
CHAPTER FOURTEEN

The Sun way – Java, JavaBeans,
EJB, and Java 2 editions

Java is a true phenomenon in the industry. It is one of the very few success sto-
ries of the 1990s – a new programming language, which, together with its
own view of the world, really made an impact. Sun released Java in alpha form
in early 1995 and, although it was hardly known and very little used before
early 1996, it is now one of the most commonly used buzzwords. It seems
that the time was ripe for the message that there is more to come in the way of
programming languages than was at first commonly believed. However, it was
not the language that attracted attention originally. Other, and perhaps better,
languages had failed before. The real attractor was the concept of applets, mini
applications that function within a web page.

This chapter presents a detailed account of the Java language, the Java
component models that have been formed so far (JavaBeans, Servlets,
Enterprise JavaBeans in four flavors, and J2EE Application Components), and
a selection of the large number of relevant Java services. In line with the argu-
ments of component safety by construction, the safety features of Java and
their interaction with the Java security mechanisms are explored in detail. The
introduction to the Java language is important because much of each Java
component model directly builds on the properties of the language.

Overview and history of Java component technologies

As observed above, the applet was the initial factor of attraction and break-
through for Java. Indeed, much of early Java was designed specifically to allow
an untrusted downloaded applet to execute in the same process as a client’s
web browser without posing an unacceptable security threat. For this purpose,
language Java was designed to allow a compiler to check an applet’s code for
safety. The idea is that an applet that passes the compiler’s checks cannot be a
security threat. As the compiled code can still be tampered with, it is again
checked (“verified”) at load-time. The verified applet is then known to be safe

14.1

261

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 261

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

and can thus be subjected to strong security policies. None of this would be
possible with most of the established programming languages, including C++

and Object Pascal. Security policies can, of course, be enforced for languages
that are usually interpreted, such as Smalltalk or Visual Basic. Java, however,
was designed to allow for the compilation to efficient executables at the target
site. This is done by so-called just-in-time (JIT) compilers.

As an aside, it is possible to base security policies on trust in applet vendors.
Authentication techniques can be used to make sure that a received applet has
not been tampered with and, indeed, comes from the announced vendor. If that
vendor is trusted, the applet can be loaded, even if it has come in binary form.
This is largely the approach taken by Microsoft’s ActiveX (“Authenticode”). An
obvious disadvantage is that no one will ever trust the large number of small
developers providing the web community with applets. A combination of the
two approaches is best and is now also supported by Java, known as “signed
applets.” If a downloaded applet is signed and authenticated as coming from a
trusted source, it can be given more privileges than an applet that does not pass
this test. The set of trusted sources is under the user’s control.

The second winning aspect of Java is the Java virtual machine (JVM). Java
compilers normally compile Java into Java byte code, a format that is under-
stood by the JVM. By implementing the JVM on all relevant platforms, Java
packages compiled to byte code are platform independent. This is a major
advantage when downloading applets from the internet. The true advantage is
not so much the JVM but the Java class-file and JAR archive formats (see sec-
tion 17.3).

None of the advantages of Java are technically new. Safe languages existed
before, including efficiently compilable ones (Reiser and Wirth, 1992). Virtual
machines with byte code instruction sets go back to the early times of the
Pascal p-machine (Nori et al., 1981) and the Smalltalk 80 virtual machine
(Krasner, 1983). Even the concept of object integration into the web had been
demonstrated before. The principal achievement with Java was to pull it all
together and release it in a very timely fashion.

14.1.1 Java versus Java 2

While the initial Java specification suite was much under the influence of the
early applet idea, the Java 2 platform (introduced in late 1998) breaks free and
relegates applets to a marginal side role. Java 2 introduced the notion of plat-
form editions, which are selections of Java specifications that together address
the concern of a particular class of Java users. Figure 14.1 shows the organiza-
tion of the Java 2 space; more information on the Java 2 editions can be found
in the following sections.

The flagship platform edition – J2EE (Java 2 platform, enterprise edition), first
released end 1999 – is the most successful. With the specification of Enterprise
JavaBeans (EJBs) at its heart, J2EE is the suite of specifications underlying a large

262

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 262

Overview and history of Java component technologies

number of application servers from a large number of different vendors. (The two
largest such vendors are IBM, with its WebSphere products, and BEA, with its
WebLogic products, but, by the end of 2001, there were almost 40 vendors listed
on the Flashline.com comparative matrix, with prices running anywhere from
free/open source to $75,000 per CPU.) The micro edition is also fairly successful,
especially in the mobile phone sector. However, it is the enterprise edition that
establishes a rich environment for component software, making it the most rele-
vant with regard to the scope of this book.

Besides editions, Java 2 also formalized the notions of runtime environment
(RE), software development kit (SDK), and reference implementation. Runtime
environments are implementations of the JVM and the mandatory J2SE API
specifications. An RE is typically paired with an SDK of a matching version that
contributes development tools, including compiler and debugger. Confusingly,
the 1.x numbering of the older “Java 1” specifications is continued for runtime
environments and SDKs in Java 2. So, for example, a particular RE might be
referred to as “Java 2 Runtime Environment, Standard Edition, v1.4.”

14.1.2 Runtime environments and reference implementations

The Java runtime environment (JRE) is included in the J2SE platform, which
itself is a subset of the J2EE platform. The JRE includes the runtime, core
libraries, and browser plugin. Sun’s reference implementation of the JRE 1.4
builds on its HotSpot runtime and HotSpot JIT compilers, which perform online
re-optimization of JIT-compiled binary code. Separate HotSpot compilers are

263

Figure 14.1 Organization of the Java 2 space.

HotSpot JVM

Foundation
profile

Personal
profile

MID
profile

CDC CLDC

CVM KVM

J2ME platformJ2SE optional packages

J2SE platform
and SDK

JRE

J2SE optional packages

J2EE platform

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 263

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

available for client and server environments, respectively. They differ in their
optimization target function with differing tradeoffs for memory footprint,
startup-time, throughput, and latency. The Java SDK 1.4 includes JRE 1.4, as
well as the Java compiler, debugger, platform debugger architecture APIs
(JPDA), and a tool to generate documentation (javadoc). Figure 14.2 outlines
the structure of the J2SE platform as of v1.4.

