwritten in aderived class (see[1], 86). For example, a
classdot could be derived from shape. Dr anShape then would be overwritten to draw the dot at the
position (x_pos,y_pos) and with the colour col or .

STL Tutorial page 6 Johannes Weidl

Put-to operator. Now consider the definition of the oper at or <<:

ostrean®& operator<< (ostream& os, const shape& s) {
0S << "shape: (" << s.X_pos << "," << s.y pos << "," << s.color << ")";
return os;

}

The usual way in C++ to display information on the screen isto write:

[cout << "Hello, World!";

With the upper code we overload the put-to-operator (oper at or <<) to be able to send shapes directly to
an output stream:

shape MyShape (5, 9);
cout << MyShape;

shows on the output screen: shape: (5,9,1)

|fri end ostream& operator<< (ostream& os, const shape& s);

Friend and inline. The keyword f ri end in front of afunction declaration means that this function has
access to the private members of the class, where the declaration takes place. Y ou can seethat x_pos,
y_pos and col or are used directly by oper at or <<. It's also possible to define awhole class as friend
class.

Note that all member functions of shape are defined inside the class declaration. If so, the member
functionsare al "inline". Inline means, that wherever the function is called, the compiler creates no
function call but inserts the code directly to decrease overhead.

To inline amember function defined outside the class the keyword i nl i ne must be used:

|i nline int shape::get_x_pos () { return x_pos; }

Nice Classes. For STL it'swise to create classes that meet the requirements of Nice Classes. For
example, Borland C++ expects an object to be stored in a container to have an assignment operator
defined. Additionally, if acontainer holdsits objectsin aparticular order, aoperator like the oper at or <
must be defined (the latter to fix a half-order).

A class T iscaled niceiff it supports:

1. Copy constructor T (const T&)

2. Assignment operator T& oper ator= (const T&)

3. Equality operator int operator== (const T& const T&)
4. Inequality operator int operator!= (const T& const t&)

such that:

a(b); assert (a == Db);

= b; assert (a == Db);

== a’

== b iff b==a

(a ==Db) & (b ==<c¢) inplies (a == c)
al=biff I (a==Dhb)

O o o -

Ok wpnE

STL Tutorial page 7 Johannes Weidl

A member function T: : s(. . .) iscalled equality preserving iff
a==">binmplies a.s (...) == b.s (...)

A classiscaled Extra-Nice iff
all of its member functions are equality preserving

Thetheory of Nice Classes origins from ajoint work between HP and Andrew Koenig from the Bell
Labs.

2.2 Function objects

Thefunction-call operator. A function object isan object that has the function-call operator
(oper at or ()) defined (or overloaded).

These function objects are of crucia importance when using STL.

Consider an example:

class less {
public:
less (int v) : val (v) {}
int operator () (int v) {
return v < val;
}

private:
int val;
be

This function object must be created by specifying an integer value:

[less less_than_five (5);

The constructor is called and the value of the argument v is assigned to the private member val . When
the function object is applied, the return value of the overloaded function call operator tellsif the
argument passed to the function object islessthan val :

|cout << "2 is less than 5: " << (less_than_five (2) ? "yes" : "no");
Output: 2islessthan 5. yes

Y ou should get familiar with thiskind of programming, because when using STL you often have to pass
such function objects as arguments to algorithms and as template arguments when instantiating
containers, respectively.

2.3 Templates

Static type checking. C++ is alanguage that supports static type checking. Static type checking helps
to catch many errors during compilation, because the programmer has to fix the type of a name used.
Any violation of the type model leads to an error message and cancels compilation. So, run-time errors
decrease.

STL Tutorial page 8 Johannes Weidl

2.3.1 Function templates

Consider the following function:

void swap (int& a, int& b) {

nt tnmp = a;
b.

tnp;

L

[
a
b

}

Swapping integer s. Thisfunction let’s you swap the contents of two integer variables. But
when programming quite a big application, it is probable that you have to swap float, long or
char variables, or even shape variables - as defined in section 2. So, an obvious thing to do
would be to copy the piece of code (cut-n-paste!) and to replace al i nt sby shapes, wouldn’t
it?

A drawback of this solution isthe number of similar code pieces, that have to be administered.
Additionally, when you need a new swap function, you must not forget to code it, otherwise
you get a compile-time error. And now imagine the overhead when you decide to change the
return type fromvoi d to i nt to get information, if the swap was successful - the memory
could be too low to create the local t np variable, or the assignment operator (see shape) could
not be defined. Y ou would have to change all x versions of swap - and go insane...

Templatesor Parametrized types. The solution to this dark-drawn scenario are templates,
template functions are functions that are parametrized by at |east one type of their arguments:

tenpl ate <cl ass T>
void swap (T& a, T& b) {

Ttnp = a;
a = b;
b = tnp;

}

Note that the"T" is an arbitrary type-name, you could use"U" or "anyType"' aswell. The
arguments are references to the objects, so the objects are not copied to the stack when the
function is called. When you write code like

int a=3 b =25;
shape MyShape, Your Shape;

swap (a, b);
swap (MyShape, Your Shape);

the compiler "instantiates' the needed versions of swap, that means, the appropriate codeis
generated. There are different template instantiation techniques, for example manual
instanti ation, where the programmer himself tells the compiler, for wich types the template
should be instantiated.

Function template examples. Other examples for function templates are:

tenpl ate <class T>
T& min (T& a, T&) { return a <b ? a: b; }

tenpl ate <cl ass T>

void print_to_cout (char* msg, T& obj) {
cout << msg << ": " << obj << endl;

}

STL Tutorial page 9 Johannes Weidl

To usethe last template function, objects given as the second argument must have the
oper at or << defined, otherwise you will get acompile-time error.

2.3.2 Class templates

Classtemplatesto build container s. The motivation to create classtemplatesis closely
related to the use of containers. "However, container classes have the interesting property that
the type of objectsthey containis of little interest to the definer of a container class, but of
crucial importance to the user of the particular container. Thus we want to have the type of
the contained object be an argument to a container class: [...]", [1], 88. That meansthat a
container - e.g. avector - should be able to contain objects of any type. Thisis achieved by
class templates. The following example comes from [1], 81.4.3:

tenpl ate <cl ass T>

cl ass vector {
T v;
int sz;

public:
vector (int s) { v =newT|[sz =5s]; }
Cvector () { delete[] v; }
T& operator[] (int i) { return v[i]; }
int get_size() { return sz; }

}s

Note that no error-checking is done in this example. Y ou can instantiate different vector-
containers which store objects of different types:

vect or <i nt > i nt_vector (10);
vect or <char > char _vector (10);
vect or <shape> shape_vector (10);

Take alook at the notation, the type-name is vector < specific_type>.

2.3.3 Template member functions

By now there’ sno compiler | know which could handle template member functions. Thiswill
change in the very future, because template member functions are designated in the C++
standard.

2.3.4 Template specialization

Copewith special typefeatures. If thereis agood reason, why a compiler-generated
template for a specia type does not meet your requirements or would be more efficient or
convenient to use when implemented in another way, you can give the compiler a specia
implementation for this type - this special implementation is called template specialization.
For example, when you know, that ashape-vector will aways hold exactly one object, you
can specialize thevect or -template asfollows:

STL Tutorial page 10 Johannes Weidl

cl ass vector<shape> {
shape v;
public:
vector (shape& s) : v(s) { }
shape& operator[] (int i) { return v; }
int get_size() { return 1; }

IE

Let'suseit:

shape My Shape;

vect or <shape> si ngl e_shape_vect or (M/Shape);

Template specializations can a so be provided for template functions ([1], 8r.14.5) and
template operators.

STL Tutorial page 11 Johannes Weidl

3 A STL overview

STL isacomponent library. This means that it consists of components - clean and formally sound
concepts. Such components are for example containers - that are objects which store objects of an
arbitrary type - and algorithms. Because of the generic approach STL algorithms are able to work on
user-built containers and user-built algorithms can work on STL containers - if the user takes some
strict requirements for building his components into consideration. This technique - to guarantee the
interoperability between all built-in and user-built components - isreferred to as "the orthogonal
decomposition of the component space”. The ideabehind STL can easily be shown by the following
consideration:

Imagine software components as a three-dimensional space. One dimension represents the data types
(int, double, char, ...), the second dimension represents the containers (array, linked-ligt, ...) and the
third dimension represents the algorithms (sort, merge, search, ...).

[|int, double, char, ... |

sort, merge, search, ... array, linked-list, ...

Figure 1: Component space

With this scenario given, i*j*k different versions of code have to be designed - a sort algorithm for an
array of int, the same sort algorithm for an array of double, a search algorithm for alinked-list of
double and so on. By using template functions that are parametrized by a data type, the i-axes can be
dropped and only j*k versions of code have to be designed, because there hasto be only one linked-list
implementation which then can hold objects of any data-type. The next step isto make the algorithms
work on different containers - that means that a search agorithm should work on arrays aswell ason
linked-lists, etc. Then, only j+k versions of code have to be created.

STL embodies the above concept and is thus expected to simplify software devel opment by decreasing
development times, simplifying debugging and maintenance and increasing the portability of code.

STL consists of five main components. When | list them here, don’t get confused by the names and their
short description, they are explained one by one in detail ater.

» Algorithm: computational procedure that is able to work on different containers

e Container: object that is able to keep and administer objects

o lterator: abstraction of the algorithm-access to containers so that an algorithm is able to work
on different containers

* Function Object:
aclassthat has the function-call operator (oper at or ()) defined

e Adaptor: encapsulates acomponent to provide another interface (e.g. make a stack out of alist)

At this point | recommend to read [2], chapters 1 to 4.

STL Tutorial page 12 Johannes Weidl

3.1 STL availability and information

3-1-1 FTP-SiteS

The Hewlett Packard STL by Alexander Stepanov and Meng Lee can be found at:

ftp://butler.hpl.hp.com/pub/stl/stl .zip for Borland C++ 4.x
ftp://butler.hpl.hp.com/pub/stl/sharfile.Z for GCC

There are many other interesting things there, too. An dternative siteis
ftp://ftp.cs.rpi.edu/stl

This document deals with the HP implementation of STL, but there are othersto:
ObjectSpace STL<ToolKit>

FSF/GNU libg++ 2.6.2:
ftp://prep.ai.mit.edu/pub/gnu/libg++-2.6.2.tar.gz

Both work with the GNU C++ compiler GCC 2.6.3 that can be found at:
ftp://prep.ai.mit.edu/pub/gnu/gec-2.6.3.tar.gz

Especially for the work with ObjectSpace STL<ToolKit> you should patch your GCC 2.6.3
with the template fix that can be found at
ftp://ftp.cygnus.com/pub/g++/gcc-2.6.3-template-fix

Many examples for the ObjectSpace STL<ToolKit> can be found at
ftp://butler.hpl.hp.com/pub/stl/examples.gz (also .zip)

3.1.2 URLs

David Mussers STL-page:
http://www.cs.rpi.edu/Cimusser/stl.html
Mumit's STL Newbie guide:
http://Amww xraylith.wisc.edu/Ckhan/software/stl/STL .newbie.html
Joseph Y. Laurino’s STL page:
http://weber.u.washington.edu/Chytewave/bytewave stl.html

STL Tutorial page 13 Johannes Weidl

3.2 What does STL consist o%?

Here comesalist of the filesincluded in the HP-STL .ZIP package with the HASH extension:

DOC.PS STL Document [2]

DOCBAR.PS STL Document [2] with changebars from the previous version

IMP.PS

FILES.DIF Differences to the files of the previous version

READ.ME Information file

README.OLD | Information file of the previous version

ALGO.H algorithm implementations

ALGOBASE.H | auxiliary algorithmsfor ALGO.H

ITERATOR.H |iterator implementations and iterator adaptors

FUNCTION.H | operators, functions objects and function adaptors

TREE.H implementation of ared-black tree for associative containers

BOOL.H defines bool type

PAIR.H defines pair type to hold two objects

TRIPLE.H defines triple type to hold three objects

HEAP.H heap algorithms

STACK.H includes all container adaptors

HASH.H hash implementation

HASHBASE.H | hashbase implementation needed by hash

TEMPBUF.CPP | auxiliary buffer for get_temporary_buffer: should be complied and linked if
get temporary buffer, stable partition, inplace merge or stable sort are used

TEMPBUF.H get temporary buffer implementation

PROJECTN.H | selectlst and ident implementation

RANDOM.CPP | random number generator, should be compiled and linked if random_shuffleis used

DEFALLOC.H | default alocator to encapsulate memory model

BVECTOR.H bit vector (vector template specialization), sequence container

DEQUE.H double ended queue, seugence container

LIST.H list, sequence container

MAP.H map, associative container

MULTIMAP.H | multimap, associative container

SET.H set, associative container

MULTISET.H | multiset, associative container

VECTOR.H vector, sequence container

Dos/Windows specific include files:

Huge memory model:

HUGALLOC.H, HDEQUE.H, HLIST.H, HMAP.H, HMULTMAP.H, HMULTSET .H, HSET.H, HYECTOR.H

Far memory model:
FARALLOC.H, FDEQUE.H, FLIST.H, FMAP.H, FMULTMAP.H, FMULTSET.H, FSET.H

L arge memory model:

LNGALLOCH, LBVECTOR.H, LDEQUE.H, LLIST.H, LMAP.H, LMULTMAP.H, LMULTSET.H, LSET.H

Near memory model:
NERALLOC.H, NMAP.H, NMULTMAP.H, NMULTSET.H, NSET.H

Table 1: STL include and documentation files

STL Tutorial

page 14

Johannes Weidl

3.3 Compiling STL programs

3.3.1 Borland C++ 4.0 DOS-programs

Command Line.

