
Chapter 1
Abstract Machines

Abstraction mechanisms play a crucial role in computing because they allow us to
manage the complexity inherent in most computational systems by isolating the
important aspects in a specific context. In the field of programming languages,
these mechanisms are fundamental, both from a theoretical viewpoint (many impor-
tant concepts can be appropriately formalised using abstractions) and in the practi-
cal sense, because programming languages today use common abstraction-creating
constructs.

One of the most general concepts employing abstraction is the abstract machine.
In this chapter, we will see how this concept is closely related to the programming
languages. We will also see how, without requiring us to go into the specific details
of any particular implementation, it allows us to describe what an implementation
of a programming language is. To do this, we will describe in general terms what
is meant by the interpreter and the compiler for a language. Finally, will see how
abstract machines can be structured in hierarchies that describe and implement com-
plex software systems.

1.1 The Concepts of Abstract Machine and of Interpreter

In the context of this book, the term “machine” refers clearly to a computing ma-
chine. As we know, an electronic, digital computer is a physical machine that ex-
ecutes algorithms which are suitably formalised so that the machine can “under-
stand” them. Intuitively, an abstract machine is nothing more than an abstraction of
the concept of a physical computer.

For actual execution, algorithms must be appropriately formalised using the con-
structs provided by a programming language. In other words, the algorithms we
want to execute must be represented using the instructions of a programming lan-
guage, L . This language will be formally defined in terms of a specific syntax and
a precise semantics—see Chap. 2. For the time being, the nature of L is of no con-
cern to us. Here, it is sufficient to know that the syntax of L allows us to use a given
finite set of constructs, called instructions, to construct programs. A program in L
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Fig. 1.1 The structure of an abstract machine

(or program written in L ) therefore is nothing more than a finite set of instructions
of L . With these preliminary remarks, we now present a definition that is central to
this chapter.

Definition 1.1 (Abstract Machine) Assume that we are given a programming lan-
guage, L . An abstract machine for L , denoted by ML , is any set of data structures
and algorithms which can perform the storage and execution of programs written
in L .

When we choose not to specify the language, L , we will simply talk of the ab-
stract machine, M , omitting the subscript. We will soon see some example abstract
machines and how they can actually be implemented. For the time being, let us stop
and consider the structure of an abstract machine. As depicted in Fig. 1.1, a generic
abstract machine ML is composed of a store and an interpreter. The store serves
to store data and programs while the interpreter is the component that executes the
instructions contained in programs. We will see this more clearly in the next sec-
tion.

1.1.1 The Interpreter

Clearly the interpreter must perform the operations that are specific to the language
it is interpreting, L . However, even given the diversity of languages, it is possible
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to discern types of operation and an “execution method” common to all interpreters.
The type of operation executed by the interpreter and associated data structures, fall
into the following categories:

1. Operations for processing primitive data;
2. Operations and data structures for controlling the sequence of execution of oper-

ations;
3. Operations and data structures for controlling data transfers;
4. Operations and data structures for memory management.

We consider these four points in detail.
1. The need for operations such as those in point one is clear. A machine, even

an abstract one, runs by executing algorithms, so it must have operations for manip-
ulating primitive data items. These items can be directly represented by a machine.
For example, for physical abstract machines, as well as for the abstract machines
used by many programming languages, numbers (integer or real) are almost always
primitive data. The machine directly implements the various operations required to
perform arithmetic (addition, multiplication, etc.). These arithmetic operations are
therefore primitive operations as far as the abstract machine is concerned1.

2. Operations and structures for “sequence control” allow to control the execu-
tion flow of instructions in a program. The normal sequential execution of a pro-
gram might have to be modified when some conditions are satisfied. The interpreter
therefore makes use of data structures (for example to hold the address of the next
instruction to execute) which are manipulated by specific operations that are differ-
ent from those used for data manipulation (for example, operations to update the
address of the next instruction to execute).

3. Operations that control data transfers are included in order to control how
operands and data is to be transferred from memory to the interpreter and vice
versa. These operations deal with the different store addressing modes and the or-
der in which operands are to be retrieved from store. In some cases, auxiliary data
structures might be necessary to handle data transfers. For example, some types of
machine use stacks (implemented either in hardware or software) for this purpose.

4. Finally, there is memory management. This concerns the operations used to
allocate data and programs in memory. In the case of abstract machines that are
similar to hardware machines, storage management is relatively simple. In the limit
case of a physical register-based machine that is not multiprogrammed, a program
and its associated data could be allocated in a zone of memory at the start of exe-
cution and remain there until the end, without much real need for memory manage-
ment. Abstract machines for common programming languages, instead, as will be
seen, use more sophisticated memory management techniques. In fact, some con-
structs in these languages either directly or indirectly cause memory to be allocated
or deallocated. Correct implementation of these operations requires suitable data

1It should, however, be noted that there exist programming languages, for example, some declara-
tive languages, in which numeric values and their associated operations are not primitive.
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Fig. 1.2 The execution cycle of a generic interpreter

structures (for example, stacks) and dynamic operations (which are, therefore, exe-
cuted at runtime).

The interpreter’s execution cycle, which is substantially the same for all inter-
preters, is shown in Fig. 1.2. It is organised in terms of the following steps. First,
it fetches the next instruction to execute from memory. The instruction is then de-
coded to determine the operation to be performed as well as its operands. As many
operands as required by the instruction are fetched from memory using the method
described above. After this, the instruction, which must be one of the machine’s
primitives, is executed. Once execution of the operation has completed, any results
are stored. Then, unless the instruction just executed is a halt instruction, execution
passes to the next instruction in sequence and the cycle repeats.

Now that we have seen the interpreter, we can define the language it interprets as
follows:

Definition 1.2 (Machine language) Given an abstract machine, ML , the language
L “understood” by ML ’s interpreter is called the machine language of ML .