There is no standard RE or SDK for J2EE (beyond the included J2SE and
J2SE options) as J2EE is meant to be a specification to be implemented by
many vendors. Instead, Sun provides a reference implementation as a proof of
concept and to clarify specifications. They are available in source code at a
danger of making the reference implementation’s exact semantics be the stan-
dard. Sun refers to this as the reference implementation serving as an

264

Figure 14.2 Organization of the Java 2 platform, Standard Edition v1.4. (From java.sun.com)

JPDAJavadocJava
Debugger

Java
Compiler

Java Plug-inJava Web Start

AWTSwing

AccessibilityJava 2D
Input

methodsSound

CORBAJNDIJDBCRMI

Locale
supportBeansLoggingXML

SecurityJNICollectionsPreferences

NetworkingNew I/OUtilLang

Java Hotspot
Server Compiler

Java Hotspot
Client Compiler

Java Hotspot VM Runtime

deployment
technologies

JRE

development
tools & APIs

SDK

User interface
toolkits

Integration
APIs

Core
APIs

Java virtual
machine

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 264

Overview and history of Java component technologies

“operational specification.” Reference implementations are not meant to be
used as such – for example, tradeoffs are made in favor of clarity instead of per-
formance. Instead, reference implementations ought to be used to verify that a
proposed new implementation is indeed compliant.

The reference implementations are also useful to provide a complete envi-
ronment for a new implementation of some Java standard. Compatibility test
suites are provided to help validate implementations and these test suites
themselves have been validated against the corresponding reference implemen-
tations. Java BluePrints is a collection of design guidelines and patterns that
can be used to map certain classes of enterprise applications to the space of
J2EE technologies.

14.1.3 Spectrum of editions – Micro, Standard, and Enterprise

Originally, Sun announced special packagings of Java to address the demands of
various markets, such as Personal Java, Enterprise Java, Embedded Java, or
Smartcard Java. With the arrival of the Java 2 restructuring of the overall organi-
zation of the Java specifications, this space has also been tidied up, so, as of mid
1999, Java 2 defines three packagings – the micro, standard, and enterprise edi-
tions. (The Java Smartcard space remained, catering for the particularly
resource-constraint nature of these devices.) The micro edition is a family of
specifications that aim at a spectrum of small and embedded devices (see Figure
14.1). At the foundation are a lightweight implementation of the full JVM
(called CVM) and a trimmed-down JVM (called KVM – “K” stands for kilobyte,
an indication of aiming for severely constrained devices). APIs on top of these
two VMs are organized into configurations and profiles – cut-down sets of
classes and interfaces appropriate for different device configurations. At the core
is either the connected devices configuration (CDC) or the configuration for
limited devices (CLDC). Device-specific profiles, such as the mobile information
device profile (MIDP) augment the core configurations.

The standard and enterprise editions target the client-only and the multitier
solution space, respectively. The standard edition is a proper subset of the
enterprise edition. The micro edition does not establish any such upwards
compatibility to other editions, acknowledging that most components will not
usefully scale from such special small devices to more generic computing plat-
forms. (JavaCard is addressing even smaller devices – smartcards – but it does
not form a formal tier in the Java 2 classification.)

Java 2 Standard Edition

The size of J2SE has grown substantially over the first five years since its intro-
duction in 1997. From 212 classes and interfaces in v1.0 (1997) on to 504,
1781, 2130, and now 3395 (in over 130 packages) in v1.4, released early in
2002. Included in v1.4 are 578 classes and interfaces defined by the Apache

265

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 265

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

group, W3C (DOM interfaces), and by the SAX project. J2SE 1.4 comprises
2606 classes and 789 interfaces, clustered into the following packages,
grouped by functional areas.

■ java.lang, java.lang.ref, java.lang.reflect Basic types of Java language,
foundation classes for class loading and runtime reflection, support for
various special references to partially control garbage collection, and
extended reflection support.

■ java.applet Applet base class and support types.
■ java.awt, java.awt.color, java.awt.datatransfer, java.awt.dnd,

java.awt.event, java.awt.font, java.awt.geom, java.awt.im,
java.awt.im.spi, java.awt.image, java.awt.image.renderable,
java.awt.print AWT (Abstract Windowing Toolkit); the original Java user
interface construction framework; augmented and partially superseded by
Swing for user interfaces and specialized printing packages.

■ java.beans, java.beans.beancontext JavaBeans base classes and support
types.

■ java.io, java.nio, java.nio.channels, java.nio.channels.spi,
java.nio.charset, java.nio.charset.spi Character and bytestream readers
and writers, files and channels. Service provider interfaces (SPIs) for
channels and character sets.

■ java.math Augments the basic library of math functions in class
java.util.Math with implementations of big integers and decimals.

■ java.net, javax.net, javax.net.ssl Networking support – sockets,
HTTP, SSL.

■ java.rmi, java.rmi.activation, java.rmi.dgc, java.rmi.registry, java.rmi.server,
javax.rmi, javax.rmi.CORBA Remote method invocation (RMI), late-
bound construction (activation), distributed garbage collection,
distributed service registry, server support, and RMI over CORBA IIOP.

■ java.security, java.security.acl, java.security.cert, java.security.interfaces,
java.security.spec, javax.security.auth, javax.security.auth.callback,
javax.security.auth.kerberos, javax.security.auth.login,
javax.security.auth.spi, javax.security.auth.x500, javax.security.cert,
org.ietf.jgss Security manager, access control lists (ACLs), certificates,
authentication, Kerberos, login, and X500 directory.

■ java.sql, javax.sql Support for SQL-based access to relational databases.
■ java.text Text manipulation.
■ java.util, java.util.jar, java.util.logging, java.util.prefs, java.util.regex,

java.util.zip Various utilities, Java archive (JAR) file access, logging,
preferences, regular expressions, and ZIP file access.

■ javax.accessibility Accessibility.
■ javax.crypto, javax.crypto.interfaces, javax.crypto.spec Cryptography –

MD5, SHA-1, DES.
■ javax.imageio, javax.imageio.event, javax.imageio.metadata,

javax.imageio.plugins.jpeg, javax.imageio.spi, javax.imageio.stream
Image I/O support.

266

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 266

Overview and history of Java component technologies

■ javax.naming, javax.naming.directory, javax.naming.event,
javax.naming.ldap, javax.naming.spi Naming and directory access;
LDAP.

■ javax.print, javax.print.attribute, javax.print.attribute.standard,
javax.print.event Printing support.

■ javax.sound.midi, javax.sound.midi.spi, javax.sound.sampled,
javax.sound.sampled.spi Sound support; MIDI, sampled sound.