Assume a C++ program named vect or . cpp:

#define __ M NMAX_DEFI NED// use STL's generic min and max tenplates
#define __USE STL /'l exclude BC++'s redundant operator definitions

// STL include files - include STL files first!
#i ncl ude "vector.h"

/| C++ standard include files

#i ncl ude <stdlib. h> /1 stdlib min and max functions are skipped
#i ncl ude <cstring. h> /'l only conpilable with _ USE STL directive
#include <classlib\alloctr.h> // only conmpilable with __USE STL directive
#i ncl ude <i ostream h>

void main (void)

{
vector<int> v(5);
v[0] = 4,
cout << "First vector elenent: " << v[O0];

}

The compiler directive #defi ne __M NMAX_DEFI NED prevents the compilation of themi n and
max functionsin the Borland C++ includefile <stdl i b. h>, because STL providesits own
template mi n and max functions.

I recommend to include all STL include files before the Borland C++ standard include files,
athough this causes some work to be done.

There are some changes to be made in the include files <bc4\ i ncl ude\ cst ri ng. h> and
<bc4\ i ncl ude\ cl asslib\alloctr. h>,if you plan to use them. Some operator definitions

have to be taken out of compilation, for example by adding
#if !defined (__USE_STL) [...] #endif,

because STL generates these operators automatically using template operator definitions.

The code after adding the necessary #i f directives (italic letters) is shown in the following
box. The line numbers indicate the operator-definition-positions in the original include files:

<bc4\i ncl ude\ cstring. h>:

line 724:

#i f Idefined(__USE_STL)

inline int _RTLENTRY operator != (const string _FAR &s1, const string
_FAR &s2) THROW _NONE

{[-..11}

#endi f

i ne 850:

#i f Idefined(__USE_STL)
inline int _RTLENTRY operator <= (const string _FAR &s1, const string
_FAR &s2) THROW_NONE

{[...11}
#endi f

Iine 866:

#i f Idefined(__USE_STL)

inline int _RTLENTRY operator > (const string _FAR &s1, const string
_FAR &s2) THROW _NONE

{[...11}
#endi f

STL Tutorial page 15 Johannes Weidl

Iine 882:

#i f Idefined(__USE_STL)

inline _RTLENTRY operator >= (const string _FAR &1, const string _FAR
&s2) THROW_NONE

{[-..11}

#endi f

<bc4\include\classlib\alloctr.h> 1|ine 44:

#i f Idefined(__USE_STL)
friend void *operator new(unsigned, void *ptr)
{ return ptr; }

#endi f

Compileand link . cpp filesusing STL with the following command:

bcc -l<path-to-stl-directory> <file>. cpp

Example:

bcc -1c:\bc4\stl vector.cpp

It isalso possible to include the STL include files after the Borland C++ standard include
files, then programs would even compile without having changesin

<bc4\ i ncl ude\ cstring. h>. But STL provides a number of template functions that increase
genericity and template operator definitions that generate oper at or ! = out of oper at or == and
operators >, >=, <= out of oper at or <, S0 it seems advisable to choose the practice shown
above.

IDE (Integrated Development Environment).
Create a project specifying "DOS-Standard" as target-platform. Specify the STL-directory
under "optiong/project/directories’ (german: " Optionen/Projekt/Verzeichnisse") asinclude-

directory. Usethe#def i ne __M NMAX_DEFI NED statement when <st dl i b. h> isincluded, use
#define _ USE_STL when<cstring. h>and <cl assl i b\al | octr. h>areincluded.

3.3.2 Borland C++ 4.0 WINDOWS-programs

Asunder DOS, the#defi ne M NVAX_DEFI NED statement isneeded when <st dl i b. h>is
included. Use#def i ne __USE_STL to compile your programs, when using <cst ri ng. h> and
<cl asslib\alloctr.h> Don'tforget to specify the STL-directory as include-directory
under "optiong/project/directories’ (german: " Optionen/Projekt/V erzeichnisse”).

Example program:

#define __ M NMAX_DEFI NED// use STL's generic min and max tenpl ates

#define __USE STL /'l exclude BC++'s redundant operator definitions

/1l STL include files
#i ncl ude "vector.h"
#i ncl ude "al go. h"

[/l C++ standard include files

#i ncl ude <stdlib. h> /1 stdlib min and max functions are skipped
#i ncl ude <cstring. h> /1 only conpilable with _ USE_STL directive
#include <classlib\alloctr.h> // only conmpilable with __USE STL directive

/1 OANL2 include files

STL Tutorial page 16 Johannes Weidl

#i ncl ude <owl \ ow pch. h>
#i ncl ude <owl \ applicat. h>

int OM Mai n(int /*argc*/, char* /*argv*/ [])
{

}

return TApplication("Conpiled with STL include files").Run();

| encountered some problems when compiling windows programs that make extensive use of
STL containers. The compiler comes up with the error messages” code segnent exceeds
64k" and"text segment exceeds 64k".The problem can befixed by using the statements
#pragma codeseg <codeseg_name> code and #pragma codeseg <t extseg_nane>
text, respectively.

3.3.3 Borland C++ 4.5 DOS- and WINDOWS-programs

For programs written in Borland C++ 4.5 all information given in sections 3.3.1 and 3.3.2 can
be applied but there are some further points:

» Thefirgtincludefile hasto be <cl assl i b\ def s. h>, because there Borland C++ defines
itsbool type.

e Then, dl STL include files have to be included (before any Borland C++ includefiles).

* Note, that the line numbers of operators that have to be commented out by a #def i ne
__UsE_STL directiveintheincludefiles<cstri ng. h> and <cl assl i b\al | octr. h> are
not the same as given in section 3.3.1 for the appropriate Borland C++ 4.0 includefiles.

» A further operator hasto be excluded by a#defi ne __ USE_STL directivein theinclude
file<ow \ bi t set . h> (found at the end of the includefile), if it is used.

DOS-example (analogous for Windows):

#define __ M NMAX_DEFI NED// use STL's generic min and max tenplates
#define __USE STL /'l exclude BC++'s redundant operator definitions

#i ncl ude <cl assli b\ defs. h> /'l use BC++4.5 bool definition

/1l STL include files
#i ncl ude "vector. h"

[/l C++ standard include files
#i ncl ude <stdlib. h>

#i ncl ude <cstring. h>

#i ncl ude <classlib\alloctr.h>
#i ncl ude <ow \ bi t set. h>

#i ncl ude <i ostream h>

void main (void)

{
vector<int> v(1, 4);
cout << v[O0];

}

STL Tutorial page 17 Johannes Weidl

4 Learning STL

4.1 Containers

As Bjarne Stroustrup says, "One of the most useful kinds of classes isthe container class, that is, a
classthat holds objects of some (other) type", [1], 88.1. Containers form one crucial component of STL.
To sum up elements of a special type in adata structure, e.g. temperature values of an engine over a
definite distance of time, isa crucia task when writing any kind of software. Containers differ in the
way how the elements are arranged and if they are sorted using some kind of key.

In STL you find Sequence Containers and Associative Containers. Asdescribed in[2], "A sequenceis
akind of container that organizes afinite set of objects, al of the same type, into a gtrictly linear
arrangement”. STL provides three basic kinds of Sequence Containers: Vectors, Lists and Deques,
where Dequeis an abbreviation for Double Ended Queue.

|John| |T0m| |Peter| |Mary| |Andy|

Figure 2: Sequence Container

As Stepanov states, "Associative containers provide an ability for fast retrieval of databased on keys".
The elements are sorted and so fast binary search is possible for dataretrieval. STL provides four basic
kinds of Associative Containers. If the key value must be unique in the container, this means, if for each
key value only one element can be stored, Set and Map can be used. If more than one element are to be
stored using the same key, Multiset and Multimap are provided.

|Andy| |John| |Mary| |Peter| |T0m|

Figure 3: Associative Container

Hereisasummary including all containers provided by STL:

Sequence Containers Vector

Deque

List

Associative Containers Set

Multiset

Map

Multimap

Table 2: STL Containers

STL Tutorial page 18 Johannes Weidl

4.1.1 Vector

Assume we want to develop a Graphical User Interface for acontrol station in an electric
power station. The single elements, like turbines, pipes and electrical installations are shown
on a screen. For each power station element we derive aspecia class from the shape classin
section 2 to represent its ook on the screen. The class hierarchy could ook like this:

| shape |

turbine || pipe || switch || horn |

| electrical switch | |mechanical SNitChl

Figure 4: Example shape class hierarchy

We store all shapes that are shown on a certain screen in the appropriate shape-container, e.g.
all turbine objects that are shown on the main screen in a turbine-container. When the screen
is called, the containers are used to draw arepresentation of the appropriate part of the power
station.

In C++ one could use an array:

|t ur bi ne mai n_screen_turbines [max_size];

where max_si ze isthe maximum number of turbine objects that can be stored in the
mai n_screen_t ur bi nes array.

When you use STL, you would choose this:

#i ncl ude <vector. h>
typdef int turbine; /'l so we don"t have to define the turbine class
int main() {

vect or <t ur bi ne> mai n_screen_t urbi nes;
return O;

}

Note: To make thislittle example run you have to read section 3.3 on how to compile STL
programs. To use avector in your program, include vect or . h. In the following
examples only the essential code lines are presented and most of the include stuff and
the main function are omitted.

Asyou can see, you don't have to specify a maximum size for the vector, because the vector
itself is able to dynamically expand its size. The maximum size the vector can reach - i.e. the
maximum number of elementsit is able to store - is returned by the member function

max_si ze() of thevect or class:

STL Tutorial page 19 Johannes Weidl

|vector<turbine>::size_type max_si ze = mai n_screen_turbi nes. max_si ze();

Note: Many member functions described in the vector-section can be found among the rest of
the STL containers, too. The description applies to those containers accordingly and
will be referenced when discussing these containers.

si ze_t ype isan unsigned integral type, this could be for example unsi gned | ong. Thetype
that determines the size of the different containersis encapsulated by at ypedef to abstract
from the actual memory model used. For example:

|typedef unsi gned | ong size_type;

if the sizeis expressible by the built in type unsi gned 1 ong.

STL abstracts from the specific memory model used by a concept named allocators. All the
information about the memory model is encapsulated inthe Al | ocat or class. Each container
istemplatized (parametrized) by such an allocator to let the implementation be unchanged
when switching memory models.

tenplate <class T, tenplate <class U> class Allocator = allocator>
cl ass vector {

b

The second template argument is a default argument that uses the pre-defined all ocator
"al | ocat or ", when no other allocator is specified by the user. | will describe alocatorsin
detail in section 4.5.