Programs written in the machine language of ML will be stored in the abstract
machine’s storage structures so that they cannot be confused with other primitive
data on which the interpreter operates (it should be noted that from the interpreter’s
viewpoint, programs are also a kind of data). Given that the internal representation
of the programs executed by the machine ML is usually different from its external
representation, then we should strictly talk about two different languages. In any
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“Low-level” and “High-level” languages

A terminological note is useful. We will return to it in an historical perspective in
Chap. 13. In the field of programming languages, the terms “low level” and “high
level” are often used to refer, respectively, to distance from the human user and from
the machine.

Let us therefore call low-level, those languages whose abstract machines are
very close to, or coincide with, the physical machine. Starting at the end of the
1940s, these languages were used to program the first computers, but, they turned
out to be extremely awkward to use. Because the instructions in these languages
had to take into account the physical characteristics of the machine, matters that
were completely irrelevant to the algorithm had to be considered while writing pro-
grams, or in coding algorithms. It must be remembered that often when we speak
generically about “machine language”, we mean the language (a low-level one) of
a physical machine. A particular low-level language for a physical machine is its
assembly language, which is a symbolic version of the physical machine (that is,
which uses symbols such as ADD, MUL, etc., instead of their associated hardware
binary codes). Programs in assembly language are translated into machine code us-
ing a program called an assembler.

So-called high-level programming languages are, on the other hand, those
which support the use of constructs that use appropriate abstraction mechanisms
to ensure that they are independent of the physical characteristics of the computer.
High-level languages are therefore suited to expressing algorithms in ways that are
relatively easy for the human user to understand. Clearly, even the constructs of
a high-level language must correspond to instructions of the physical machine be-
cause it must be possible to execute programs.

case, in order not to complicate notation, for the time being we will not consider
such differences and therefore we will speak of just one machine language, L , for
machine ML .

1.1.2 An Example of an Abstract Machine: The Hardware
Machine

From what has been said so far, it should be clear that the concept of abstract ma-
chine can be used to describe a variety of different systems, ranging from physical
machines right up to the World Wide Web.

As a first example of an abstract machine, let us consider the concrete case of a
conventional physical machine such as that in Fig. 1.3. It is physically implemented
using logic circuits and electronic components. Let us call such a machine MHL H

and let L H be its machine language.
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Fig. 1.3 The structure of a conventional calculator

For this specific case, we can, using what we have already said about the compo-
nents of an abstract machine, identify the following parts.

Memory The storage component of a physical computer is composed of various
levels of memory. Secondary memory implemented using optical or magnetic com-
ponents; primary memory, organised as a linear sequence of cells, or words, of fixed
size (usually a multiple of 8 bits, for example 32 or 64 bits); cache and the registers
which are internal to the Central Processing Unit (CPU).

Physical memory, whether primary, cache or register file, permits the storage of
data and programs. As stated, this is done using the binary alphabet.

Data is divided into a few primitive “types”: usually, we have integer numbers,
so-called “real” numbers (in reality, a subset of the rationals), characters, and fixed-
length sequences of bits. Depending upon the type of data, different physical repre-
sentations, which use one or more memory words for each element of the type are
used. For example, the integers can be represented by 1s or 2s complement num-
bers contained in a single word, while reals have to be represented as floating point
numbers using one or two words depending on whether they are single or double
precision. Alphanumeric characters are also implemented as sequences of binary
numbers encoded in an appropriate representational code (for example, the ASCII
or UNI CODE formats).

We will not here go into the details of these representations since they will be
examined in more detail in Chap. 8. We must emphasise the fact that although all
data is represented by sequences of bits, at the hardware level we can distinguish
different categories, or more properly types, of primitive data that can be manip-
ulated directly by the operations provided by the hardware. For this reason, these
types are called predefined types.

The language of the physical machine The language, L H which the physical
machine executes is composed of relatively simple instructions. A typical instruc-
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tion with two operands, for example, requires one word of memory and has the
format:

OpCode Operand1 Operand2

where OpCode is a unique code which identifies one of the primitive operations
defined by the machine’s hardware, while Operand1 and Operand2 are values
which allow the operands to be located by referring to the storage structures of the
machine and their addressing modes. For example,

ADD R5, R0

might indicate the sum of the contents of registers R0 and R5, with the result being
stored in R5, while

ADD (R5), (R0)

might mean that the sum of the contents of the memory cells whose addresses are
contained in R0 and R5 is computed and the result stored in the cell whose address is
in R5. It should be noted that, in these examples, for reasons of clarity, we are using
symbolic codes such as ADD, R0, (R0). In the language under consideration, on the
other hand, we have binary numeric values (addresses are expressed in “absolute”
mode). From the viewpoint of internal representation, instructions are nothing more
than data stored in a particular format.

Like the instructions and data structures used in executing programs, the set of
possible instructions (with their associated operations and addressing modes) de-
pends on the particular physical machine. It is possible to discern classes of machine
with similar characteristics. For example, we can distinguish between conventional
CISC (Complex Instruction Set Computer) processors which have many machine
instructions (some of which are quite complex) and RISC (Reduced Instruction Set
Computers) architectures in which there tend to be fewer instructions which are, in
particular, simple enough to be executed in a few (possibly one) clock cycle and in
pipelined fashion.

Interpreter With the general structure of an abstract machine as a model, it is
possible to identify the following components of a physical (hardware) machine:

1. The operations for processing primitive data are the usual arithmetic and logi-
cal operations. They are implemented by the ALU (Arithmetic and Logic Unit).
Arithmetic operations on integers, and floating-point numbers, booleans are pro-
vided, as are shifts, tests, etc.