■ javax.swing, javax.swing.border, javax.swing.colorchooser,
javax.swing.event, javax.swing.filechooser, javax.swing.plaf,
javax.swing.plaf.basic, javax.swing.plaf.metal, javax.swing.plaf.multi,
javax.swing.table, javax.swing.text, javax.swing.text.html,
javax.swing.text.html.parser, javax.swing.text.rtf, javax.swing.tree,
javax.swing.undo Swing user interface construction framework,
including platform-specifc and Java-generic look-and-feel, undo/redo,
HTML and RTF support.

■ javax.transaction, javax.transaction.xa Transaction support; XA.
■ javax.xml.parsers, javax.xml.transform, javax.xml.transform.dom,

javax.xml.transform.sax, javax.xml.transform.stream, org.w3c.dom,
org.xml.sax, org.xml.sax.ext, org.xml.sax.helpers XML parsing, XSLT,
DOM 2, SAX.

■ org.omg.CORBA, org.omg.CORBA_2_3, org.omg.CORBA_2_3.portable,
org.omg.CORBA.DynAnyPackage, org.omg.CORBA.ORBPackage,
org.omg.CORBA.portable, org.omg.CORBA.TypeCodePackage,
org.omg.CosNaming, org.omg.CosNaming.NamingContextExtPackage,
org.omg.CosNaming.NamingContextPackage, org.omg.Dynamic,
org.omg.DynamicAny, org.omg.DynamicAny.DynAnyFactoryPackage,
org.omg.DynamicAny.DynAnyPackage, org.omg.IOP,
org.omg.IOP.CodecFactoryPackage, org.omg.IOP.CodecPackage,
org.omg.Messaging, org.omg.PortableInterceptor,
org.omg.PortableInterceptor.ORBInitInfoPackage,
org.omg.PortableServer, org.omg.PortableServer.CurrentPackage,
org.omg.PortableServer.POAManagerPackage,
org.omg.PortableServer.POAPackage, org.omg.PortableServer.portable,
org.omg.PortableServer.ServantLocatorPackage,
org.omg.SendingContext, org.omg.stub.java.rmi Standard CORBA
interfaces and ORB binding.

An interesting category of packages are so-called service provider interfaces
(SPIs). These are of interest to implementers of a particular service, rather
than to clients. The idea is that a Java standard framework sits between such
service providers and clients and mediates. Examples are the SPIs for I/O
channels, character sets, authentication, and naming.

267

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 267

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

Java 2 Enterprise Edition (J2EE)

J2EE includes all of J2SE, including optional packages. Since, in early 2002,
J2EE 1.4 had not yet been released, the following numbers cover J2EE 1.3 and,
thus, J2SE 1.3. In version 1.3, J2SE comprises 2606 classes and 789 interfaces.
To that J2EE 1.3 adds 243 classes and 198 interfaces. J2EE also includes 279
classes and 182 interfaces based on CORBA specifications as well as 673 classes
and 92 interfaces contributed by a number of Apache projects. All this adds up
to a total of 3801 classes and 1261 interfaces, or a grand total of 5062 types.

Table 14.1 shows the required support of various Java standards in the J2EE
versions 1.2.1 and 1.3 (Sun, 2001). Most notably, EJB 2.0 (with its substantial
improvements over 1.1) is required and Connector, JAAS, and JAXP have been
added to the list of requirements. JNDI and RMI-IIOP are no longer specific to
J2EE as they have been reclassified as J2SE optional packages, although they are
required in J2EE. As of 1.3, J2SE also includes Java IDL and JDBC Core. The
JDBC 2.0 Extensions are optional in J2SE, but required in J2EE. As can be seen
in the table, there is a separate evolution of individual Java specifications and the
umbrella platform specifications. As long as each individual specification main-
tains perfect backwards compatibility that is not a major issue.

At the heart of the J2EE architecture is a family of component models. To
be precise, there are three groups of component models with a total of nine
variations on the component theme, which are, on the client side, application
components, JavaBeans, and applets; on the web server tier, servlets and JSPs;

268

J2EE 1.2.1 1.3.1 Interfaces Classes

J2SE 1.2 1.3 789 2606
EJB 1.1 2.0 17 11
JAF 1.0 1.0 4 13
JavaMail 1.1 1.2 12 85
JDBC 2.0 Ext. 2.0 Ext. 12 2
JMS 1.0 1.0 43 15
JNDI 1.2 (1.2)
JSP 1.1 1.2 6 19
JTA 1.0 1.0 7 10
RMI-IIOP 1.0 (1.0)
Servlets 2.2 2.3 20 16
Connector – 1.0 24 13
JAAS – 1.0 5 23
JAXP – 1.1 39 36

189 243

Table 14.1 Matrix of specification versions under two consecutive J2EE
platform versions.

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 268

Overview and history of Java component technologies

on the application server tier, EJB in four variations (stateless session, stateful
session, entity, and message-driven beans). Using different kinds of compo-
nents (rather than just different components) is a mixed blessing. On the one
hand, it helps to have component models that fit well with a particular archi-
tectural area. On the other hand, it makes it harder to refactor an overall
system as boundaries of component models may need to be crossed. It is also
somewhat unclear how such a fine and diverse factoring of component models
caters to the evolution of overall systems architecture. Will the number of
J2EE component models continue to grow?

The J2EE architectural overview in Figure 14.3 separates the areas that
J2EE supports using specialized component models. Figure 14.3 does not
mention JavaBeans. The reason is that JavaBeans components, although pre-
equipped with options to perform in the user interface space, aren’t really
confined to any particular tier. Instead, JavaBeans and its core technologies
could be used in almost any of the spaces shown in the figure. Furthermore,
note that the arrows in the figure represent characteristic cases of control flow.
They are not meant to be complete. Data flow typically follows the same lines,
but in both directions. A binding substrate underpinning all parts of a J2EE
system is the naming and directory infrastructure accessible via JNDI (Java
naming and directory interface). A second integration plane is the messaging
infrastructure accessible via JMS (Java message service). Both JNDI and JMS

269

Figure 14.3 Architectural overview of J2EE.

Client tier

Web
browser

+
applets

Rich clients
+ application

client
components

Web service
clients

Web server tier

JSP
container

+
JSPs

+
Servlets

+
Servlets

App server tier

EJB
container

+
Entity beans

+
Stateful &
stateless
session
beans

+
Message-

driven beans

Backend tier

Databases

Legacy apps
etc.