If you want to know the actual size of the vector - i.e. how many elementsit stores at the
moment - you haveto usethesi ze() member function:

vect or <t ur bi ne> mai n_screen_t ur bi nes;

vect or <t urbi ne>::si ze_type size = mmin_screen_turbines.size();
cout << "actual vector size: " << size
Output: actual vector size: 0

Likesi ze_t ype describes the type used to expressthe size of a container, val ue_t ype gives
you the type of the objectsthat can be stored in it:

vect or<f| oat > v;

cout << "value type: " << typeidl (vector<float>::value_type).nane();
Output: value type: float

A container turns out uselessif no object can be inserted into or deleted from it. The vector, of
course, provides member functions to do these jobs and it does quite a bit more:

It is guaranteed that inserting and erasing at the end of the vector takes amortized constant
time whereas inserting and erasing in the middle takes linear time.

Asstated in [3], R-5, "In severa cases, the most useful characterization of an algorithm’s
computing timeis neither worst case time nor average time, but amortized time. [...]
Amortized time can be a useful way to describe the time taken by an operation on some

'Touset ypei d includet ypei nfo. h

STL Tutorial page 20 Johannes Weidl

container in cases where the time can vary widely as a sequence of the operationsis done, but
the total time for a sequence of N operations has a better bound than just N times the worst-
casetime." To understand this, remember that a vector is able to automatically expand its
size. Thisexpansion is done, when an insert command is issued but no room isleft in the
storage allocated. In that case, STL allocates room for 2n elements (where n is the actual size
of the container) and copies the n existing e ements into the new storage. This allocation and
the copying process take linear time. Then the new element isinserted and for the next n-1
insertions only constant time is needed. So you need O(n) time for n insertions, averaged over
the ninsert operations this results in O(1) time for one insert operation. This more accurately
reflects the cost of inserting than using the worst-case time O(n) for each insert operation.

Of course amortized constant time is about the same overhead as you have when using C/C++
arrays but note that it isimportant to be about the same - and not more.

For the authors of STL complexity considerations are very important because they are
convinced that component programming and especially STL will only be accepted when there
isno (serious) loss of efficiency when using it.

Maybe there are users who can afford to work inefficiently but well designed - most can not.

The following table shows the insert and erase overheads of the containersvector, I i st and
deque. Think of these overheads when choosing a container for solving a specific task.

Container insert/erase overhead
at the beginning in themiddle at theend
V ector linear linear amortized constant
List constant constant constant
Deque amortized constant linear amortized constant

Table 3: Insert and erase overheads for vector, list and deque

Before welook at the insert functiondlity, there is another thing to consider. When a vector is
constructed using the default constructor (the default constructor is used when no argument is
given at the declaration), no memory for elementsis allocated:

[vector<int> v;

We can check this using the member function capaci t y(), which shows the number of
elementsfor which memory has been alocated:

vector<int>::size_type capacity = v.capacity();
cout << "capacity: " << capacity;

Output: capacity: 0

At thefirst glance this doesn’t make any sense but it gets clear when you consider, that the
vector classitself is ableto alocate memory for the objects inserted. In C++ you would fill
your turbine array asfollows:

turbine turb;
tur bi ne mai n_screen_turbines [max_size];

mai n_screen_turbines[0] = turb;

In STL you can use this syntax, too:

STL Tutorial page 21 Johannes Weidl

turbi ne turb;
vect or <t ur bi ne> mai n_screen_turbines (10); // allocate nenory for 10
/'l elements

mai n_screen_turbines[0] = turb;

Now, we don’t use the default constructor but specify a number that tells the vector for how
many elements memory should be allocated. Then we use the overloaded subscribe operator
(operat or[]) toinsert aturbine object into the vector.

Note: If you use the subscribe operator with an index, for which no memory has been
allocated (thisistrue for all indices when declaring a vector without specifying a vector
size), the result will be undefined!

To avoid memory allocation stuff the vector provides different member functionsto insert
elementsinto the vector. These insert functions do automatic memory alocation and - if
necessary - expansion. To append an element at the end of a vector use push_back() :

vector<int> v;

v. push_back (3);
cout << v.capacity() << endl;
cout << v[O0];

Output: 2048 2
3

Three different (overloaded) kinds of i nsert () member functions can be used. Here comes
the first:

vector<int> v;

v.insert (v.end(), 3);
cout << v.capacity() << endl;
cout << v[O0];

Output: 2048
3

Thisfirst kind of thei nsert () member function needs two arguments: an iterator "pointing"
to adefinite container position and an e ement which isto be inserted.

The element isinserted before the specified iterator-position, that is before the element the
specified iterator points to.

Theterm iterator needs some explanation. There are two member functions which return so-
caled iterators. begi n() and end() .

Iterators are a generalization of the C++ pointers. An iterator isakind of pointer but indeed
mor e than apointer. Like a pointer is dereferenced by the expression * pointer, an iterator has
the dereference oper at or * defined which returns avalue of a specific type - the value type of
the iterator. Additionally, like a pointer can be incremented by using the oper at or ++, an
iterator can be incremented in the same way. Iterators most often are associated with a
container. In that case, the value type of theiterator isthe value type of the container and
dereferencing the iterator returns an object of thisvalue type. Look at this example to get a
feeling how iterators behave:

% This value depends on the environment (memory model) used

STL Tutorial page 22 Johannes Weidl

vector<int> v(3);

v[0] = 5;

v[1l] = 2;

v[2] =7,

vector<int>::iterator first = v.begin();
vector<int>::iterator last = v.end();

while (first !'= 1|ast)

cout << *first++ << " "

Output: 527

v. begi n() returns an iterator to the first el ement in the vector. Theiterator can be
dereferenced and incremented like a C++ pointer.

Please note, that v. end() doesn’t return an iterator that points to the last element in the vector
- as now could be supposed - but past the last element (however, inthe STL code such an
iterator isnamed | ast). Accordingly it is called past-the-end iterator. A user is not supposed
to dereference such an iterator, because the result would be undefined. The whi | e loop checks
if thefirst iterator isequal to thel ast iterator. If not, the iterator is dereferenced to get the
object it is pointing to, then it isincremented. So, al vector elements are written to cout .

iterator returned by iterator returned by

member function member function

begin() end()
|John||Tom||Peter||Mary| Andy

value type

[_ object of type t

range [begin(), end())

Figure 5: Range specified by iterators

Arangel[i, j) givenby theiterators i and j isvalid,if j isreachablefromi , that means
if there isafinite sequence of applications of oper at or ++ toi that makesi ==j ;

Ranges given by two iterators are very important in STL, because STL algorithms largely
work in the following way:

|sort (begin-iterator, past_the_end-iterator)

wherebegi n-i t er at or specifiesthefirst eement in therange and past _t he_end-i t er at or
points past the last element of the range to be sorted.

Therangeis correctly specified by the expression [begi n-iterator, past_the_end-
iterator).

STL Tutorial page 23 Johannes Weidl

A valid sort command for our vector-example would be:

[sort® (v.begin(), v.end());

Using iterators as intermediates, we are able to seperate the algorithms from the container
implementations:

Algorithm
[[iterator] [] | 11]] | [] [iterator] []
Object
Container

Figure 6: Orthogonal decomposition of the component space

After this short survey on iterators, which will be described in very detail in the next section,
we focus on the vector container again.

Welearned that specifying a number when declaring a vector reserves memory for elements.
Additionally to that, you can give the elements for which memory isreserved an initia value:

vector<int> v(3, 17);

for (int i =0; i <3; i++) cout << v[i] << " "
Output: 17 17 17

It is possible to construct a vector out of another or to assign one vector to another vector:

vector<float> v (5, 3.25);

vector<float> v_newl (v); /1 construct v_newl out of v
vector<float> v_new2 = v; /] assign v to vnew2
vector<float> v_new3 (v.begin(), v.end());

/1 construct v_new3 out of the elenents of v

The last version uses iterators to specify the range out of which thev_news vector should be
congstructed. Thethreev_new- vectorsare all equal:

(v_newl == v_new2) && (v_new2 == v_new3) && (v_newl == v_new3) ? \
cout << "equal" : cout << "different";

Output: equal

To be able to compare vectors, an equality oper at or == for vectorsis provided.

To swap two vectors, aspecial member function is provided which needs merely constant
time, because only internal pointers are manipul ated.

% To use agorithms in your programs you haveto include al go. h

STL Tutorial page 24 Johannes Weidl

vector<int> v (1, 10);
vector<int> w (1, 20);

v.swap (W) ;
cout << v[O0];

Output: 20

With the member function enpt y() one can test if avector isempty, i.e. if itssizeis zero:

vect or <char > v;
v.enpty() ? cout << "enpty" : cout << "not enpty";

Output: empty

Thefirst and the last element are returned when invoking f r ont () and back() :

vector<int> v (10, 5);
v. push_back (7);

cout << v.front() << " " << v.back();
Outpuit: 57

With pop_back() thelast eement isreturned and deleted from the vector.

vector<int> v (1, 2);
int value = v.pop_back ();
cout << val ue << endl

v.enpty() ? cout << "enpty" : cout << "not enpty";
Output: 2
empty

Additionally to thei nsert () member function that takes an iterator and an element as
arguments, two more versions are provided:

vector<int> v;
v.insert (v.begin(), 2, 5); /'l vector v: 55

vector<int> w (1, 3);
w.insert (w end(), v.begin(), v.end()); /'l vector w. 3 55

The second argument of the first version specifies how many copies of an element - given as
third argument - should be inserted before the specified iterator-position (first argument). The
second version takes additionally to the inserting position w. end() two iterators that specify
the range which isto be inserted.

Using the er ase() member function, it is possible to erase single e ements or ranges
(specified by two iterators) from avector. Accordingly, there are two versions of er ase() .
Erasing at the end of the vector takes constant time whereas erasing in the middle takes linear

time.

vector<float> v (4, 8.0); /'l vector vi: 8.0 80 8.0 8.0
v.erase (v.begin()); /1l vector vi 8.0 8.0 8.0
v.erase (v.begin(), v.end()), // vector v:

STL Tutorial page 25 Johannes Weidl

Thefirst version erases the first vector element. The second version erases all remaining
elements so the vector gets empty.

When inserting in or erasing from a container, there is something to take into consideration. If
you have an iterator pointing e.g. to the end of avector and you insert an element at its
beginning, the iterator to the end getsinvalid. Only iterators before the insertion point remain
valid. If no placeisleft and expansion takes place, al iterators get invalid. Thisisclear,
because new memory is alocated, the elements are copied and the old memory is freed.
Iterators aren’t automatically updated and get invalid, that means the result of operations
using such iterators is undefined. Take thisinto consideration when inserting or erasing and
then using iterators earlier defined on this container. The following table shows the validity of
the containersvect or, | i st and deque after inserting and erasing an element, respectively.

Container | operation |iterator validity

vector inserting | reallocation necessary - al iterators get invalid

no reallocation - al iterators before insert point remain valid
erasing all iterators after erasee point get invalid

list inserting | al iterators remain valid
erasing only iteratorsto erased dements get invalid
deque inserting | al iterators get invalid

erasing all iterators get invalid

Table 4: Iterator validity after inserting or erasing
Now we are able to store objectsin a container (at least in the vector) that provides severa

means to administer and maintain it. To apply agorithmsto the elementsin the vector we have
to understand the iterator concept which is described in detail in the next section.

4.1.2 Exercises

This section contains specifications for exercises dealing with the topicsin section 4.1.
Solving these tasks should give you the possibility to apply your lections learned and compare
your solutions with the ones given in the solutions part of thistutorial.

Exercise4.1.1: Writea STL program that declares a vector of integer values, storesfive
arbitrary values in the vector and then prints the single vector elementsto cout . Be sure
to have read section 3.3 on how to compile STL programs.