2. For the control of instruction sequence execution, there is the Program Counter
(PC) register, which contains the address of the next instruction to execute. It is
the main data structure of this component. Sequence-control operations specifi-
cally use this register and typically include the increment operation (which han-
dles the normal flow of control) and operations that modify the value stored in
the PC register (jumps).
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3. To handle data transfer, the CPU registers interfacing with main memory are
used. They are: the data address register (the MAR or Memory Address Register)
and the data register (MDR or Memory Data Register). There are, in addition,
operations that modify the contents of these registers and that implement various
addressing modes (direct, indirect, etc.). Finally, there are operations that access
and modify the CPU’s internal registers.

4. Memory processing depends fundamentally on the specific architecture. In the
simplest case of a register machine that is not multi-programmed, memory man-
agement is rudimentary. The program is loaded and immediately starts executing;
it remains in memory until it terminates. To increase computation speed, all mod-
ern architectures use more sophisticated memory management techniques. In the
first place, there are levels of memory intermediate between registers and main
memory (i.e., cache memory), whose management needs special data structures
and algorithms. Second, some form of multi-programming is almost always im-
plemented (the execution of a program can be suspended to give the CPU to
other programs, so as to optimise the management of resources). As a general
rule, these techniques (which are used by operating systems) usually require spe-
cialised hardware support to manage the presence of more than one program in
memory at any time (for example, dynamic address relocation).

All the techniques so far described need specific memory-management data
structures and operations to be provided by the hardware. In addition, there are
other types of machine that correspond to less conventional architectures. In the
case of a machine which uses a (hardware) stack instead of registers, there is the
stack data structure together with the push and pop operations.

The interpreter for the hardware machine is implemented as a set of physical
devices which comprise the Control Unit and which support execution of the so-
called fetch-decode-execute cycle. using the sequence control operations. This cycle
is analogous to that in the generic interpreter such as the one depicted in Fig. 1.2. It
consists of the following phases.

In the fetch phase, the next instruction to be executed is retrieved from mem-
ory. This is the instruction whose address is held in the PC register (the PC register
is automatically incremented after the instruction has been fetched). The instruc-
tion, which, it should be recalled, is formed of an operation code and perhaps some
operands, is then stored in a special register, called the instruction register.

In the decode phase, the instruction stored in the instruction register is decoded
using special logic circuits. This allows the correct interpretation of both the instruc-
tion’s operation code and the addressing modes of its operands. The operands are
then retrieved by data transfer operations using the address modes specified in the
instruction .

Finally, in the execute phase, the primitive hardware operation is actually exe-
cuted, for example using the circuits of the ALU if the operation is an arithmetic or
logical one. If there is a result, it is stored in the way specified by the addressing
mode and the operation code currently held in the instruction register. Storage is
performed by means of data-transfer operations. At this point, the instruction’s exe-
cution is complete and is followed by the next phase, in which the next instruction is
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fetched and the cycle continues (provided the instruction just executed is not a stop
instruction).

It should be noted that, even if only conceptually, the hardware machine distin-
guishes data from instructions. At the physical level, there is no distinction between
them, given that they are both represented internally in terms of bits. The distinction
mainly derives from the state of the CPU. In the fetch state, every word fetched from
memory is considered an instruction, while in the execute phase, it is considered to
be data. It should be observed that, finally, an accurate description of the operation
of the physical machine would require the introduction of other states in addition
to fetch, decode and execute. Our description only aims to show how the general
concept of an interpreter is instantiated by a physical machine.

1.2 Implementation of a Language

We have seen that an abstract machine, ML , is by definition a device which allows
the execution of programs written in L . An abstract machine therefore corresponds
uniquely to a language, its machine language. Conversely, given a programming
language, L , there are many (an infinite number) of abstract machines that have
L as their machine language. These machines differ from each other in the way in
which the interpreter is implemented and in the data structures that they use; they
all agree, though, on the language they interpret—L .

To implement a programming language L means implementing an abstract ma-
chine which has L as its machine language. Before seeing which implementation
techniques are used for current programming languages, we will first see what the
various theoretical possibilities for an abstract machine are.

1.2.1 Implementation of an Abstract Machine

Any implementation of an abstract machine, ML must sooner or later use some
kind of physical device (mechanical, electronic, biological, etc.) to execute the in-
structions of L . The use of such a device, nevertheless, can be explicit or implicit.
In fact, in addition to the “physical” implementation (in hardware) of ML ’s con-
structs, we can even think instead of an implementation (in software or firmware)
at levels intermediate between ML and the underlying physical device. We can
therefore reduce the various options for implementing an abstract machine to the
following three cases and to combinations of them:

• implementation in hardware;
• simulation using software;
• simulation (emulation) using firmware.
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Microprogramming

Microprogramming techniques were introduced in the 1960s with the aim of pro-
viding a whole range of different computers, ranging from the slowest and most
economical to those with the greatest speed and price, with the same instruction
set and, therefore, the same assembly language (the IBM 360 was the most famous
computer on which microprogramming was used). The machine language of micro-
programmed machines is at an extremely low level and consists of microinstruc-
tions which specify simple operations for the transfer of data between registers, to
and from main memory and perhaps also passage through the logic circuits that
implement arithmetic operations. Each instruction in the language which is to be
implemented (that is, in the machine language that the user of the machine sees) is
simulated using a specific set of microinstructions. These microinstructions, which
encode the operation, together with a particular set of microinstructions implement-
ing the interpretation cycle, constitute a microprogram which is stored in special
read-only memory (which requires special equipment to write). This microprogram
implements the interpreter for the (assembly) language common to different com-
puters, each of which has different hardware. The most sophisticated (and costly)
physical machines are built using more powerful hardware hence they can imple-
ment an instruction by using fewer simulation steps than the less costly models, so
they run at a greater speed.

Some terminology needs to be introduced: the term used for simulation using
micro-programming, is emulation; the level at which microprogramming occurs is
called firmware.