Naming and directories (JNDI) Messaging (JMS)

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 269

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

are discussed in section 14.6.3. With the help of message-driven beans in an
EJB container, messages can trigger processing on arrival. Messaging and
naming/directories are two important integration layer services, but there are
also others, such as transactional coordination and security services, that are
not covered in Figure 14.3 for the sake of clarity. They are, however, discussed
under the heading of enterprise services later.

A detailed discussion of JavaBeans follows in section 14.3. Basic services and
advanced services for JavaBeans are discussed in section 14.4. Switching to the
enterprise scale, section 14.5 comprises a discussion of the EJB component
models. Some details of the most important enterprise services follow in sec-
tion 14.6.

Java, the language

Java is an almost pure object-oriented language. It makes some admissions –
not everything is an object, for example. All Java code resides in methods of
classes. All state resides in attributes of classes. All classes except Object inherit
interface and implementation from exactly one other class. Non-object types
are the primitive types (boolean, byte, char, short, int, long, float, double) and
interface types. Objects are either instances of classes or arrays. Objects can be
created but not explicitly deallocated (Java uses an automatic garbage collector
for safety). A class can implement any number of interfaces and interfaces can
be in a multiple interface inheritance relationship.

All Java classes and interfaces belong to packages. (As of Java 1.1, a class can
also be nested inside another class or even inside a method.) Packages intro-
duce a level of encapsulation on top of that introduced by classes. The default
mode for access protection allows arbitrary access across classes in the same
package. Packages form a hierarchy, but only the package immediately enclos-
ing a class or an interface affects encapsulation and protection. Outer packages
merely serve to manage namespaces. All naming in Java is relative to the pack-
age name paths formed by appending the names of inner packages to those of
outer packages. It is recommended that a globally unique name be used for a
top-level package, a typical candidate being a registered company name.

A fully qualified name of a feature of a class takes the form package.
Type.feature. Here, package is the path name of the package, Type is the name
of the class or interface, and feature is the name of the method or attribute
referred to. If internet domain names are used, a package name can take a
form such as org.omg.CORBA. Although originally recommended, it is now
commonplace to use company-name.productname prefixes for packages, rely-
ing on the stability and uniqueness of company instead of domain names. To
use another package, the using package can always use fully qualified names to
refer to the other package. However, such names can become quite lengthy.
By explicitly importing some or all the types of the other package, these type
names become directly available in the importing package – Type.feature then

14.2

270

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 270

Java, the language

suffices. The unfortunate use of the period to separate all package name parti-
cles, top-level type names, nested type names, and features makes the Java
notation a.b.c subtle to parse and possibly difficult to understand to the
human reader. (C# shares this unfortunate design.)

Figure 14.4 shows the graphical notation used here for Java packages, inter-
faces, classes, attributes, and methods. The notation follows UML static
structure diagrams with a non-standard extension for final classes, which are
those that cannot be further extended – that is, they cannot be inherited from.
In addition, and not shown in the notational overview, Java methods can be
final (not overridable) or static (class instead of instance methods). Attributes
can also be final (immutable after initialization) or static (class instead of
instance attributes). Interfaces extend any number of other interfaces. Classes
extend exactly one other class, except for class java.lang.Object, which has no
base class. Classes can also implement any number of interfaces.

Figure 14.5 uses the concrete example of (part of) the java.awt.image package
and its relation to the java.lang package. Note that java.awt.image is a subpackage
of java.awt. As stated before, there is no special relationship between a package
and a subpackage that goes beyond the structure added to the namespace. In par-
ticular, both java.awt and java.awt.image contain interfaces and classes.

271

Figure 14.4 Java structuring constructs – names of abstract classes and abstract methods are
set in italics.

Abstract class

Concrete class

Final class

Class

Constants
Attributes

Methods
Methods

C

Class extends C

«interface»
Interface

Methods

I

Class implements or
interface extends I

Constants

«interface»
Interface

Package

Abstractions
from imported

package

Package

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 271

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

The line between the Java language and some of the fundamental class
libraries is not easy to draw. In particular, there are three packages required by
the Java language specification (Gosling et al., 1996) – java.lang, java.util, and
java.io. The package java.lang is even deeply intertwined with the language
specification itself. Many classes and interfaces in this package receive special
treatment by the language rules. It would be fair to say that the otherwise
modestly sized language Java really includes the definition of java.lang.
Unfortunately, in JDK 1.4, java.lang alone defines 82 classes and interfaces, all
of which are available in any Java package automatically.

The interweaving of language and standard package constructs is worse
than it seems. Not only are all interfaces and classes of package java.lang auto-
matically injected into any other package, but also the language itself builds on
some java.lang classes. In particular, these are the classes Object, String, and
Throwable, which are entangled with the null reference, the array type con-
structors, the string literals, and the throw statement respectively. Under the
transitive closure over the types used in the signatures of Object, String, and
Throwable, the list expands to include classes Class, ClassLoader, and several
subclasses of Throwable.

272

Figure 14.5 Part of the java.awt.image package.

ColorModel

«interface»
ImageProducer

java.awt.image

«interface»
ImageConsumer

«interface»
ImageObserver

Object

java.lang

«interface»
Clonable

FilteredImageSource

ImageFilter

MemoryImageSource

PixelGrabber

DirectColorModel

IndexColorModel

CropImageFilter

RGBImageFilter

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 272

Java, the language

Because Java supports arbitrary and possibly circular dependencies across
packages, java.lang can and does have dependencies on other packages. This
has been the case since the first release and has worsened in all following
releases. The class Throwable relies on types java.io.PrintStream and java.io.
PrintWriter, in a debugging method called printStackTrace. This method indi-
rectly causes the classes PrintStream, PrintWriter, FilteredOutputStream, Writer,
OutputStream, and IOException from package java.io to be pulled into the lan-
guage itself. More such dependencies were woven into later versions. So, for
example, in J2SE 1.4, java.lang.ClassLoader depends on java.security.
ProtectionDomain, java.lang.Process depends on java.io.InputStream, and
java.lang.SecurityManager depends on java.net.InetAddress, java.io.FileDescriptor.
These pull in many other definitions. In JDK 1.4, the transitive closure of all
classes and types directly reachable from the Java language specification con-
tains 146 classes and interfaces!