Exercise 4.1.2: Writea STL program that takes an arbitrary sequence of binary digits (integer
values 0 and 1) from ci n and stores them into a container. When receiving avalue
different from o or 1 fromci n stop reading. Now, you should have a container storing a
sequence of 0’sand 1's. After finishing the read-process, apply a"bit-stuffing” algorithm
to the container. Bit-stuffing is used to transmit data from a sender to areceiver. To
avoid bit sequencesin the data, which would erroneoudly be interpreted as the stop flag
(here: 01111110), it is necessary to ensure that Six consecutive 1’ sin the data are splitted
by inserting a0 after each consecutive five 1's. Hint: Complexity considerations
(inserting in the middle of avector takes linear time!) and the fact, that inserting into a
vector can make al iterators to elementsinvalid should make you choose the STL
container | i st. A list of integersisdefined likeavector by list<int> I; All
operations explained in the vector section are provided for the list, too. Get an iterator to
thefirst1i st element. Aslong asthisiterator is different fromtheend() iterator
increment the iterator and dereference it to get the appropriate binary value. Note that an

STL Tutorial page 26 Johannes Weidl

element is always inserted before a specified iterator-position and that thisinsertion
doesn't affect all the other iterators defined whenusing al i st .

Exercise 4.1.3: Refine Exercise 4.1.2 and print the original bit sequence and the "bit-stuffed"
bit sequenceto cout . Use the hint from Exercise 4.1.2 to form aloop for the output
procedure.

Exercise 4.1.4: Refine Exercise 4.1.3 and print out the absolute and relative expansion of the
bit sequence. The absolute expansion is the expasion measured in bits (e.g. the bit-
stuffed sequence hasincreased by 5 bits), the relative expansion is the percentage of the
expansion (e.g. the relative expansion between the "new" and "old" sequence is 5.12%).

Exercise 4.1.5: Refine Exercise 4.1.4 and write the inverse algorithm to the onein Exercise
4.1.2 that the receiver hasto perform to get the initial binary data representation. After
the bit-stuffing and bit-unstuffing compare your list with the origina one using the
equality oper at or ==. If thelists are equal, you did afine job. Note: It is advisable to
include a plausibility test in your unstuff algorithm. After a sequence of five consecutive
ones there must be a zero, otherwise something went wrong in the stuffing a gorithm.

4.2 Iterators

"|terators are a generalization of pointers that alow a programmer to work with different data structures
(containers) in auniform manner”, [2]. From the short survey in section 4.1.1 we know that iterators are
objects that have oper at or * returning avalue of atype caled the value type of theiterator.

Since iterators are a generalization of pointersit is assumed that every template function that takes
iterators as arguments also works with regular pointers.

There arefive categories of iterators. Iterators differ in the operations defined on them. Each iterator is
designed to satisfy awell-defined set of requirements. These requirements define what operations can be
applied to theiterator. According to these requirements the iterators can be assigned to the five
categories. Iterator categories can be arranged from left to right to express that the iterator category on
the left satisfies the requirements of all theiterator categories on the right (and so could be called more
powerful).

Input

Iterators Iterators Iterators

Output
Iterators

Iterators
Random Access Bidirectional Forward

—> means, iterator category on the left satisfies the requirements of all iterator categories
on theright

Figure 7: Iterator categories

STL Tutorial page 27 Johannes Weidl

This arrangement means that a template function wich expects for example a bidirectional iterator can
be provided with arandom accessiterator, but never with aforward iterator. Imagine an algorithm that
needs random access to fulfil histask, but is provided with a method that only allows to pass through
the elements successively from one to the next. It ssimply won't work.

Iterators that point past the last element of arange are called past-the-end iterators. Iterators for which
theoper at or * isdefined are called dereferenceable. It is never assumed that past-the-end iterators are
dereferenceable. Aniterator value (i.e. an iterator of a specific iterator type) that isn’t associated with a
container is called singular (iterator) value. Pointers can also be singular. After the declaration of an
uninitialized pointer with

[int* x;

x isassumed to be singular. Dereferenceable and past-the-end iterators are aways non-singular.

All the categories of iterators have only those functions defined that are realizeable for that category in
(amortized) constant time. This underlines the efficiency concern of thelibrary.

Because random accessin alinked list doesn’t take constant time (but linear time), random access
iterators cannot be used with lists. Only input/output iterators up to bidirectional iterators are valid for
the use with the container | i st . The following table shows the iterators that can be used with the
containersvector, | i st and deque (of course all iterators that satisfy the requirements of the listed
iterators can be used as well):

Container Iterator Category
vector random access iterators
list bidirectional iterators
deque random access iterators

Table 5: Most powerful iterator categories that can be used with vector, list and deque
Iterators of these categories are returned when using the member functions begi n or end or declaring an

iterator withe.g. vector<int>::iterator i;
Theiterator categories will be explained starting with the input iterators and output iterators.

4.2.1 Input Iterators and Output Iterators

Aninput iterator has the fewest requirements. It has to be possible to declare an input iterator.
It also has to provide a constructor. The assignment operator has to be defined, too. Two input
iterators have to be comparable for equality and inequality. oper at or * hasto be defined and
it must be possible to increment an input iterator.

| nput lterator Requirements:

* constructor

e assignment operator

e equality/inequality operator
» dereference operator

» pre/post increment operator

STL Tutorial page 28 Johannes Weidl

Output iterators have to satisfy the following requirements:

Output Iterator Requirements:

* constructor

e assignment operator

» dereference operator

» pre/post increment operator

These abstract requirements should get clear if you look at specia input and output iterators
provided by thelibrary - the istreamiterator and the ostream iterator.

"To make it possible for algorithmic templates to work directly with input/output streams,
appropriate iterator-like template classes are provided”, [2]. These template classes are named
i stream.iterator andostream.iterator.Assumewe haveafilefilledwithO'sand 1's.
We want to read the values from afile and write them to cout . In C++ one would write:

ifstreami ifile ("exanple _file");
int tnp;

while (ifile >> tnp) cout® << tnp;

Output (example). 110101110111011

Note: TheO'sand 1'sin thefile have to be separated by whitespaces (blank, tab, newline,
formfeed or carriage return).

Using an istream and an ostream iterator in combination with the algorithm copy enablesusto
write the following:

ifstreamifile ("exanple_file");

copy (istreamiterator®<int, ptrdiff_t> (ifile),
istream.iterator<int, ptrdiff_t> (),
ostream.iterator<int> (cout));

The output will be the same asin the above C++ example. copy isan algorithm that takes two
iterators to specify the range from which elements are copied and a third iterator to specify the
destination where the elements should be copied to. The template function looks as follows:

tenpl ate <class Inputlterator, class Qutputlterator>
Qutputlterator copy (lnputlterator first, Inputlterator |ast,
Qutputlterator result);

The template arguments have semantic meaning, they describe the iterator categories of that
iterators provided to the function at least have to be. The iterators specifying the input range
haveto be at least input iterators, that means that it must be possible to increment and
dereference them to get the appropriate values. The iterator specifying the result position has
to be at least of the output iterator category. Since forward, bidirectional and random access
iterators satisfy the requirements of input and output iterators, they can be used instead with
the same functionality.

*Tousei f streamincludef stream h

® To use streams like ci n and cout and oper at or <<, oper at or >> for streamsinclude i ost r eam h
®Touseistreamiteator orostream.iterator includeiterator.h

If you havetoincludeal go. h (asinthisexample), it erator. h isaready included by al go. h

STL Tutorial page 29 Johannes Weidl

Dereferencing an output iterator hasto result in alvalue, that meansit hasto be possible to
assign avaue to the dereferenced output iterator (that is as you know an object of the value
type of the iterator). For output iterators, the only valid use of the oper at or * is on the left
side of the assignment statement:

ais an output iterator, t is a value of value type T

*a = t; valid
t = *a; invalid

For output iterators, the three following conditions should hold:

» Assignment through the same value of theiterator should happen only once.

ostream.iterator<int>r (cout);
*r —

0;
1;

xp =

isnot avalid code sequence.

* Any iterator value sould be assigned before it isincremented.

ostream.iterator<int>r (cout);
r++;
r++;

isnot avalid code sequence.

* Any value of an output iterator may have at most one active copy at any given time.

/[l i and j are output iterators

// a and b are values witten to a iterator position
i =j;

| ++ = a,;

*J' = b’

isnot avalid code sequence.

For both input and output iterators algorithms working on them are assumed to be single pass
algorithms, Such algorithms are never assumed to attempt to pass the same iterator twice.

For input iteratorsr and s, r==s doesnot imply ++r == ++s:
ifstreamifile ("exanple_file") /'l example_file: 012 3
istream.iterator<int, ptrdiff_t>r (ifile);
istream.iterator<int, ptrdiff_t>s (ifile);
(r==s) ? cout << "equal" : cout << "not equal"
cout << endl;

+4r1 ;

++S;

cout << *r << endl;

cout << *s << endl;

(r==s) ? cout << "equal" : cout << "not equal"
cout << endl;

STL Tutorial page 30 Johannes Weidl

Outpuit: equal
2

3
equal

Note: For input two input iteratorsa and b, a == b implies*a == *b. For istream iterators,
this condition doesn't hold.

When incrementing an input iterator, avalue is read from the input stream and stored
temporarily in the input iterator object. Dereferencing the input iterator returns the value
stored.

The constructor of the istream iterator takes an input stream as its argument from which
values areread. To yield an end-of-stream iterator which represents the end of file (EOF) of the
input stream, the default constructor has to be used. To successfully construct an istream
iterator, two template arguments have to be provided, too. The first argument specifies the
type of the elements read from the input stream, the second ispt rdi ff _t , that is the type of
the difference of two pointersin the actual memory model (see section 4.5 - alocators).

The constructor of the ostream iterator can take one or two arguments. However, the first
argument specifies the output stream to which values are written. The alternative second
argument isastring which is printed between the written values. ost ream i t er at or takesa
template argument which determines the type of the values written to the output stream.

It will often be asked to copy € ementsfrom an input stream (e.g. afile) directly into a
container:

vector<int> v;
ifstreamifile ("exanple_file");

copy (istream.iterator<int, ptrdiff_t> (ifile),
istream.iterator<int, ptrdiff_t> (),
back_i nserter(v));

Thefunctionback_i nserter returnsaback_i nsert _i t erat or. Thisisaso-called iterator
adaptor (explained in detail in section 4.4) and isakind of past-the-end iterator to the
container. The container, for which aback insert iterator is to be created, has to be handed
over toback_i nsert er . When avalue is written to the back insert iterator, it is appended to
the specified container asitslast element. If, for example, v. end() isused instead of the back
insert iterator in the example above, all the valuesinserted will be written to the same vector
position (v. end()), becausev. end() isn't incremented after writing to it. Thisincrement is
internally done by the back insert iterator by calling the container member function
push_back.

4.2.2 Forward Iterators

Forward iterators have to satisfy the following requirements:

STL Tutorial page 31 Johannes Weidl

Forward lterator Reqguirements:

* constructor

e assignment operator

e equality/inequality operator
» dereference operator

» pre/post increment operator

The difference to the input and output iteratorsis that for two forward iteratorsr ands, r==s
implies ++r ==++s. A difference to the output iteratorsis that oper at or * isalso vaid on the
left side of the assignment operator (t = *a isvalid) and that the number of assignmentsto a
forward iterator is not restricted.