Let us, finally, observe that a microprogrammable machine constitutes a single,
simple example of a hierarchy composed of two abstract machines. At the higher
level, the assembly machine is constructed on top of what we have called the mi-
croprogrammed machine. The assembly language interpreter is implemented in the
language of the lower level (as microinstructions), which is, in its turn, interpreted
directly by the microprogrammed physical machine. We will discuss this situation
in more depth in Sect. 1.3.

Implementation in Hardware

The direct implementation of ML in hardware is always possible in principle and
is conceptually fairly simple. It is, in fact, a matter of using physical devices such as
memory, arithmetic and logic circuits, buses, etc., to implement a physical machine
whose machine language coincides with L . To do this, it is sufficient to imple-
ment in the hardware the data structures and algorithms constituting the abstract
machine.2

2Chapter 3 will tackle the question of why this can always be done for programming languages.
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The implementation of a machine ML in hardware has the advantage that the
execution of programs in L will be fast because they will be directly executed by
the hardware. This advantage, nevertheless, is compensated for by various disad-
vantages which predominate when L is a generic high-level language. Indeed, the
constructs of a high-level language, L , are relatively complicated and very far from
the elementary functions provided at the level of the electronic circuit. An imple-
mentation of ML requires, therefore, a more complicated design for the physical
machine that we want to implement. Moreover, in practice, such a machine, once
implemented, would be almost impossible to modify. In would not be possible to
implement on it any future modifications to L without incurring prohibitive costs.
For these reasons,in practice, when implementing ML , in hardware, only low-level
languages are used because their constructs are very close to the operations that can
be naturally defined using just physical devices. It is possible, though, to imple-
ment “dedicated” languages developed for special applications directly in hardware
where enormous execution speeds are necessary. This is the case, for example, for
some special languages used in real-time systems.

The fact remains that there are many cases in which the structure of a high-
level language’s abstract machine has influenced the implementation of a hardware
architecture, not in the sense of a direct implementation of the abstract machine in
hardware, but in the choice of primitive operations and data structures which permit
simpler and more efficient implementation of the high-level language’s interpreter.
This is the case, for example with the architecture of the B5500, a computer from
the 1960s which was influenced by the structure of the Algol language.

Simulation Using Software

The second possibility for implementing an abstract machine consists of implement-
ing the data structures and algorithms required by ML using programs written in
another language, L ′, which, we can assume, has already been implemented. Us-
ing language L ′’s machine, M ′

L ′ , we can, indeed, implement the machine ML
using appropriate programs written in L ′ which interpret the constructs of L by
simulating the functionality of ML .

In this case, we will have the greatest flexibility because we can easily change the
programs implementing the constructs of ML . We will nevertheless see a perfor-
mance that is lower than in the previous case because the implementation of ML
uses another abstract machine M ′

L ′ , which, in its turn, must be implemented in
hardware, software or firmware, adding an extra level of interpretation.

Emulation Using Firmware

Finally, the third possibility is intermediate between hardware and software imple-
mentation. It consists of simulation (in this case, it is also called emulation) of the
data structures and algorithms for ML in microcode (which we briefly introduced
in the box on page 10).
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Partial Functions

A function f : A → B is a correspondence between elements of A and elements of
B such that, for every element a of A, there exists one and only one element of B .
We will call it f (a).

A partial function, f : A → B , is also a correspondence between the two sets
A and B , but can be undefined for some elements of A. More formally: it is a
relation between A and B such that, for every a ∈ A, if there exists a corresponding
element b ∈ B , it is unique and is written f (a). The notion of partial function, for
us, is important because, in a natural fashion, programs define partial functions. For
example, the following program (written in a language with obvious syntax and
semantics and whose core will however be defined in Fig. 2.11):

read(x);
if (x == 1) then print(x);

else while (true) do skip
computes the partial function:

f (n) =
{1 if x = 1

undefined otherwise

Conceptually, this solution is similar to simulation in software. In both cases,
ML is simulated using appropriate programs that are executed by a physical ma-
chine. Nevertheless, in the case of firmware emulation, these programs are micro-
programs instead of programs in a high-level language.

As we saw in the box, microprograms use a special, very low-level language
(with extremely simple primitive operations) which are stored in a special read-only
memory instead of in main memory, so they can be executed by the physical ma-
chine at high speed. For this reason, this implementation of an abstract machine
allows us to obtain an execution speed that is higher than that obtainable from soft-
ware simulation, even if it is not as fast as the equivalent hardware solution. On
the other hand, the flexibility of this solution is lower than that of software simula-
tion, since, while it is easy to modify a program written in a high-level language,
modification of microcode is relatively complicated and requires special hardware
to re-write the memory in which the microcode is stored. The situation is anyway
better than in the hardware implementation case, given that microprograms can be
modified.

Clearly, for this solution to be possible, the physical machine on which it is used
must be microprogrammable.

Summarising, the implementation of ML in hardware affords the greatest speed
but no flexibility. Implementation in software affords the highest flexibility and least
speed, while the one using firmware is intermediate between the two.
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1.2.2 Implementation: The Ideal Case

Let us consider a generic language, L , which we want to implement, or rather, for
which an abstract machine, ML is required. Assuming that we can exclude, for the
reasons just given, direct implementation in hardware of ML , we can assume that,
for our implementation of ML , we have available an abstract machine, M oL o,
which we will call the host machine, which is already implemented (we do not care
how) and which therefore allows us to use the constructs of its machine language
L o directly.

Intuitively, the implementation of L on the host machine M oL o takes place
using a “translation” from L to L o. Nevertheless, we can distinguish two con-
ceptually very different modes of implementation, depending on whether there is
an “implicit” translation (implemented by the simulation of ML ’s constructs by
programs written in L o) or an explicit translation from programs in L to cor-
responding programs in L o. We will now consider these two ways in their ideal
forms. We will call these ideal forms:

1. purely interpreted implementation, and
2. purely compiled implementation.