Java defines two access levels for top-level interfaces and classes – default
(package-wide) and public. In the former case, the interface or class is accessi-
ble only within its defining package, not even within sub- or superpackages,
but in the latter case it is accessible everywhere. The default limitation to intra-
package accessibility is not enforceable by the language implementation –
anyone can drop a new definition into an existing package. The definition and
enforcement of access rights for entire packages is left to the environment.
Access rights can be further controlled on the level of class features – that is,
nested types, methods and fields. Java defines four levels of static access pro-
tection for features of a class, which are private, default (package-wide),
protected, and public. Private features are accessible only within their defining
class. Default accessibility includes all classes within the same package.
Protected features can, in addition, be accessed within all subclasses of the
defining class. Finally, public features are globally accessible, provided the
defining class is. (Environment-enforced access constraints may exclude access
even if the respective definition is declared public.)

Fields can be final, effectively making them constants once initialized. Final
methods cannot be overridden. Static features belong to the class rather than
to instances of the class. Interface fields are implicitly public, static, and final,
making them global constants. Interface methods are implicitly public and
abstract. With these restrictions enforced, Java interfaces introduce neither
state nor behavior – they are pure types.

14.2.1 Interfaces versus classes

Probably the most innovative aspect of Java is its separation of interfaces and
classes in a way that permits single implementation inheritance combined with
multiple interface inheritance. This separation eliminates the diamond inheritance
problem (p. 111) while preserving the important possibility of a class being com-
patible with multiple independent interfaces. The diamond inheritance problem is

273

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 273

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

eliminated because interfaces introduce neither state nor behavior. Thus,
there can be no conflicts beyond name clashes in a class that implements mul-
tiple interfaces.

Java offers no complete solution to the name conflict problem. If two inter-
faces introduce methods of the same name and signature but of different
return type, then no class can simultaneously implement both interfaces.
Clashes of method names among independently defined interfaces are difficult
to avoid entirely, but don’t seem to pose a significant problem in practice. One
reason is that many method names contain the interface name – generally an
unfortunate choice. A different scenario, however, literally forces such name
clashes. If an interface is versioned, it is likely that the old and new version will
share some method names. As pointed out in section 5.1.2, it is essential that
components support sliding windows of versions – that is, that they support
the interfaces of multiple version generations. In Java, doing so requires us to
change the name of an interface for a new version and change the name of all
methods logically retained in the new version. This requirement is cumber-
some enough that it is not part of best practice. Java classes are thus not
normally able to simultaneously support multiple versions of their contracts.

Leaving this quite fundamental problem of Java aside, there are other
potential pitfalls for designers using a mix of single class and multiple interface
inheritance. These are not limited to Java and equally apply to other languages
following a similar design paradigm, such as C#. Consider the following exam-
ple involving both classes and interfaces. The standard package java.util defines
the class Observable and the interface Observer, as shown below.

package java.util;
public class Observable extends Object {

public void addObserver (Observer o);
public void deleteObserver (Observer o);
public void deleteObservers;
public int countObservers ();
public void notifyObservers ();
public void notifyObservers (Object arg);
protected void setChanged ();
protected void clearChanged ();
public boolean hasChanged ();

}

public interface Observer {
void update (Observable o, Object arg);

}

The idea is that observable objects are instances of classes that extend (inherit
from) Observable. Class Observable maintains a list of observers and a flag
indicating whether or not the observable object has changed. Observers have

274

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 274

Java, the language

to implement interface Observer. All registered observers will be called when
the observable object calls notifyObservers. Figure 14.6 shows a simple class
diagram using Observable and Observer to implement a straightforward model
view scheme. (The asterisk at the end of the line, from Observable to Observer,
is the UML notation showing that one Observable instance can be associated
with many observers.)

Observable and Observer aim to support the observer design pattern (Gamma
et al., 1995). This pattern is most prominently used in conjunction with model
view separations in user interfaces (see Chapter 9). The Observer interface cer-
tainly demonstrates a good use of interfaces in Java. However, the Observable
class has a design flaw. (Observer and Observable are not used in any of the stan-
dard Java packages, although the definitions have never been deprecated. They
were superseded by the event and event-listener concepts introduced with the
JavaBeans specification described in section 14.3; Sun, 1996.)

The problem is that Observable is a class and not an interface. This forces
restructuring of a class hierarchy in cases where a class already depends on a
superclass that is different from Object and where instances of this class now
should become observable. Why was this done? Observable as it stands does
too much. It contains a concrete implementation of the list of observers and
the notification broadcast. It also implements an “object has changed” flag.
(This flag itself has a few design problems. For instance, at least up to v1.4, the
specification states that it is cleared after notifying observers, so re-entrant
changes are not notified and no exception is thrown either. In reality, since
v1.2, the implementation clears this flag before notifying observers. Another
problem is that Observable isn’t synchronizing. Concurrent threads may enter
race conditions that can lead to inconsistent handling of notifications.)

A simple solution is not to use the Observer/Observable approach.
However, to study some further aspects of Java, assume that the interface
Observable should be used, but that the observable object already extends
some other class. Class Observable cannot therefore be used directly. The
astute reader will notice that, again, using object composition can save the sit-
uation. To do so, a trivial subclass of Observable needs to be implemented:

275

Figure 14.6 Model view construction using Observable and Observer.

Observable «interface»
Observer

Object

Model View

*1

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 275

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

package fix.it;
public class ObserverRegistry extends java.util.Observable {

public readonly Object observable; // reference to actual observable object
public ObserverRegistry (Object observable) { // constructor

this.observable = observable;
}
public void setChanged() {

super.setChanged()
}
public void clearChanged() {

super.clearChanged()
}

}

This trivial subclass removes the protected access mode from methods
setChanged and clearChanged. Instances of ObserverRegistry can now be used
as part objects of observable objects. Because observers get a reference to an
Observable, ObserverRegistry’s read-only field observable provides a reference
to the object that has actually changed. The registry’s constructor sets this ref-
erence. For example:

package fixed.it;
import fix.it.*;
public class StringBufferModel extends StringBuffer {

private ObserverRegistry obReg = new ObserverRegistry(this);
public ObserverRegistry getObserverRegistry () {

return obReg;
}
public void setLength (int newLength)

throws IndexOutOfBoundsException
{

super.setLength(newLength);
obReg.setChanged();
obReg.notifyObservers(); // could tell them what has changed ...

}
// other StringBuffer methods

}

Class StringBufferModel extends the standard class java.lang.StringBuffer, a helper
class to support composition of strings. As a string buffer is a mutable object, it is
a good candidate for a model-view scenario. For example, a text entry field could
be implemented as a view on a string buffer. Unfortunately, StringBufferModel
cannot extend Observable directly, as it already extends StringBuffer. StringBuffer
was not designed to serve as the superclass of something observable and so
extends Object instead of Observable. StringBufferModel solves this by using an
ObserverRegistry object instead. Below is the sketch of an observer object display-
ing a StringBufferModel object’s contents.