So, multi-pass one-directional agorithms can be implemented on containers that alow the
use of forward iterators (look at Table 5). Asan example for a single-pass one-directional
algorithmfi nd_I i near ispresented. It iterates through the el ements of a container and
returns the iterator position where avalue provided tofi nd_I i near isfound, otherwise the
past-the-end iterator isreturned. The overhead of fi nd_I i near isstatistically n/2.

tenpl at e<cl ass Forwardlterator, class T>
Forwardlterator find_|linear (Forwardlterator first,
Forwardlterator |ast, T& value) {
while (first !'=last) if (*first++ == value) return first;
return | ast;

}

vector<int> v (3, 1);
v. push_back (7); [/ vector v: 1117

vector<int>::iterator i = find_linear (v.begin(), v.end(), 7);
if (i '=v.end()) cout << *i; else cout << "not found"
Output: 7

4.2.3 Bidirectional Iterators

In addition to forward iterators, bidirectional iterators satisfy the following requirements:

Bidirectional Iterator Reguirements (additional to forward iterators'):

* pre/post decrement operator

Bidirectiona iterators allow agorithms to pass through the elements forward and backward.

list<int>1 (1, 1);
| . push_back (2); // list |I: 1 2

list<int> :iterator first
list<int>::iterator |ast

= |.begin();
= |.end();
while (last !'= first) {

--last;

cout << *last << " "

}

Output: 21

STL Tutorial page 32 Johannes Weidl

The bubble sort algorithm serves as an example for a multi-pass agorithm using bidirectional
iterators.

tenpl ate <cl ass Bidirectionallterator, class Conpare>
voi d bubble_sort (Bidirectionallterator first, Bidirectionallterator |ast,
Compar e comnp)

{
Bidirectionallterator left_el = first, right_el = first;
right_el ++;
while (first !'= 1last)
{
while (right_el !'=last) {

if (conmp(*right_el, *left_el)) iter_swap (left_el, right_el);
right_el ++;
left_el ++;

| ast--;
left_el = first, right_el = first;
right_el ++;
}
}

The binary function object Corpar e hasto be provided by the user of bubbl e_sort.
Corpar e, which implements a binary predicate, takes two arguments and returns the result
(true orf al se) of the predicate provided with the two arguments.

list<int> |;
[fill list
bubbl e_sort (I.begin(), |.end(), less<int>()); /'l sort ascendingly
bubbl e_sort (I.begin(), |.end(), greater<int>());// sort descendingly

4.2.4 Random Access Iterators

In addition to bidirectional iterators, random access iterators satisfy the following
requirements:

Random Access Iterator Requirements (additional to bidirectiona iterators'):

e operator+ (int)

e operator+= (int)

e operator- (int)

e operator-= (int)

e operator- (random access iterator)

o operator(] (int)

e operator < (random access iterator)
e operator > (random access iterator)
e operator >= (random access iterator)
» operator <= (random access iterator)

Random access iterators alow algorithms to have random access to elements stored in a
container which hasto provide random access iterators, like the vector.

STL Tutorial page 33 Johannes Weidl

vector<int> v (1, 1);
v. push_back (2); v.push_back (3); v.push_back (4); // vector v: 1 2 3 4

vector<int>::iterator i
vector<int>::iterator j
i += 3; cout << *j << " "

j =i - 1; cout << *j << " "
| -=2

cout << *j << " "y

cout << v[1] << endl;

v. begi n();
i + 2; cout << *j << " "

(j <i) ?cout <<"j <i" : cout << "not (j < i)"; cout << endl;
(j >1i) ?cout <<™"j >i" : cout << "not (j >1i)"; cout << endl;
i =j;
i <= & j <=1i ? cout << "i and j equal" : cout << "i and j not equal";
cout << endl;
] = v.begin();
i = v.end();
cout << "iterator distance end - begin =" size: " << (i - j);
Output: 34312

j<i

not (i > j)

i and j equal

iterator distance end - begin="size: 4

An agorithm that needs random access to container el ements to work with O(ld n) isthe
binary search agorithm. In section 4.3 algorithms and function objects are explained and it is
shown how they work together in a very advantageous way.

4.2.5 Exercises

Exercise 4.2.1: Refine Exercise 4.1.5 by reading the original bit sequence out of a user built
file bit_seq. Additionally, store the bit-stuffed bit sequence in thefile bit_stff (note that
the integer values in the input and output stream have to be separated by whitespaces).
Hint: The output file bit_stff hasto be declared as of st r eam which is defined like
i fstreaminfstream h.

4.3 Algorithms and Function Objects

All the algorithms provided by the library are parametrized by iterator types and are so seperated from
particular implementations of data structures. Because of that they are called generic algorithms.

4.3.1 How to create a generic algorithm

| want to evolve ageneric binary search algorithm out of a conventional one. The starting
point isa C++ binary search agorithm which takes an integer array, the number of elements
in the array and the value searched for as arguments. bi nary_sear ch returns a constant
pointer to the element - if found - the nil pointer else.

STL Tutorial page 34 Johannes Weidl

const int* binary_search (const int* array, int n, int x) {
const int* o = array, *hi = array + n, *md;
while(lo !'= hi) {
mid=1o0+ (hi - lo) / 2;
if (x == *md) return md;
if (x <*md) hi = md; elselo=md + 1,
return O;
}

Let uslook at the assumptions this algorithm makes about its environment. bi nary_sear ch
only works with integer arrays. To make it work with arrays of arbitrary types we transform
bi nary_sear ch in atemplate function.

tenpl at e<cl ass T>
const T* binary_search (const T* array, int n, const T& x) {

const T* lo = array, *hi = array + n, *md;
while(lo !'= hi) {

mid=1o0o+ (hi - lo) / 2;

if (x == *md) return md;

if (x <*md) hi = md; elselo =md + 1,
return O;

Now the agorithm is designed for use with arrays of different types. In case of not finding the
value searched for, a special pointer - nil - isreturned. This requires that such avalue exists.
Since we don’t want to make this assumption, in case of an unsuccessful search we return the
pointer array + n (yes, apast-the-end pointer) instead.

tenpl at e<cl ass T>
const T* binary_search (const T* array, int n, const T& x) {

const T lo = array, *hi = array + n, *md;
while(lo !'= hi) {

mid=1o0+ (hi - lo) / 2;

if (x == *md) return md;

if (x <*md) hi = md; elselo =md + 1,
}

return array + n;

Instead of handing over array as pointer to the first element and a size, we could also specify
apointer to thefirst and past the last element to approach STL’s iterator concept.

tenpl at e<cl ass T>
const T* binary_search (T* first, T* last, const T& val ue) {

const T* lo = array, *hi = array + n, *md;
while(lo !'= hi) {

mid=1o0+ (hi - lo) / 2;

if (value == *md) return md;

if (value < *mid) hi = md; elselo =md + 1,

return | ast;

To specify apointer to the end of a container instead of handing over its size hasthe
advantage that it has not to be possible to compute | ast out of first withfirst+n. Thisis
important for containers that don't allow random access to their elements. Because our

bi nar y_sear ch needs random access to the elements of the container, thisis of little

STL Tutorial page 35 Johannes Weidl

importance in our example. Another advantage isthat the difference type (herei nt) doesn’t
have to be explicitly handed over, so the user of bi nary_sear ch doesn’t even have to know it.
The difference type is the type which is used to express the type of the difference of two
arbitrary iterators (pointers), for example | ast - first could be of thetypesi gned | ong.

The last step to fully adapt the algorithm to the STL style isto change the first and last pointer
type from pointers to the value type to an appropriate iterator type. By this step, the
information of how the algorithm steps from one element to the next istorn away from the
algorithm implementation and is hidden in the iterator objects. Now, no assumptions about the
mechanism to iterate through the elements are made. This mechanism is handed over to the
algorithm by the iterator objects. So, the algorithm is separated from the container it works on,
al the operations that deal with iterators are provided by the iterator objects themselves.

Sincebi nary_sear ch needs random access to the elements of the container it iscalled for and
so iterators handed over to bi nary_sear ch have to satisfy the requirements of random access
iterators, we namethetypeof first andl ast "RandomAccesslterator":

t enpl at e<cl ass RandomAccesslterator, class T>

RandomAccesslterator binary_search (RandomAccesslterator first,
RandomAccesslterator | ast,
const T& val ue) {

RandomAccesslterator not_found = last, md;
while(first !'=last) {

md=first + (last - first) / 2;

if (value == *md) return md;

if (value < *mid) last = md; else first = md + 1;

}

return not _found;

}

The only assumptions the a gorithm makes are the random access to elements of type T
between the two iterators (pointers) fi r st and | ast and that oper at or == and oper at or < are
defined for type T and the value type of the iterator.

This generic binary search algorithm hasn’t lost anything of its functionality, especialy not
when dealing with built in types.

int x[10]; [l array of ten integer val ues
i nt search_val ue; /'l val ue searched for

[/ initialize variables

int* i = binary_search (&[0], &x[10], search_val ue);
if (i == &[10]) cout << "value not found"; else cout << "value found";

All the STL algorithms are constructed like our example algorithm - they try to make asfew
assumptions as possible about the environment they arerunin.

STL Tutorial page 36 Johannes Weidl

4.3.2 The STL algorithms

The agorithms delivered with the library are divided into four groups:

group |algorithm type
1 mutating sequence operations
2 non-mutating sequence operations
3 sorting and related operations
4 generalized numeric operations

Table 6: STL algorithm types

Group 1 contains algorithms which don’'t change (mutate) the order of the elementsin a
container, this has not to be true for algorithms of group 2.

Theagorithmf or _each of group 1 takes two iterators and afunction f of type Functi on as
arguments:

tenpl ate <class Inputlterator, class Function>
Function for_each (lnputlterator first, Inputlterator |ast, Function f);

The template argument f of type Funct i on must not be mixed up with a"pure" C++ function,
because such afunction can only be used in aroundabout way (see section 4.4.3). The
template function f or _each expects a function object (section 2.2) as argument. f isassumed
not to apply any non-constant function through the dereferenced iterator.

for _each appliesf to theresult of dereferencing every iterator intherange[first, |ast)
and returnsf . If f returnsavalue, it isignored. The following example computes the sum of
al dementsintherange[first, |ast).

tenpl ate <cl ass T>
class sum.up {
public:
voi d operator() (const T& value) { sum += val ue; }
const T& read_sum() { return sum }
private:
static T sum
IE

int sum_up<int>::sum

voi d mai n(voi d) {
deque’<int> d (3,2);
sum. up<i nt> s;

for_each (d.begin(), d.end(), s);
cout << s.read_sum);

}

Output: 6

Group 1 also contains an algorithm £ i nd, which isvery similar tofi nd_I i near from section
4.2.2.

"Touseadeque includedeque. h

STL Tutorial page 37 Johannes Weidl

tenpl ate <class Inputlterator, class T>
Inputlterator find(lnputlterator first, Inputlterator |ast,
const T& val ue);

fi nd takes arange and areference to avalue of arbitrary type. It assumes that oper at or ==
for the value type of the iterator and T is defined. Additionally to f i nd an agorithm named
find_i f isprovided, which takes a predicate pr ed of type Pr edi cat e.

tenpl ate <class Inputlterator, class Predicate>
Inputlterator find_if(Inputlterator first, Inputlterator |ast,
Predi cate pred);

find_if (likefind) returnsthefirstiteratori intherange[first, 1ast),for whichthe
following condition holds: pred(*i) = true. If such aniterator doesn't exist, a past-the end
iterator isreturned.

tenpl ate <cl ass T>
class find_first_greater {
public:
find_first_greater() : x(0) {}
find_first_greater(const& xx) : x(xx) {}
int operator() (const T& v) { return v > x; }

private:
T Xx;
be
vector<int> v;
[l fill vector with 1 2 3 45
vector<int>::iterator i = find_if (v.begin(), v.end(),

find_first_greater<int> (3));

i I'=v.end()? cout << *i : cout << "not found";
Output: 4

Generally, if thereisaversion of an agorithm which takes a predicate, it gets the name of the
agorithm with the suffix _i f .

Some agorithms, like adj acent _f i nd, take abinary predicate bi nary_pr ed of type
Bi nar yPr edi cat e. adj acent _f i nd returnsthefirst iterator i , for which the following
condition holds: bi nary_pred (*i, *(i+1)) == true.

templ ate <class Inputlterator, class BinaryPredi cate>
Inputlterator adjacent_find(lnputlterator first, Inputlterator |ast,
Bi naryPr edi cate bi nary_pred);

For example, if you want to find thefirst pair of values, whose product is odd, you could write
this.

tenpl ate <cl ass T>
class prod_odd {
public:
int operator() (const T& vl1l, const T& v2)
{ return vio2 '= 0 && v29%2 != 0; }

s

list<int> |;

[l fill list with 2 9 6 13 7

list<int>:iterator i = adjacent_find (I.begin(), |.end(),
prod_odd<i nt>());

if (i '=1l.end()) { cout << *i << " "; ji++; cout << *i++; }

el se cout << "not found";

STL Tutorial page 38 Johannes Weidl

Output: 13 7

Algorithms can work in place, that means they do their work within the specified range.
Some agorithms have an additional version which copies well-defined elements to an output
iterator r esul t . When such aversion is provided, the algorithm gets the suffix _copy (which
precedes a probable suffix _i f). For examplethereisrepl ace_copy_i f, which assignsto
every iterator intherange[result, result+(last-first)) ether anew value (which
has to be specified) or the original value. This depends on a predicate given as argument.

tenpl ate <class Iterator, class Qutputlterator, class Predicate, class T>

Qutputlterator replace_copy_if(lterator first, Iterator |ast,
Qutputlterator result, Predicate pred,
const T& new_val ue);

All the operationsin group 3 have two versions. One that takes a function object conp of type
Conpar e and another that uses oper at or < to do the comparison. oper at or < and conp,
respectively, have to induce atotal ordering relation on the values to ensure that the

algorithms work correctly.
vector<int> v;
[l fill v with 375426
sort (v.begin(), v.end());
sort (v.begin(), v.end(), less<int>());
sort (v.begin(), v.end(), greater<int>());
Output: 234567
234567
765432

Since the library provides function objects for all of the comparison operators in the language
we can usel ess to sort the container ascendingly and gr eat er to sort it descendingly.