Notation

Below, as previously mentioned, we use the subscript L to indicate that a particular
construct (machine, interpreter, program, etc.) refers to language L . We will use
the superscript L to indicate that a program is written in language L . We will use
ProgL to denote the set of all possible programs that can be written in language
L , while D denotes the set of input and output data (and, for simplicity of treatment,
we make no distinction between the two).

A program written in L can be seen as a partial function (see the box):

PL : D → D

such that

PL (Input) = Output

if the execution of PL on input data Input terminates and produces Output as its
result. The function is not defined if the execution of PL on its input data, Input,
does not terminate.3

3It should be noted that there is no loss of generality in considering only one input datum, given
that it can stand for a set of data.
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Fig. 1.4 Purely interpreted implementation

Purely interpreted implementation In a purely interpreted implementation
(shown in Fig. 1.4), the interpreter for ML is implemented using a set of instruc-
tions in L o. That is, a program is implemented in L o which interprets all of L ’s
instructions; this is an interpreter. We will call it I L o

L .
Once such interpreter is implemented, executing a program PL (written in lan-

guage L ) on specified input data D ∈ D , we need only execute the program I L o
L

on machine M oL o, with PL and D as input data. More precisely, we can give
the following definition.

Definition 1.3 (Interpreter) An interpreter for language L , written in language
L o, is a program which implements a partial function:

I L o
L : (ProgL × D) → D such that I L o

L (PL , Input) = PL (Input) (1.1)

The fact that a program can be considered as input datum for another program
should not be surprising, given that, as already stated, a program is only a set of
instructions which, in the final analysis, are represented by a certain set of symbols
(and therefore by bit sequences).

In the purely interpreted implementation of L , therefore, programs in L are
not explicitly translated. There is only a “decoding” procedure. In order to execute
an instruction of L , the interpreter I L o

L uses a set of instructions in L o which
corresponds to an instruction in language L . Such decoding is not a real translation
because the code corresponding to an instruction of L is executed, not output, by
the interpreter.

It should be noted that we have deliberately not specified the nature of the ma-
chine M oL o. The language L o can therefore be a high-level language, a low-level
language or even one firmware.

Purely compiled implementation With purely compiled implementation, as
shown in Fig. 1.5, the implementation of L takes place by explicitly translating
programs written in L to programs written in L o. The translation is performed
by a special program called compiler; it is denoted by CL ,L o. In this case, the
language L is usually called the source language, while language L o is called
the object language. To execute a program PL (written in language L ) on input
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Fig. 1.5 Pure compiled implementation

data D, we must first execute CL ,L o and give it PL as input. This will produce
a compiled program PcL o as its output (written in L o). At this point, we can
execute PcL o on the machine M oL o supplying it with input data D to obtain the
desired result.

Definition 1.4 (Compiler) A compiler from L to L o is a program which imple-
ments a function:

CL ,L o : ProgL → ProgL o

such that, given a program PL , if

CL ,L o(P
L ) = PcL o, (1.2)

then, for every Input∈ D4:

PL (Input) = PcL o(Input) (1.3)

Note that, unlike pure interpretation, the translation phase described in (1.2)
(called compilation) is separate from the execution phase, which is, on the other
hand, handled by (1.3). Compilation indeed produces a program as output. This
program can be executed at any time we want. It should be noted that if M oL o is
the only machine available to us, and therefore if L o is the only language that we
can use, the compiler will also be a program written in L o. This is not necessary,
however, for the compiler could in fact be executed on another abstract machine
altogether and this, latter, machine could execute a different language, even though
it produces executable code for M oL o.

4It should be noted that, for simplicity, we assume that the data upon which programs operate are
the same for source and object languages. If were not the case, the data would also have to be
translated in an appropriate manner.
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Comparing the Two Techniques

Having presented the purely interpreted and purely compiled implementation tech-
niques, we will now discuss the advantages and disadvantages of these two ap-
proaches.

As far as the purely interpreted implementation is concerned, the main disadvan-
tage is its low efficiency. In fact, given that there is no translation phase, in order to
execute the program PL , the interpreter I L o

L must perform a decoding of L ’s
constructs while it executes. Hence, as part of the time required for the execution
of PL , it is also necessary to add in the time required to perform decoding. For
example, if the language L contains the iterative construct for and if this construct
is not present in language L o, to execute a command such as:

P1: for (I = 1, I<=n, I=I+1) C;

the interpreter I L o
L must decode this command at runtime and, in its place, execute

a series of operations implementing the loop. This might look something like the
following code fragment:

P2:
R1 = 1
R2 = n

L1: if R1 > R2 then goto L2
translation of C
...
R1 = R1 + 1
goto L1

L2: ...

It is important to repeat that, as shown in (1.1), the interpreter does not generate
code. The code shown immediately above is not explicitly produced by the inter-
preter but only describes the operations that the interpreter must execute at runtime
once it has decoded the for command.

It can also be seen that for every occurrence of the same command in a program
written in L , the interpreter must perform a separate decoding steep; this does
not improve performance. In our example, the command C inside the loop must be
decoded n times, clearly with consequent inefficiency.

As often happens, the disadvantages in terms of efficiency are compensated for
by advantages in terms of flexibility. Indeed, interpreting the constructs of the pro-
gram that we want to execute at runtime allows direct interaction with whatever is
running the program. This is particularly important, for example, because it makes
defining program debugging tools relatively easy. In general, moreover, the devel-
opment of an interpreter is simpler than the development of a compiler; for this
reason, interpretative solutions are preferred when it is necessary to implement a
new language within a short time. It should be noted, finally, that an interpretative
implementation allows a considerable reduction in memory usage, given that the
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program is stored only in its source version (that is, in the language L ) and no new
code is produced, even if this consideration is not particularly important today.