276

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 276

Java, the language

package fixed.it;
import java.util.*;
public class StringBufferView implements Observer {

private StringBufferModel buf;
public StringBufferView (StringBufferModel b) {

buf = b;
b.getObserverRegistry().addObserver(this);

}
public void update (Observable o, Object arg) {

ObserverRegistry reg = (ObserverRegistry)o; // checked cast
Object observable = reg.getTrueObservable();
if (observable != buf) throw new IllegalArgumentException();

… // get changes from buf and update display
}

}

This concludes the example on how to use interfaces and object composition
in Java. The example showed only classes implementing a single interface, but
the extension to multiple interfaces is straightforward. Where unresolvable
naming conflicts occur, a Java compiler rejects a class trying to implement con-
flicting interfaces. In all other cases there is no interference whatsoever
between multiple implemented interfaces. One question remains to be
answered, though. How can a client having a reference of a certain interface or
class type find out what other interfaces or classes the referenced object sup-
ports? The answer is two-fold. Java provides a type-test operator – instanceof –
that can be used to query at runtime. Java also has checked type casts that can
be used to cast the reference to another class or interface. Here is an example:

interface Blue { ... }
interface Green { ... }
class FunThing implements Blue, Green { ... }

A client holding a Blue reference can test whether or not the object also sup-
ports a Green interface, although Blue and Green themselves are totally
independent types:

Blue thing = new FunThing ();
Green part = null;
if (thing instanceof Green) // type test

part = (Green) thing; // checked type cast, from Blue to Green

It is not possible to statically state that a variable refers to an object imple-
menting both Blue and Green without introducing a common subtype of these
two interfaces. The late introduction of such a common subtype for this pur-
pose (say, Cyan extends Blue, Green) does not solve the problem. For instance,
class FunThing above should qualify (it implements both Blue and Green), but
doesn’t as it does not implement the artificially introduced common subtype

277

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 277

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

Cyan. What is needed is a notion of requiring structural compatibility with a
set of interfaces. Büchi and Weck (1998) call such interface sets compound
types and identify non-support of compound types as a common problem in
all contemporary mainstream languages.

14.2.2 Exceptions and exception handling

The Observer/Observable example above introduced another feature of Java –
exception handling. Exceptions and runtime errors are reflected in Java as
exception or error objects. These are either explicitly thrown, such as the throw
statement in StringBufferView, or thrown by the runtime system, such as on
out-of-bounds indexing into an array. All exception and error objects are
instances of classes that are derived from class Throwable. A catch branch of
a try statement can catch such throwable objects. For example, the
notifyObservers method in class Observable could be protected against excep-
tions raised by notified observers:

public void notifyObservers () {
for (Observer ob = first(), ob != null, ob = next()) {

try {
ob.update(this, null); // observer may throw an exception

}
catch (Exception ex) {

// ignore exception and continue with next observer
}

}
}

In the example, it is not apparent just by looking at the declaration of method
update that it might throw an exception. Exception types for which this is
legal are called unchecked exceptions. Java also has exception types that can
only be thrown by a method’s implementation, if the method declaration
announced this possibility. Such declared exceptions are called checked excep-
tions. For example:

class AttemptFailed extends Exception { }
class Probe {

public void goForIt (int x) throws AttemptFailed {
if (x != 42) throw new AttemptFailed();

}
}
class Agent {

public void trustMe (Probe p) {
p.goForIt(6 * 7); // compile-time error!

}
}

278

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 278

Java, the language

Class Agent cannot be compiled. Method trustMe neither declares that it may
throw the user-defined exception AttemptFailed nor catches this exception
should it be thrown. Note that this check based on static annotations adds a
degree of robustness to software. In the example, Agent happens to “know”
what Probe needs to avoid failure. Hence, Probe will actually never throw an
exception when called from within trustMe. However, a future version of
Probe may do so. After all, this possibility has even been declared and is thus
part of the contract between Probe and Agent.

14.2.3 Threads and synchronization

Java defines a model of concurrency and synchronization and is thus a concur-
rent object-oriented language. The unit of concurrency is a thread. Threads are
orthogonal to objects, which are therefore passive. Threads can only communi-
cate through side-effects or synchronization. A thread executes statements and
moves from object to object as it executes method invocations. Threads can be
dynamically created, pre-empted, suspended, resumed, and terminated. Each
thread belongs to a thread group specified at thread creation time. Threads
belonging to separate thread groups can be mutually protected against thread
state modifications. Threads can be assigned one of ten priority levels and can
be in either user or demon mode. A thread group may impose limits on the
maximum priority of its threads. However, priorities are hints only – some vir-
tual machines ignore them while others differ in their interpretation. Thread
termination is not automatically propagated to child threads. A Java application
terminates when the last user thread has terminated, irrespective of the state of
demon threads. Figure 14.7 shows the states in which a thread can exist and the
possible state transitions. The states and transitions are explained below.

Java’s threads are lightweight as, on any given virtual machine, they all exe-
cute in the same address space. A JVM is free to schedule processing resources
by pre-empting executing threads at any time, but JVMs don’t have to imple-
ment time-slicing. (If progress depends on scheduling, a thread should call
Thread.yield – see below.) As threads may be pre-empted, this raises the ques-
tion of how concurrent access is regulated. The language specification requires
atomic ordering of access operations on values of primitive types and reference
types. (As a concession to efficient implementation on contemporary 32-bit
architectures, there are no such requirements for Java’s 64-bit types long and
double. However, long and double variables can be declared volatile to prevent
interleaved access.) For consistent access to larger units, such as multiple fields
of an object or multiple objects, explicit synchronization is required.