All the provided function objects are derived either from unary_f unct i on or from

bi nary_f unct i on to Simplify the type definitions of the argument and result types.

tenpl ate <cl ass Arg, class Result>
struct unary_function {
typedef Arg argunent _type;
typedef Result result_type;

tenpl ate <class Argl, class Arg2, class Result>
struct binary_function {

typedef Argl first_argunent_type;

typedef Arg2 second_argunent _type;

typedef Result result_type;

STL provides function objects for all of the arithmetic operations in the language. pl us,
m nus, ti mes, di vi des and modul us are binary operations whereas negat e isaunary
operation. As examples, look at pl us and negat e, the other functions objects are defined
accordingly.

tenpl ate <cl ass T>
struct plus : binary_function<T, T, T> {

T operator()(const T& x, const T& y) const { return x +vy; }
1

[tenpl ate <class T>

STL Tutorial page 39 Johannes Weidl

struct negate : unary_function<T, T> {
T operator()(const T& x) const { return -x; }
IE

The mentioned comparison function objectsare equal _t o, not _equal _t o, greater, | ess,
greater_equal andless_equal , they areal binary function objects. | ess shall serve as
example.

tenpl ate <cl ass T>
struct less : binary_function<T, T, bool > {

bool operator()(const T& x, const T& y) const { return x <y; }
1

Additionally, the binary function objects| ogi cal _and and | ogi cal _or exist, I ogi cal _not
isaunary function object.

tenpl ate <cl ass T>
struct | ogical _and : binary_function<T, T, bool> {

bool operator()(const T& x, const T& y) const { return x && y; }
1

tenpl ate <cl ass T>
struct | ogical _not : unary_function<T, bool> {

bool operator()(const T& x) const { return !x; }
1

The rest of the function object implementations can be found in [2], 6.

In group 4, the algorithm accunul at e takes abinary operation bi nary_op of type
Bi nar yOper at i on. The algorithm accunul at e doesthe same asf or _each used with the
function object sum up (presented earlier in this section).

tenpl ate <class Inputlterator, class T>
T accumul ate(lnputlterator first, Inputlterator last, T init);

For eachiteratori in[first, last),acc = acc + *i iscomputed, then acc isreturned.
acc can beinitialized with a starting value. Instead of oper at or +, an arbitrary binary
operation can be defined by the user, or a STL function object can be used.

vector<int> v;
v. push_back (2); v.push_back (5);
cout << accunul ate (v.begin(), v.end(), 10, divides<int>());

Output: 1

| want to present an example which implements a spell-checker. For this purpose we assume
thefollowing:

» Thedictionary isstored in afile

» Thetext to check isstored in afile

» Thewords of the text should be checked against dictionary
» Every word not found or misspelled should be displayed

We decide to use a non-associative container (see section 4.1, introduction), which holds the
dictionary. The dictionary is assumed to be sorted. Now, we express the spell-checker
functionality in pseudo code.

STL Tutorial page 40 Johannes Weidl

for every word in text
check agai nst dictionary
if not in dictionary wite to output

This pseudo code can be expressed in different way:

copy every word of text to output
that is not in the dictionary

The last pseudo code variation can more directly be trandated into a STL program. Since we
need a mechanism that tells usif aword isor isnot in the dictionary, we encapsulate this
functionality in afunction object.

tenpl ate <cl ass bidirectional _iterator, class T>
cl ass nonAssocFi nder {
public:
nonAssocFi nder (bi di recti onal _iterator begin
bi directional _iterator end)
_begi n(begin), _end(end) {}

bool operator() (const T& word) {
return binary_search(_begin, _end, word); }

private:
bi directional _iterator _begin;
bi directional _iterator _end;

}s

The function object nonAssocFi nder isinitialized with the iterators begi n and end that have
to be at least of the bidirectional iterator category. The function call operator takes aword and
returns a boolean value, which states if the word has been found in the dictionary (the type
bool isdefined by STL). Thisboolean value isreturned by the STL agorithm

bi nary_search.

tenpl ate <cl ass Forwardlterator, class T>
bool binary_search(Forwardlterator first, Forwardlterator |ast,
const T& val ue);

Thefirst thing we do in our program is to define adictionary as a vector of typest ri ng and
fill it out of an input stream.

typedef vector<string® dict_type;

ifstreamdictFile("dict.txt");
i fstream wordsFil e("words. txt");

dict _type dictionary;
copy (istream.iterator<string, ptrdiff_t>(dictFile),

istream.iterator<string, ptrdiff_t>(),
back_i nserter(dictionary));

8 Tousethestri ng typeincludecstring. h

STL Tutorial page 41 Johannes Weidl

Then we use the STL algorithm r emove_copy_i f to achieve the functionaity wanted.

templ ate <class Inputlterator, class Qutputlterator, class Predicate>
Qutputlterator renove_copy_if(lnputlterator first, Inputlterator |ast,
Qutputlterator result, Predicate pred);

remove_copy_i f writesall elementsreferred to by theiterator i intherange[first, |ast)
to the output iterator r esul t , for which the following condition does not hold:

pred(*i) == true. Theagorithm returnsthe end of the resulting range. The rest of the
spell-checker program proves to be asingle statement.

renove_copy_if (
istream.iterator<string, ptrdiff_t>(wordsFile),
istream.iterator<string, ptrdiff_t>(),
ostream.iterator<string>(cout, "\n"),
nonAssocFi nder <di ct _type::iterator,
di ct _type::val ue_type>
(dictionary.begin(), dictionary.end()));

remove_copy_i f readswords from the input stream wor dsFi | e and writes the words for
which nonAssocFi nder returnsf al se (i.e. which are either not found or misspelled) to cout .

The components used are:

e agorithms: copy and r enove_copy_i f

e container: vect or

e user defined: function object nonAssocFi nder

Now you should have the basics to understand the chapter on algorithmsin [2], 10. Since this

document is very theoretical, the algorithms in combination with a description and examples
can befound in [4], 6. A complete STL example can befound in [4], 5.

4.3.3 Exercises

Exercise 4.3.1: Fill two containers with the same number of integer values. Create a new
container, whose elements are the sum of the appropriate elementsin the original
container. Hint: The library provides an algorithm and a function object to do the
exercise.

Exercise 4.3.2: Write agenerator object which can be used with the STL algorithm gener at e
(group 2) to fill containers with certain values. It should be possible to specify a starting
value and a step size, so that the first element in the container is the starting value and
every further element is the sum of the preceding element and the step size.

4.4 Adaptors

Asstated in [2], 11, "Adaptors are template classes that provide interface mappings’. Adaptors are
classes that are based on other classes to implement a new functionality. Member functions can be
added or hidden or can be combined to achieve new functionality.

STL Tutorial page 42 Johannes Weidl

4.4.1 Container Adaptors

Stack. A stack can be instantiated either with avect or, al i st or adeque. The member
functionsenpt y, si ze, t op, push and pop are accessible to the user.

st ack’<vect or<i nt> > sl;
stack<list<int> > s2;
st ack<deque<i nt> > s3;

sl. push(1); sl.push(5);

cout << sl.top() << endl;

s1. pop(); _

cout << sl.size() << endl;

sl.enpty()? cout << "enpty" : cout << "not enpty";

Output: 5
1

not empty

t op returns the element on the top of the stack, pop removes the top element from the stack.
For comparison of two stacks, oper at or == and oper at or < are defined.

Queue. A gqueue can beinstantiated with al i st or adeque.

queue<list<int> > ql,;
gueue<deque<i nt> > q2;

Its public member functions areenpt y, si ze, front, back, push and pop. f ront returnsthe
next element from the queue, pop removesthis element. back returnsthe last element pushed
to the queue with push. Aswith the stack, two queues can be compared using oper at or ==
and oper at or <.

Priority queue. A priority queue can be instantiated with avect or or adeque. A priority
gueue holds the e ements added by push sorted by using afunction object conp of type
Conpar e.

/1 use | ess as conpare object
priority_queue<vector<int>, |ess<int> > pql;
/'l use greater as conpare object
priority_queue<deque<i nt>, greater<int> > pqg2;

vector v(3, 1);

[/l create a priority_queue out of a vector, use |ess as conpare object
priority_queue<deque<int>, |less<int> > pg3 (v.begin(), v.end());

t op returns the element with the highest priority, pop removes this eement. The element with
the highest priority is determined by the sorting order imposed by conp. Note, that a priority
queue internally isimplemented using a heap. So, when | ess isused as compare object, the
element with the highest priority h will be one of the elements for which the following
conditionholds: 1 ess (h, x) == fal se for dl elementsx in the priority queue.

Additionally, the member functionsenpt y and si ze are provided. Note that no comparison
operatorsfor priority queues are provided. For the implementations of the container adaptors,
read [2], 11.1.

®Touseastack , queue or priority_queue includest ack. h

STL Tutorial page 43 Johannes Weidl

4.4.2 Iterator Adaptors

Reverselterators. For the bidirectional and random access iterators corresponding reverse
iterator adaptors that iterate through a data structure in the opposite direction are provided.

list<int> |;
[fill | with 12 3 4
reverse_bidirectional _iterat or<list<int> :iterator,
Iist<int>::val ue_type,
list<int>::reference_type,
list<int> :difference_type>r (l.end());
cout << *r << "
r++;
cout << *r << "
r--,
cout << *r;

Output: 4 34
list<int> |;
[l fill | with 12 3 4

copy (reverse_iterator<int*, int, int& ptrdiff_t> (l.end()),
reverse_iterator<int*, int, int& ptrdiff_t> (|.begin()),
ostream.iterator<int> (cout, " "));

Output: 4321

For all the sequence containers (vect or, 1 i st and deque) the member functionsr begi n and
rend are provided, which return the appropriate reverse iterators.

list<int> |;

[/ fill | with 12 3 4

copy (l.rbegin(), |.rend(), ostream.iterator<int> (cout, " "));
Output: 4321

Insert Iterators. A kind of iterator adaptors, called insert iterators, smplify the insertion into
containers. The principle is that writing avalue to an insert iterator inserts this value into the
container out of which the insert iterator was constructed. To define the position, where the
value isinserted, three different insert iterator adaptors are provided:

* back_insert_iterator
e front_insert_iterator
* insert_iterator

back_insert _iterator andfront _insert_iterator areconstructed out of acontainer
and insert elements at the end and at the beginning of this container, respectively. A

back_i nsert iterator requiresthe container out of which it is constructed to have
push_back defined, afront _i nsert _i terator correspondingly requirespush_front .

deque<int> d;

back_i nsert _iterator<deque<int> > bi (d);
front _insert_iterator<deque<int> > fi (d);

Y Tousereverse bidirectional iterator orreverse_iterator includeiterator.h

STL Tutorial page 44 Johannes Weidl

insert_iterator isconstructed out of acontainer and an iterator i , before which the values
written to the insert iterator are inserted.

deque<int> d;
insert_iterator<deque<int> > i (d, d.end());

Insert iterators satisfy the requirements of output iterators, that means that an insert iterator
can always be used when an output iterator is required. oper at or * returnsthe insert iterator
itsalf.