The advantages and disadvantages of the compilational and interpretative ap-
proaches to languages are dual to each other.

The translation of the source program, PL , to an object program, PcL o, oc-
curs separately from the latter’s execution. If we neglect the time taken for compi-
lation, therefore, the execution of PcL o will turn out to be more efficient than an
interpretive implementation because the former does not have the overhead of the
instruction decoding phase. In our first example, the program fragment P1 will be
translated into fragment P2 by the compiler. Later, when necessary, P2 will exe-
cuted without having to decode the for instruction again. Furthermore, unlike in
the case of an interpreter, decoding an instruction of language L is performed once
by the compiler, independent of the number of times this instruction occurs at run-
time. In our example, the command C is decoded and translated once only at compile
time and the code produced by this is executed n times at runtime. In Sect. 2.4, we
will describe the structure of a compiler, together with the optimisations that can be
applied to the code it produces.

One of the major disadvantages of the compilation approach is that it loses all
information about the structure of the source program. This loss makes runtime in-
teraction with the program more difficult. For example, when an error occurs at
runtime, it can be difficult to determine which source-program command caused it,
given that the command will have been compiled into a sequence of object-language
instructions. In such a case, it can be difficult, therefore, to implement debugging
tools; more generally, there is less flexibility than afforded by the interpretative ap-
proach.

1.2.3 Implementation: The Real Case and The Intermediate
Machine

Burly purely compiled and interpreted implementations can be considered as the
two extreme cases of what happens in practice when a programming language is
implemented. In fact, in real language implementations, both elements are almost
always present. As far as the interpreted implementation is concerned, we immedi-
ately observe that every “real” interpreter operates on an internal representation of
a program which is always different from the external one. The translation from the
external notation of L to its internal representation is performed using real trans-
lation (compilation, in our terminology) from L to an intermediate language. The
intermediate language is the one that is interpreted. Analogously, in every compiling
implementation, some particularly complex constructs are simulated. For example,
some instructions for input/output could be translated into the physical machine’s
language but would require a few hundred instructions, so it is preferable to trans-
late them into calls to some appropriate program (or directly to operating system
operations), which simulates at runtime (and therefore interprets) the high-level in-
structions.
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Can interpreter and compiler always be implemented?

At this point, the reader could ask if the implementation of an interpreter or a com-
piler will always be possible. Or rather, given the language, L , that we want to
implement, how can we be sure that it is possible to implement a particular program
I L o

L in language L o which performs the interpretation of all the constructs of L ?
How, furthermore, can we be sure that it is possible to translate programs of L into
programs in L o using a suitable program, CL ,L o?

The precise answer to this question requires notions from computability theory
which will be introduced in Chap. 3. For the time being, we can only answer that the
existence of the interpreter and compiler is guaranteed, provided that the language,
L o, that we are using for the implementation is sufficiently expressive with respect
to the language, L , that we want to implement. As we will see, every language
in common use, and therefore also our L o, have the same (maximum) expressive
power and this coincides with a particular abstract model of computation that we
will call Turing Machine. This means that every possible algorithm that can be for-
mulated can be implemented by a program written in L o. Given that the interpreter
for L is no more than a particular algorithm that can execute the instructions of
L , there is clearly no theoretical difficulty in implementing the interpreter I L o

L .
As far as the compiler is concerned, assuming that it, too, is to be written in L o,
the argument is similar. Given that L is no more expressive than L o, it must be
possible to translate programs in L into ones in L o in a way that preserves their
meaning. Furthermore, given that, by assumption, L o permits the implementation
of any algorithm, it will also permit the implementation of the particular compiling
program CL ,L o that implements the translation.

Fig. 1.6 Implementation: the real case with intermediate machine

The real situation for the implementation of a high-level language is therefore
that shown in Fig. 1.6. Let us assume, as above, that we have a language L that has
to be implemented and assume also that a host machine M oL o exists which has
already been constructed. Between the machine ML that we want to implement and
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the host machine, there exists a further level characterised by its own language, L i

and by its associated abstract machine, M iL i , which we will call, the intermediate
language and intermediate machine, respectively.

As shown in Fig. 1.6, we have both a compiler CL ,L i which translates L to L i

and an interpreter I L o
L i which runs on the machine M oL o (which simulates the

machine M iL i ). In order to execute a generic program, PL , the program must
first be translated by the compiler into an intermediate language program, PiL i .
Next, this program is executed by the interpreter I L o

L i . It should be noted that, in
the figure, we have written “interpreter or runtime support (RTS)” because it is not
always necessary to implement the entire interpreter I L o

L i . In the case in which the
intermediate language and the host machine language are not too distant, it might be
enough to use the host machine’s interpreter, extended by suitable programs, which
are referred to as its runtime support, to simulate the intermediate machine.

Depending on the distance between the intermediate level and the source or host
level, we will have different types of implementation. Summarising this, we can
identify the following cases:

1. ML = M iL i : purely interpreted implementation.
2. ML ≠ M iL i ≠ M oL o.

(a) If the interpreter of the intermediate machine is substantially different from
the interpreter for M oL o, we will say that we have an implementation of an
interpretative type.

(b) If the interpreter of the intermediate machine is substantially the same as the
interpreter for M oL o (of which it extends some of its functionality), we will
say that we have a implementation of a compiled type.

3. M iL i = M oL o, we have a purely compiled implementation.

The first and last cases correspond to the limit cases already encountered in the
previous section. These are the cases in which the intermediate machines coincide,
respectively, with the machine for the language to be implemented and with the host
machine.