Java supports thread synchronization either on entrance to a synchronized
method or at a synchronized statement. Synchronization forces a thread to
acquire a lock on an object before proceeding. There is exactly one lock associ-
ated with each object. If the thread in question already holds a lock on that
object, it can continue. (This is an important rule avoiding deadlocks in a

279

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 279

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

common situation – a thread re-entering an object. Cardelli introduced this
approach to avoid what he called self-inflicted deadlocks, 1994.) Synchronized
methods use the lock of the object to which they belong. Below is an example
of a wrapper for the unsynchronized stacks provided by the standard library
class java.util.Stack:

class SynchStack {
private java.util.Stack stack = new java.util.Stack();
public synchronized void push (Object item) {

stack.push(item);
}
public synchronized Object pop () {

return(stack.pop());
}
public synchronized boolean empty () {

return(stack.empty());
}

}

The synchronized statement takes the object to be locked as an argument:

... // thread may or may not already hold a lock on obj
synchronized (obj) {

... // thread now holds lock on obj
} // lock released, unless it was already held by current thread

280

Figure 14.7 States and state transitions of Java threads.

new

start
synchronized

runnable wait for lock

synchronize
notified

pr
e-

em
pt

suspend

suspended

sc
he

du
le

running
wait

wait for notify

stop, destroy

terminated

resume

suspend

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 280

Java, the language

Without any further measures, a thread waiting for an event would have to
poll variables. To avoid inefficiencies, Java allows threads to wait on any object,
either indefinitely or up to some specified timeout. For this reason, class Object
defines methods wait, notify, and notifyAll. These methods can only be called
by a thread that holds a lock on that object. While waiting, the lock is released.
On notification, a thread first reacquires the lock before proceeding – by doing
so it has to compete with all other threads trying to acquire the lock.
Normally, the lock is still held by the notifying thread. Once the lock becomes
available, any one of the threads trying to acquire the lock will be chosen. If
multiple threads have been notified (or even all that have been waiting by
using notifyAll) or if other threads attempt to acquire the same lock, then they
will compete for the lock and acquire it, in any order, as soon as the previous
owner of the lock releases it.

There is, however, a significant and dangerous subtlety attached to the use
of objects as synchronization signals. If an object used for synchronization is
accessible to threads from multiple subsystems, then it is unlikely that these
threads agree on the semantics of wait/notify on that object. As a result, the
same object may end up being used accidentally as a synchronization object by
two subsystems. This is especially likely when using a global object. For
instance, a widespread pattern uses the meta-object attached to some type for
purposes of locking and synchronization. Another danger is that an object is
used for conflicting locking and synchronization purposes at base class and
derived class levels. To avoid these problems, it is recommended to predomi-
nantly use objects that aren’t widely accessible for synchronization.

A thread is associated with an owning object at thread creation time. It is
through this object that a thread can be suspended, resumed, or terminated.
The owning object can also be used to move a thread between user and
demon status before the thread is first started. Objects that own a thread are
instances (of a subclass) of class java.lang.Thread. Below is an excerpt:

public class Thread implements Runnable {
public static Thread currentThread ();
public static void yield ();
public static void sleep(long millis) throws InterruptedException;
public Thread (); // default constructor; use method run
public Thread (Runnable runObject); // use method run of runObject
public void run ();
public void start ();
public void stop (); // deprecated
public void suspend (); // deprecated
public void resume (); // deprecated
public void interrupt ();
public static boolean interrupted ();

281

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 281

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

public boolean isInterrupted ();
public void setPriority (int newPriority);
public void setDaemon (boolean on);
public final boolean isDaemon ();
public void destroy (); // unsafe, not implemented
public final void checkAccess (); // check caller permissions
// other methods deleted ...

}

A thread object can itself define the outermost method to be executed by the
new thread – method run in class Thread. Alternatively, the thread object is con-
structed with a reference to an object that implements interface Runnable. In
the latter case, thread execution starts by calling the run method of that other
object. Either way, the thread terminates if the outermost method returns. A
thread also terminates when its outermost method throws an exception.

The definition of class Thread also contains means to control a thread. Static
methods are provided for a thread to affect itself by yielding the processor or
by sleeping for some set time. Threads that are waiting for a lock or sleeping
can be interrupted by another thread, which causes an InterruptedException to
be thrown. If a thread is interrupted while not waiting or sleeping, its inter-
rupted flag is set, which can be polled by calling isInterrupted or
polled-and-cleared by calling interrupted.

A thread can be terminated by calling its owning object’s stop or destroy
methods. (Method stop sends a ThreadDeath exception to the thread, whereas
destroy terminates the thread immediately and with no clean-up. Objects
locked by a destroyed thread remain locked. This is the last resort in case a
thread catches ThreadDeath and thereby refuses to terminate.) However, all
these methods have been deprecated with v1.2, and one of them has actually
never been implemented (destroy). The reason for this deprecation is that
these methods are unsafe. Suspending a thread can lead to unavoidable dead-
locks if the suspended thread holds a lock that the suspending thread needs to
acquire. Stopping a thread causes that thread to release all its locks, potentially
leaving the previously locked objects in an inconsistent state. Destroying a
thread would leave arbitrary locked objects locked for good.

As of 1.2, the recommendation is to use polling of variables to signal sus-
pension or termination requests. Long-running threads should poll such a
variable periodically and, if set, gracefully return to a consistent state and
release locks. This is a form of cooperative multitasking that requires the pro-
grammer to have substantial insight at a global level.

14.2.4 Garbage collection

Java provides a number of mechanisms to allow programs to interact with the
JVM’s garbage collector. The first such mechanism is object finalization. It is
used by overriding protected method Object.finalize. This method is called by

282

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 282

Java, the language

the collector at some time after an object has been found to be unreachable,
but before its memory is actually reclaimed. Unless it is known with certainty
that the superclass doesn’t have a non-empty finalizer (versioning fragility!), a
finalize method should always call the super-finalize method. Unlike object
constructors, this chaining is not enforced by the Java language.

The implementation of a finalize method can reach objects that are other-
wise unreachable (including its own object!), but it may also reach objects that
are still reachable. By assigning a reference from one of the previously
unreachable objects to a field of one of the still reachable objects, a previously
unreachable object can be “resurrected.” That is, after the call to the finalize
method, some previously unreachable objects may again be reachable. To pre-
vent endless finalization efforts, the Java garbage collector will call the finalize
method of an object exactly once before reclaiming its storage. (The “exactly
once” semantics is only guaranteed if an object does become unreachable and
if the JVM doesn’t fail catastrophically.)

The best finalization strategy is thus to avoid resurrection and to only use
finalizers to release external resources. For instance, if an object holds some
platform handle to, say, an open database connection, then a finalizer can be
used to ensure that the connection is closed eventually. However, note that
this guarantee is still fairly weak as there is no guarantee how long it will take
before the JVM detects unreachability and before it calls a finalizer. A garbage-
collection pass can be “encouraged” by calling System.gc. A best-effort
finalization pass can be requested by calling System.runFinalization(). If used
with care at strategic points, this can help ensure swift release of critical
resources. However, forcing finalization effectively forces partial garbage col-
lection (to detect unreachability) and can thus be expensive. The negative
impact on overall performance can be dramatic.