Thethreefunctionsback_i nserter,front _i nserter andi nserter returnthe appropriate
insert iterators.

tenpl ate <cl ass Cont ai ner >

back_i nsert _iterator<Container> back_i nserter(Container& x) {
return back_insert_iterator<Container>(x);

}

tenpl ate <cl ass Cont ai ner >

front _insert_iterator<Container> front_inserter(Container& x) {
return front_insert_iterator<Container>(x);

}

tenpl ate <cl ass Container, class Iterator>
insert_iterator<Container> inserter(Container& x, Iterator i) ({

return insert_iterator<Container>(x, Container::iterator(i));
}

ifstreamf ("exanple"); // file exanple: 1 3

deque<int> d;

copy (istream.iterator<int, ptrdiff_t>(f),
istream.iterator<int, ptrdiff_t>(),
back_i nserter(d));

vector<int> w (2,7);
copy (w. begin(), wend(), front_inserter (d));

insert _iterator<deque<int> > i = inserter (d, ++d.begin());
*I = 9;
Ouptut: 79713

Raw Storage Iterator. A raw_storage_it erat or enablesagorithmsto storeresultsinto
uninitialized memory.

vector<int> a (2, 5);
vector<int> b (2, 7);
int *c = allocate((ptrdiff_t) a.size(), (int*)0);

transform (a. begin(), a.end(), b.begin(),
raw_storage_iterator<int*, int> (c), plus<int>());

copy (&c[0], &c[2], ostream.iterator<int> (cout, " "));
Output: 12 12

Thefunction al | ocat e is provided by the STL allocator (see 4.5), t r ansf or misan agorithm
of group 2 (see 4.3.2). To use araw storage iterator for agiventype T, aconst ruct function
must be defined, which puts results directly into uninitialized memory by calling the
appropriate copy constructor. The following const ruct function isprovided by STL:

STL Tutorial page 45 Johannes Weidl

tenpl ate <class T1, class T2>
inline void construct(T1* p, const T2& value) {
new (p) Ti(val ue);

int a[10] = {1, 2, 3, 4, 5};
copy (&[0], &a[5], raw storage_iterator<int*, int> (&[5]));

4.4.3 Function Adaptors

Negators. The negatorsnot 1 and not 2 are functions which take a unary and a binary
predicate, respectively, and return their complements.

tenpl ate <cl ass Predicate>

unary_negat e<Predi cat e> not 1(const Predi cate& pred) {
return unary_negat e<Predi cat e>(pred);

}

tenpl ate <cl ass Predicate>

bi nary_negat e<Pr edi cat e> not 2(const Predi cate& pred) {
return binary_negat e<Predi cat e>(pred);

}

The classesunary_negat e and bi nary_negat e only work with function object classeswhich
have argument types and result type defined. That means, that Pr edi cat e: : ar gument _t ype
and Pr edi cat e: : resul t _t ype for unary function objects and

Predi cate::first_argunent _type, Predi cate::second_argurent _type and

Predi cate: : resul t _type for binary function objects must be accessible to instantiate the
negator classes.

vector<int> v;
[/ fill vwith 1234
sort (v.begin(), v.end(), not2 (less_equal<int>()));

Output: 4321

Binders. "The bindersbi nd1st and bi nd2nd take afunction object f of two argumentsand a
value x and return afunction object of one argument constructed out of f with thefirst or
second argument correspondingly bound to x.", [2],11.3.2. Imagine that there is a container
and you want to replace all e ements less than a certain bound with this bound.

vector<int> v;

[/ fill v with 4 6 10 3 13 2

int bound = 5;

replace_if (v.begin(), v.end(), bind2nd (Iess<int>(), bound), bound);

/Il v: 56 10 5 13 5

bi nd2nd returns a unary function object | ess that takes only one argument, because the
second argument has previously been bound to the value bound. When the function object is
applied to a dereferenced iterator i , the comparison *i < bound isdone by the function-call
operator of | ess.

Adaptorsfor pointersto functions. The STL agorithms and adaptors are designed to take
function objects as arguments. If ausual C++ function shall be used, it has to be wrapped in a
function object.

STL Tutorial page 46 Johannes Weidl

Thefunction pt r _f un takesa unary or abinary function and returns the corresponding
function object. The function-call operator of these function objects simply calls the function
with the arguments provided.

For example, if avector of character pointersisto be sorted lexicographically with respect to
the character arrays pointed to, the binary C++ function st r cnp can be transformed into a
comparison object and can so be used for sorting.

vect or<char*> v;

char* cl1 = new char[20]; strcpy (cl, "Tint);
char* c2 = new char[20]; strcpy (c2, "Charles");
char* c¢3 = new char[20]; strcpy (c3, "Aaron");

v. push_back (cl); v.push_back (c2); v.push_back (c3);

sort (v.begin(), v.end(), ptr_fun (strcnp));
copy (v.begin(), v.end(), ostream.iterator<char*> (cout, " "));
Output: Aaron Charles Tim

Note: The above example causes memory leaks, because the memory allocated with newis not
automatically deallocated. See section 4.5 for a solution.

4.5 Allocators and memory handling

"One of the common problems in portability isto be able to encapsulate the information about the
memory model.", [2], 7. Thisinformation includes the knowledge of

e pointer types

» typeof their difference (differencetypept rdi ff_t)

* typeof the size of objectsin amemory model (sizetypesi ze_t)
» memory allocation and deallocation primitives.

STL provides alocators which are objects that encapsulate the above information. As mentioned in
section 4.1.1, al the STL containers are parametrized in terms of allocators. So, containers don't have
any memory model information coded inherently but are provided with thisinformation by taking an
alocator object as argument.

Theideaisthat changing memory modelsis as simple as changing allocator objects. The alocator

al | ocat or, whichisdefined indef al | oc. h, isused asdefault allocator object. The compiler vendors
are expected to provide allocators for the memory models supported by their product. So, for Borland
C++ dlocators for different memory models are provided (see 3.2).

For every memory model there are corresponding al | ocat e, deal | ocat e, const ruct and dest r oy
template functions defined. al | ocat e returns a pointer of type T+ to an alocated buffer, which isno
lessthan n*si zeof (T).

tenpl ate <cl ass T>
inline T* allocate(ptrdiff_t size, T*);

deal | ocat e freesthe buffer allocated by al | ocat e.

tenpl ate <class T>
inline void deall ocate(T* buffer);

STL Tutorial page 47 Johannes Weidl

const ruct putsresults directly into uninitialized memory by calling the appropriate copy constructor.

tenpl ate <class T1, class T2>
inline void construct(T1* p, const T2& value) {
new (p) Ti(val ue);

dest r oy callsthe destructor for a specified pointer.

tenpl ate <cl ass T>

inline void destroy(T* pointer) {
poi nter->~T();

}

If you have a container of pointers to certain objects, the container destructor calls a special destroy
function to call al the single pointer destructors and free the memory allocated. To make this work
under Borland C++, atemplate specialization must be provided.

class ny_int {

public:
ny_int (int i =0) { ii =newint(i); }
~my_int () { delete ii; }
private:
int* ii;
s

/'l the follow ng tenplate specialization is necessary when using Borland C++
inline void destroy (ny_int** pointer) {

(*pointer)->~nmy_int();
void main (void) {

vector<my_int*> v (10);
for (int i =0; i <10; i++) { v[i] = newny_int(i); }

/1 allocated my_int nmenory and vector v are destroyed at end of scope

}

When you use a container of pointersto objects which do not have an explicit destructor defined, a
function like seq_del et e can beimplemented to free al the memory allocated.

tenpl ate <cl ass Forwardlterator>
inline void seq_delete (Forwardlterator first, Forwardlterator |ast) {

while (first !'=last) delete *first++;

}
vect or<char*> v;

char* cl1 = new char[20]; strcpy (cl, "Tint);
char* c2 = new char[20]; strcpy (c2, "Charles");
v. push_back (c1); v.push_back (c2);

seq_del ete (v.begin(), v.end());

[l vector v is destroyed at the end of scope

STL Tutorial page 48 Johannes Weidl

§ The remaining STL components

The remaining STL components and topics not dealt with yet will be described here.

5.1 How components work together

To makeit clear how all STL componentswork together the relations between the components
aretopic of this section.

Containers store objects of arbitrary types. Containers are parametrized by allocators.
Allocators are objects which encapsul ate information about the memory model used. They
provide memory primitives to handle memory accesses uniformly. Every memory model has
its characteristic, tailor-made alocator. Containers use allocators to do their memory
accesses. A change of the memory model used leads to a change of the allocator object given
as an argument to the container. This means, that on the code level a container object is
invariant under different memory models.

An algorithm is a computation order. So, two agorithms should differ in the computations
done by them, not in the access method used to read input data and write output data. This can
be achieved when datais accessed in a uniform manner. STL provides a uniform data access
mechanism for its algorithms - iterators. Different iterators provide different access modes.
The basic input and output unit is the range, which is awell-defined sequence of elements.
Function objects are used in combination with algorithms to encapsulate, for example,
predicates, functions and operations to extend the algorithms' utility.

Adaptors are interface mappings, they implement new objects with different or enhanced
functionality on the basis of existing components.

It has to be said that this decomposition of the component space is arbitrary to a certain extent
but designed to be as orthogonal as possible. This means that interferences between
components are reduced as far as possible.

The clean, orthogonal and transparent design of the library shall help to

» simplify application design and redesign

» decrease the lines of code to be written

* increase the understandability and maintainability

» provide abasisfor standard certifying and quality assurance asin other areas of system
architecture, design and implementation.

5.2 Vector

Additionally to the member functions described in section 4.1.1, ar eser ve member function
is provided, which informs the vector of aplanned change in size. This enables the vector to
manage the storage allocation accordingly. r eser ve does not change the size of the vector and
reallocation happensif and only if the current capacity islessthan the argument of r eser ve.

[voi d reserve(size_type n);

After acall of reser ve, the capacity (i.e. the allocated storage) of the vector is greater or
equal to the argument of r eser ve if realocation has happened, equal to its previous value
otherwise. This means, that if you user eser ve with avalue greater than the actual value of
capacity, reallocation happens and afterwards, the capacity of the vector is greater or equal to
the value given asargument tor eser ve.

STL Tutorial page 49 Johannes Weidl

To makeit clear, why such amember function is provided, remember that reallocation
invalidates all the references, pointers and iterators referring to the elementsin the sequence.
The use of r eser ve guarantees that no reallocation takes place during the insertions that
happen after acall of r eser ve until the time when the size of the vector reaches the capacity
caused by the cal of reser ve.

With thisin mind, take alook at exercise 4.1.1. We decided to use alist for storing the single
"hits", because inserting into alist never invalidates any of theiterators to this container,
which was essentia for the bit-stuff agorithm to work. Now, knowing of the existence of
reser ve, we can use this member function to reserve a certain vector capacity and aresoina
position to use a vector as well. After the call of r eser ve, we can insert elementsinto the
vector till capaci ty isreached being sure that no reallocation will happen. The argument n of
reser ve hasto be computed by considering a maximum number of bits to be bit-stuffed and
the worst case expansion, which happens when bit-stuffing a sequence only consisting of 1's.

5.3 List

Unlike avector, alist doesn't provide random access to its el ements. So, the member functions
begi n, end, r begi n and r end return bidirectional iterators. In addition to the member
functions push_back and pop_back, | i st providespush_front and pop_front to add and
remove an element at its beginning, because these operations can be done in constant time.

The container | i st provides special mutative operations. It is possible to splice two listsinto
one (member function: spl i ce), that isto insert the content of one list before an iterator
position of another. Two lists can be merged (ner ge) into one using oper at or < Or acompare
function object, alist can be reversed (r ever se) and sorted (sor t). It isaso possible to
remove al but first element from every consecutive group of equal elements (uni que).

For an exact description of all these member functionsread [2], 8.1.2.

5.4 Deque

As avector, a degue supports random access iterators. But in addition to the vector, which
only allows constant time insert and erase operations at the end, a deque supports the constant
time execution of these operations at the end aswell as at the beginning. Insert and erasein
the middle take constant time.

Because of these constant insert and erase operations at the beginning, a deque providesthe
member functionspush_front and pop_front . Note, that i nsert, push, erase and pop
invalidate all the iterators and referencesto the deque.

Further information concerning the deque can be found in [2], 8.1.3.

5.5 Iterator Tags

Every iterator i must have an expressioni terat or _t ag(i) defined, which returns the most
specific category tag that describes its behaviour.

The available iterator tagsare: i nput _i terator _tag, output_iterator_tag,
forward_iterator_tag, bidirectional _iteerator_tag,

random access_iterator_tag.

The most specific iterator tag of a built in pointer would be the random access iterator tag.