On the other hand, in the case in which the intermediate machine is present, we
have an interpreted type of implementation when the interpreter for the intermedi-
ate machine is substantially different from the interpreter for M oL o. In this case,
therefore, the interpreter I L o

L i must be implemented using language L o. The dif-
ference between this solution and the purely interpreted one lies in the fact that not
all constructs of L need be simulated. For some constructs there are directly corre-
sponding ones in the host machine’s language, when they are translated from L to
the intermediate language L i, so no simulation is required. Moreover the distance
between M iL i and M oL o is such that the constructs for which this happens are
few in number and therefore the interpreter for the intermediate machine must have
many of its components simulated.

In the compiled implementation, on the other hand, the intermediate language is
closer to the host machine and the interpreter substantially shares it. In this case,
then, the intermediate machine, M iL i , will be implemented using the functional-
ity of M oL o, suitably extended to handle those source language constructs of L
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which, when also translated into the intermediate language L i, do not have an im-
mediate equivalent on the host machine. This is the case, for example, in the case
of some I/O operations that are, even when compiled, usually simulated by suitable
programs written in L o. The set of such programs, which extend the functional-
ity of the host machine and which simulate at runtime some of the functionality of
the language L i, and therefore also of the language L , constitute the so-called
run-time support for L .

As can be gathered from this discussion, the distinction between the interme-
diate cases is not clear. There exists a whole spectrum of implementation types
ranging from that in which everything is simulated to the case in which everything
is, instead, translated into the host machine language. What to simulate and what
to translate depends a great deal on the language in question and on the available
host machine. It is clear that, in principle, one would tend to interpret those lan-
guage constructs which are furthest from the host machine language and to compile
the rest. Furthermore, as usual, compiled solutions are preferred in cases where in-
creased execution efficiency of programs is desired, while the interpreted approach
will be increasingly preferred when greater flexibility is required.

It should also be noted that the intermediate machine, even if it is always present
in principle, is not often actually present. The exceptions are cases of languages
which have formally stated definitions of their intermediate machines, together with
their associated languages (which is principally done for portability reasons). The
compiled implementation of a language on a new hardware platform is a rather big
task requiring considerable effort. The interpretive implementation is less demand-
ing but does requires some effort and often poses efficiency problems. Often, it
is desired to implement a language on many different platforms, for example when
sending programs across a network so that they can be executed on remote machines
(as happens with so-called aplets). In this case, it is extremely convenient first to
compile the programs to an intermediate language and then implement (interpret)
the intermediate language on the various platforms. Clearly, the implementation of
the intermediate code is much easier than implementing the source code, given that
compilation has already been carried out. This solution to the portability of imple-
mentations was adopted for the first time on a large scale by the Pascal language,
which was defined together with an intermediate machine (with its own language,
P-code) which was designed specifically for this purpose. A similar solution was
used by the Java language, whose intermediate machine (called the JVM—Java Vir-
tual Machine) has as its machine language the so-called Java Byte Code. It is now
implemented on every type of computer.

As the last note, let us emphasise the fact, which should be clear from what we
have said so far, that one should not talk about an “interpreted language” or a “com-
piled language”, because each language can be implemented using either of these
techniques. One should, instead, talk of interpretative or compiled implementations
of a language.
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Fig. 1.7 The three levels of a
microprogrammed computer

1.3 Hierarchies of Abstract Machines

On the basis of what we have seen, a microprogrammed computer, on which a
high-level programming language is implemented, can be represented as shown in
Fig. 1.7. Each level implements an abstract machine with its own language and its
own functionality.

This schema can be extended to an arbitrary number of levels and a hierarchy
is thus produced, even if it is not always explicit. This hierarchy is largely used
in software design. In other words, hierarchies of abstract machines are often used
in which every machine exploits the functionality of the level immediately below
and adds new functionality of its own for the level immediately above. There are
many examples of hierarchies of this type. For example, there is the simple activity
of programming. When we write a program P in a language, L , in essence, we
are doing no more than defining a new language, LP (and therefore a new abstract
machine) composed of the (new) functionalities that P provides to the user through
its interface. Such a program can therefore be used by another program, which will
define new functionalities and therefore a new language and so on. It can be noted
that, broadly speaking, we can also speak of abstract machines when dealing with
a set of commands, which, strictly speaking, do not constitute a real programming
language. This is the case with a program, with the functionality of an operating
system, or with the functionality of a middleware level in a computer network.

In the general case, therefore, we can imagine a hierarchy of machines ML 0,
ML 1, . . . ,ML n. The generic machine, ML i is implemented by exploiting the
functionality (that is the language) of the machine immediately below (ML i−1). At
the same time, ML i provides its own language Li to the machine above ML i+1,
which, by exploiting that language, uses the new functionality that ML i provides
with respect to the lower levels. Often, such a hierarchy also has the task of masking
lower levels. ML i cannot directly access the resources provided by the machines
below it but can only make use of whatever language Li−1 provides.

The structuring of a software system in terms of layers of abstract machines
is useful for controlling the system’s complexity and, in particular, allows for a
degree of independence between the various layers, in the sense that any internal
modification to the functionality of a layer does not have (or should not have) any
influence on the other layers. For example, if we use a high-level language, L ,
which uses an operating system’s file-handling mechanisms, any modification to
these mechanisms (while the interface remains the same) does not have any impact
on programs written in L .
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Fig. 1.8 A hierarchy of
abstract machines

A canonical example of a hierarchy of this kind in a context that is seemingly
distant from programming languages is the hierarchy5 of communications protocols
in a network of computers, such as, for example, the ISO/OSI standard.

In a context closer to the subject of this book, we can consider the example shown
in Fig. 1.8.

At the lowest level, we have a hardware computer, implemented using physical
electronic devices (at least, at present; in the future, the possibility of biological
devices will be something that must be actively considered). Above this level, we
could have the level of an abstract, microprogrammed machine. Immediately above
(or directly above the hardware if the firmware level is not present), there is the ab-
stract machine provided by the operating system which is implemented by programs
written in machine language. Such a machine can be, in turn, seen as a hierarchy of
many layers (kernel, memory manager, peripheral manager, file system, command-
language interpreter) which implement functionalities that are progressively more
remote from the physical machine: starting with the nucleus, which interacts with
the hardware and manages process state changes, to the command interpreter (or
shell) which allows users to interact with the operating system. In its complexity,
therefore, the operating system on one hand extends the functionality of the physical
machine, providing functionalities not present on the physical machine (for exam-
ple, primitives that operate on files) to higher levels. On the other hand, it masks
some hardware primitives (for example, primitives for handling I/O) in which the
higher levels in the hierarchy have no interest in seeing directly. The abstract ma-
chine provided by the operating system forms the host machine on which a high-
level programming language is implemented using the methods that we discussed in
previous sections. It normally uses an intermediate machine, which, in the diagram
(Fig. 1.8), is the Java Virtual machine and its bytecode language. The level provided
by the abstract machine for the high-level language that we have implemented (Java

5In the literature on networks, one often speaks of a stack rather than, more correctly, of a hierarchy.
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Program Transformation and Partial Evaluation

In addition to “translation” of programs from one language to another, as is done
by a compiler, there are numerous transformation techniques involving only one
language that operate upon programs. These techniques are principally defined with
the aim of improving performance. Partial evaluation is one of these techniques
and consists of evaluating a program against an input so as to produce a program
that is specialised with respect to this input and which is more efficient than the
original program. For example, assume we have a program P(X,Y ) which, after
processing the data X, performs operations on the data in Y depending upon the
result of working on X. If the data, X, input to the program are always the same, we
can transform this program to P ′(Y ), where the computations using X have already
been performed (prior to runtime) and thereby obtain a faster program.

More formally, a partial evaluator for the language L is a program which
implements the function:

PevalL : (ProgL × D) → ProgL

which has the following characteristics. Given a generic program, P , written in L ,
taking two arguments, the result of partially evaluating P with respect to one of its
first input D1 is:

PevalL (P,D1) = P ′

where the program P ′ (the result of the partial evaluation) accepts a single argument
and is such that, for any input data, Y , we have:

IL (P, (D1, Y )) = IL (P ′, Y )

where IL is the language interpreter.

in this case) is not normally the last level of the hierarchy. At this point, in fact,
we could have one or more applications which together provide new services. For
example, we can have a “web machine” level in which the functions required to
process Web communications (communications protocols, HTML code display, ap-
plet running, etc.) are implemented. Above this, we might find the “Web Service”
level providing the functions required to make web services interact, both in terms
of interaction protocols as well as of the behaviour of the processes involved. At
this level, truly new languages can be implemented that define the behaviour of
so-called “business processes” based on Web services (an example is the Business
Process Execution Language). Finally, at the top level, we find a specific applica-
tion, in our case electronic commerce, which, while providing highly specific and
restricted functionality, can also be seen in terms of a final abstract machine.
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1.4 Chapter Summary

The chapter has introduced the concepts of abstract machine and the principle meth-
ods for implementing a programming language. In particular, we have seen:

• The abstract machine: an abstract formalisation for a generic executor of algo-
rithms, formalised in terms of a specific programming language.

• The interpreter: an essential component of the abstract machine which charac-
terises its behaviour, relating in operational terms the language of the abstract
machine to the embedding physical world.

• The machine language: the language of a generic abstract machine.
• Different language typologies: characterised by their distance from the physical

machine.
• The implementation of a language: in its different forms, from purely interpreted

to purely compiled; the concept of compiler is particularly important here.
• The concept of intermediate language: essential in the real implementation of any

language; there are some famous examples (P-code machine for Pascal and the
Java Virtual Machine).

• Hierarchies of abstract machines: abstract machines can be hierarchically com-
posed and many software systems can be seen in such terms.

1.5 Bibliographic Notes

The concept of abstract machine is present in many different contexts, from pro-
gramming languages to operating systems, even if at times it is used in a much more
informal manner than in this chapter. In some cases, it is also called a virtual ma-
chine, as for example in [5], which, however, presents an approach similar to that
adopted here.

The descriptions of hardware machines that we have used can be found in any
textbook on computer architecture, for example [6].

The intermediate machine was introduced in the first implementations of Pascal,
for example [4]. For more recent uses of intermediate machine for Java implemen-
tations, the reader should consult some of the many texts on the JVM, for example,
[3].

Finally, as far as compilation is concerned, a classic text is [1], while [2] is a
more recent book with a more up-to-date treatment.

1.6 Exercises

1. Give three examples, in different contexts, of abstract machines.
2. Describe the functioning of the interpreter for a generic abstract machine.
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3. Describe the differences between the interpretative and compiled implementa-
tions of a programming language, emphasising the advantages and disadvan-
tages.

4. Assume you have available an already-implemented abstract machine, C, how
could you use it to implement an abstract machine for another language, L?

5. What are the advantages in using an intermediate machine for the implementa-
tion of a language?

6. The first Pascal environments included:

• A Pascal compiler, written in Pascal, which produced P-code (code for the
intermediate machine);

• The same compiler, translated into P-code;
• An interpreter for P-code written in Pascal.

To implement the Pascal language in an interpretative way on a new host ma-
chine means (manually) translating the P-code interpreter into the language on
the host machine. Given such an interpretative implementation, how can one ob-
tain a compiled implementation for the same host machine, minimising the effort
required? (Hint: think about a modification to the compiler for Pascal also written
in Pascal.)

7. Consider an interpreter, I L
L 1(X,Y ), written in language L , for a different lan-

guage, L 1, where X is the program to be interpreted and Y is its input data.
Consider a program P written in L 1. What is obtained by evaluating

PevalL (I L
L 1,P )

i.e., from the partial evaluation of I L
L 1 with respect to P ? (This transformation

is known as Futamura’s first projection.)
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