[tenpl ate <class T>

STL Tutorial page 50 Johannes Weidl

inline random access_iterator_tag iterator_category (const T*) {
return random access_iterator_tag();
}

A user defined iterator which satisfies, for example, the requirements of a bidirectiona iterator
can beincluded into the bidirectional iterator category.

tenpl ate <cl ass T>
inline bidirectional _iterator_tag iterator_category (const Mlterator<T>&)

return bidirectional _iterator_tag();

}

Iterator tags are used as "compile time tags for algorithm selection”, [2], 5.6. They enable the
compiler to use the most efficient algorithm at compile time.

Imagine the template function bi nary_sear ch which could be designed to work with
bidirectional iterators aswell as with random access iterators. To use the tag mechanism, the
two agorithms should be implemented as follows:

tenpl at e<cl ass Bidirectionallterator, class T>
Bi directional Iterator binary_search (Bidirectionallterator first,
Bi directional lterator |ast,
const T& val ue
bi directional _iterator_tag) {
/'l nmore generic, but less efficient algorithm

}

t enpl at e<cl ass RandomAccesslterator, class T>
RandomAccesslterator binary_search (RandomAccesslterator first,
RandomAccesslterator | ast,
const T& val ue,
random access_iterator_tag) {
/'l nmore efficient, but |ess generic algorithm

}

To use binary_search, akind of stub function hasto be written:

tenpl at e<cl ass Bidirectionallterator, class T>

inline Bidirectionallterator binary_search (Bidirectionallterator first,
Bi directional lterator |ast,
const T& val ue) {

bi nary_search (first, last, value, iterator_category(first));

}

At compile time, the compiler will choose the most efficient version of bi nary_sear ch. The
tag mechanismisfully transparent to the user of bi nary_sear ch.

5.6 Associative Containers

" Associative containers provide an ability for fast retrieval of data based on keys.", [2], 8.2.
Associative containers, like sequence containers, are used to store data. But in addition to that
associative containers are designed with an intention to optimize the retrieval of data by
organizing the single datarecordsin a specialized structure (e.g. in atree) using keysfor
identification. The library provides four different kinds of associative containers: set ,

mul ti set, map and mul ti map.

set and map support unique keys, that means that those containers may contain at most one
element (data record) for each key. mul ti set and mul ti map support equal keys, so more than

STL Tutorial page 51 Johannes Weidl

one element can be stored for each key. The difference between set (mul ti set) and map

(mul ti map) isthat aset (map) stores datawhich inherently contains the key expression. map
(mul ti map) stores the key expression and the appropriate data separately, i.e. the key has not
to be part of the data stored.

Imagine we have objects that encapsulate the information of an employee at a company. An
employee class could look like this:

cl ass enpl oyee_data {

public:
enpl oyee_data() : nane (""), skill(0), salary(0) {}
enpl oyee_data(string n, int s, long sa)

nane (n), skill (s), salary (sa) {}
string nanme;
i nt skill;
| ong sal ary;
friend ostream& operator<< (ostrean& os, const enpl oyee_data& e);
IE
ostrean®& operator<< (ostream os, const enployee_data& e) {
0s << "enployee: " << e.nanme << " " << e.skill << " " << e.salary;
return os;
}
If we want to store employee datain aset (mul ti set), the key hasto beincluded in the
object stored:
cl ass enpl oyee {
public:
enpl oyee (int i, enployee_data e)
identification_code (i), description (e) {}
int identification_code; /1l key expression to identify an enpl oyee

enpl oyee_dat a descri ption

bool operator< (const enpl oyee& e) const ({
return identification_code < e.identification_code; }

}s

Now we are ableto declareaset (mul ti set) of employees:

1T

set =~ <enpl oyee, | ess<enpl oyee> > enpl oyee_set;

mul tiset®?

<emnpl oyee, | ess<enpl oyee> > enpl oyee_nultiset;

Using aset (mul tiset), enpl oyee isboth the key type and the value type of the set
(mul tiset).

All associative containers are parametrized on a class Key, which isused to definekey_t ype,
and a so-called comparison object of class Conpar e, for example:

" Touseasetincludeset . h
12 To useamultiset includenul ti set . h

STL Tutorial page 52 Johannes Weidl

tenpl ate <cl ass Key, class Conpare = | ess<Key>,
templ ate <class U> class Allocator = allocator>
cl ass set ({
typedef Key key_type;
typedef Key val ue_type;

}s

If we want to store employee datain amap (mul ti map), the key typeisi nt and the value type
iSpai r<const int, enpl oyee_dat a>:

map™ <int, enployee_data, |ess<int> > enployee_map

nul ti map™ <int, enployee data, |ess<int> > enployee multi map;

tenpl ate <class Key, class T, class Conpare = | ess<Key>,
tenpl ate <cl ass U> class Allocator = allocator>
class map {
typedef Key key_type;
typedef pair<const Key, T> val ue_type;

}s

Two keysk1 and k2 are considered to be equal if for the comparison object conp, conp(k1,
k2) == fal se & conp(k2, k1) == fal se, S0 equality isimposed by the comparison
object and not by oper at or ==.

The member function key_conp returns the comparison object out of which the associative
container has been constructed. val ue_conp returns an object constructed out of the
comparison object to compare values of typeval ue_t ype. All associative containers have the
member functions begi n, end, rbegi n, rend, enpt y, si ze, max_si ze and swap defined.
These member functions are equivalent to the appropriate sequence container member
functions. An associative container can be constructed by specifying no argument (I ess<Key>
isused as default comparison object) or by specifying a comparison object. It can be
constructed out of a sequence of elements specified by two iterators or another associative
container. oper at or = (assignment operator) is defined for all associative containers.
Associative containers provide bidirectional iterators.

Now we want to store some employee datain the set. We can use thei nsert member
function:

enpl oyee_data edl ("john", 1, 5000);
enpl oyee_data ed2 ("tom', 5, 2000);
enpl oyee_data ed3 ("mary", 2, 3000);

enpl oyee el (1010, edl);
enpl oyee e2 (2020, ed2);
enpl oyee e3 (3030, ed3);

pai r<set <enpl oyee, | ess<enployee> >::iterator, bool >
result = enpl oyee_set.insert (el);

if (result.second) cout << "insert ok"; else cout << "not inserted"
cout << endl << (*result.first).description.nane << endl

result = enpl oyee_set.insert (el);
if (result.second) cout << "insert ok"; else cout << "not inserted"

3 To use amap include map. h
% To use amultimap include mul t i map. h

STL Tutorial page 53 Johannes Weidl

pai r<map <int, enployee_data, |less<int> > :iterator, bool>
resultl = enpl oyee_map.insert (make_pair (1010, edl));

mul ti set <enpl oyee, | ess<enpl oyee> >::iterator
result2 = enployee_nultiset.insert (el);

mul ti map <int, enployee_data, |less<int> > :iterator
result3 = enpl oyee_mnul ti map.insert (nmake_pair (1010, edl));

Output: insert ok
john
not inserted

Note: For users of Borland C++ it hasto be said that the above map and multimap insert
operations can only be compiled with achangein the codein map. h and nul t i map. h.
Instead of "t ypedef pair<const Key, T> value_type" |l used "typedef
pai r <Key, T> val ue_type".

i nsert takesan object of typeval ue_t ype and returns apair consisting of an iterator and a
bool value. The bool value indicates whether the insertion took place. In case of an associative
container supporting unique keys, the iterator points to the element with the key equal to the
key of the element specified as argument, in case of an associative container supporting equal
keysto the newly inserted element. i nsert does not affect the validity of iterators and
references to the container.

A second version of i nsert takes arange specified by two iterators and inserts the
appropriate elements into the associative container (the return valueisvoi d):

pai r<int, enployee_data> a[2] = { make_pair (2020, ed2),
make_pair (3030, ed3) };
enpl oyee_map.insert (&[0], &a[2]);

Thefi nd member function takes a key value and returns an iterator, which indicates the
success of the search operation:

map <int, enployee_data, |ess<int> >::const_iterator
= enpl oyee_nmap. find (3030);

if (i == enployee_nap.end()) cout << "npot found"
el se cout << (*i).second. nane;

Output: mary

map isthe only associative container with provides the subscribe operator (oprat or[]) to
address elements directly:

enpl oyee_data d = enpl oyee_map[2020] ;
cout << d;

Output: tom 5 2000

The er ase member function can take avalue of typekey_t ype, asingleiterator or arange
specifying the element or elements to be erased:

enpl oyee_map. erase (3030);
enpl oyee_map. erase (enpl oyee_map. begin());
enmpl oyee_map. erase (enpl oyee_map. begi n(), enpl oyee_map.end());

STL Tutorial page 54 Johannes Weidl

|if (enpl oyee_map. enpty()) cout << "enpl oyee_map is enpty";

Output: employee_map is empty
er ase invalidates only the iterators and referencesto the erased elements.

Since it doesn't make sense to store more than one employee under an employee key, for the
demonstration of an associative container supporting equal keys adightly different exampleis
used. A number of employeesis stored under the same key which represents a department
code. We can usetheenpl oyee_nul ti map container declared earlier in this section:

[l enployee_multimap is enpty

enpl oyee_mul ti map. i nsert (make_pair (101, edl)); /| departnent code 101
enpl oyee_nul ti map. i nsert (make_pair (101, ed2));

enpl oyee_mul ti map.insert (make_pair (102, ed3)); /1 department code 102

count takes akey value and returns the number of elements stored under this key value.

mul ti map <int, enployee_data, |ess<int> >::size_type count
= enpl oyee_nul ti map. count (101);
cout << count;

Output: 2

| ower _bound (k) withk of typekey_t ype returns an iterator pointing to the first element
with key not lessthan k. upper _bound (k) returnsan iterator pointing to the first element
with key greater than k. equal _range (k) returnsapair of iterators with the first iterator
being the return value of | ower _bound (k) and the second being the return value of

upper _bound (k).

ostrean®& operator<< (ostream& os, const pair<int, enployee_data>& p) {

0S << "enpl oyee: " << p.second.name << " " << p.second.skill << " " <<
p. second. sal ary;
return os;

}
typedef multimap <int, enployee_data, less<int> > :iterator j;
pair<j, j> result = enployee_nultimap. equal _range (101);

copy (result.first,
result.second,

ostream.terator<pair<int, enployee_data> > (cout , "\n"));
Output: john 1 5000
tom 5 2000

STL Tutorial page 55 Johannes Weidl

6 Copyright

The spell-checker example from section 4.3 isa Copyright 1995 of M. Jazayeri and G.Trausmuth - TU
Wien.

All code pieces with a shaded frame are subject to the following copyright notice by Hewlett Packard:

/

Copyright (c) 1994
Hew et t - Packard Conpany

Perm ssion to use, copy, nodify, distribute and sell this software
and its docunmentation for any purpose is hereby granted wi thout fee,
provi ded that the above copyright notice appear in all copies and
that both that copyright notice and this perm ssion notice appear

in supporting docunentation. Hew ett-Packard Conpany nmakes no
representations about the suitability of this software for any
purpose. It is provided "as is" without express or inplied warranty.

b T S T . I N

Thistutorial is permitted to be used for academic and teaching purposesin whole or in part if the
following copyright notice is preserved:

Copyright [0 1995, 1996 Johannes Weidl - TU Wien

All other use, especially if commercial, can only be granted by the author himself - feel free to contact
me.

7 Literature

[1] Stroustrup, Bjarne: The C++ programming language -- 2nd ed.
June, 1993

[2] Lee, Meng; Stepanov, Alex: The Standard Template Library
HP Labaratories, 1501 Page Mill Road, Palo Alto, CA 94304
February 7, 1995

[3] STL++
The Enhanced Standard Template Library, Tutorial & Reference Manual
Modena Software Inc., 236 N. Santa Cruz Ave, Suite 213, Los Gatos CA 95030
1994

[4] Standard Template Library Reference
Rensselaer Polytechnic Institute, 1994
includes as chapter 6
The STL Online Algorithm Reference
Cook, Robert Jr.; Musser, David R.; Zalewski, Kenneth J.
online at http://www.cs.rpi.edu/Cmusser/stl.html

STL Tutorial page 56 Johannes Weidl