The finalize methods are called on an unspecified thread that is merely
guaranteed to not hold any client-visible locks. The specification even allows
for multiple concurrent threads to cause concurrent finalization. (In early JVM
implementations this led to a subtle security hole, which was that if the thread
used was a system thread with high privileges, then the finalize method ran
with these privileges and could thus undermine security policies.)

For objects holding internal resources – that is, resources modeled using
Java objects – there is no need to implement a finalizer as such internal
resources are themselves subject to garbage collection, and finalization if
required. The vast majority of Java classes do not require a finalizer.

A second mechanism that helps to steer the garbage collector are special ref-
erences introduced in SDK 1.2. There are three kinds – soft, weak, and
phantom references. Note that standard Java language-level references are now
also called strong references. An object is strongly reachable if a sequence of
strong references from a root variable leads to that object. It is softly reachable
if a sequence of strong and soft references leads to that object. A need to go
through at least one weak reference to reach an object makes it weakly reachable.

283

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 283

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

Finally, if at least one phantom reference is on every path to an object, then
that object is phantom reachable.

A soft reference is an instance of class java.lang.ref.SoftReference or its sub-
classes. A soft reference holds an encapsulated reference to some other object, its
referent. If the JVM is under memory pressure, it is free to clear soft references,
provided their referents are no longer strongly reachable (reachable via normal
Java references only). Although not required, the specification encourages JVM
implementations to choose least recently used soft references first. The specifica-
tion requires a JVM to clear all soft references before throwing an out-of-
memory exception. Once cleared, a soft reference will return null when asked for
its referent. It is also possible to register reference objects with reference queues.
The garbage collector enqueues registered reference objects when clearing their
referent. It is usually more efficient to poll or block on a reference queue than to
periodically poll all soft references to determine which ones have been cleared.
Soft references are useful to implement object caches.

If an object is only reachable via soft or weak references and its soft references
have been cleared, then it can be finalized. A weak reference does not ask for hold-
ing a referent unless there is a memory shortage – if a weakly referenced object can
be collected, then its weak references are cleared and it is readied for finalization.
Reference queues work for weak references as well. As a last straw, phantom refer-
ences can be used to keep the last trace of a finalized but not yet reclaimed object.
Phantom references never return their referent (to prevent resurrection), but can
be used as unique “names” of their referents in canonicalization algorithms.
Reference queues are the only means to extract useful information from phantom
references. They are primarily useful to perform a post-finalization cleanup of
name tables used for canonicalization. For instance, if a particular object should
only be created if no other object has already been created in a certain place, then
a phantom reference is a cheap way to account for this condition without keeping
any objects unnecessarily alive. However, a memory leak can occur if phantom ref-
erences, once enqueued, aren’t cleared.

It should be clear by now that the garbage-collection steering mechanisms
discussed in this section are highly problematical. Slight misuse can lead to sig-
nificant performance degradation or program misbehavior, although memory
safety is always preserved. Luckily, the majority of classes can be written with-
out ever touching on any of these mechanisms.

JavaBeans

Initially, Java targeted two kinds of products – applets and applications. The com-
position models are rudimentary, however. Applets can be composed by placing
them on the same web page and then, within one applet instance, using class
AppletContext to find another applet instance by name. While different applets can
be used to fill such named positions, there is no way to determine statically what

14.3

284

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 284

JavaBeans

type such applets must have. There is also no standardized way to “rewire” applets
on a page. In the case of plain Java applications, Java provided even less:
Composition there depended entirely on facilities of the operating system. Beyond
simplistic cases, applets are not suitable as separately sold components.

JavaBeans fills some of this gap and makes a new kind of product possible –
Java components, called “beans” (Sun, 1996). It is unfortunate that the clear
distinction between class and object in Java is not carried through in
JavaBeans. Although a bean really is a component (a set of classes and
resources), its customized and connected instances are also called beans. This
is confusing. Thus, in the following, bean refers to the component and bean
instance to the component object. “Bean object” would be too confusing,
because a bean usually consists of many Java objects.

A bean can be used to implement controls, similar to OLE or ActiveX con-
trols. JavaBeans provides a protocol to handle containment (see section
14.4.5). In addition, JavaBeans has been designed to also enable the integra-
tion of a bean into container environments defined outside Java. For example,
there is an ActiveX bridge available from Sun that allows a bean instance to
function as a control in an ActiveX container.

Beans have been designed with a dual usage model in mind. Bean instances
are first assembled by an assembly tool, such as an application builder, at
“design-time,” and are then used at “runtime.” A bean instance can customize
appearance and functionality dynamically by checking whether or not it is
design-time or runtime. One of the ideas is that it should be possible to strip
the design-time code from a bean when shipping an assembled application. A
bean instance can also enquire, at “runtime,” whether or not it is used interac-
tively, that is, whether or not a graphical user interface is available. Thus, a
bean instance can behave differently when being run on a server or as part of a
batch job, rather than interactively.

The main aspects of the bean model are the following.

■ Events Beans can announce that their instances are potential sources or
listeners of specific types of events. An assembly tool can then connect
listeners to sources.

■ Properties Beans expose a set of instance properties by means of pairs of
getter and setter methods. Properties can be used for customization or
programmatically. Property changes can trigger events and properties
can be constrained. A constrained property can only be changed if the
change is not vetoed.

■ Introspection An assembly tool can inspect a bean to find out about the
properties, events, and methods that a particular bean supports.

■ Customization Using the assembly tool, a bean instance can be
customized by setting its properties.

■ Persistence Customized and connected bean instances need to be saved
for reloading at the time of application use.

285

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 285

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

14.3.1 Events and connections

Events in the JDK 1.1 terminology – and as used in JavaBeans – are objects
created by an event source and propagated to all currently registered event
listeners. Thus, event-based communication generally has multicast semantics.
However, it is possible to flag an event source as requiring unicast semantics –
such a source accepts at most one listener at any one time. Event-based com-
munication is similar to the COM Connectable Objects approach and also can
be seen as a generalization of the Observer pattern (Chapter 9).

An event object should not have public fields and should usually be consid-
ered immutable. Mutation of event objects in the presence of multicast
semantics is subtle. However, where mutation of an event object during prop-
agation is required, these changes should be encapsulated by methods of the
event object. The JavaBeans specification gives coordinate transformations as
an example, so a mouse-click event may need to be transformed into local
coordinates to make sense to a listener.

Listeners need to implement an interface that extends the empty “marker”
interface java.beans.EventListener and that has a receiving method for each
event the listener listens to. (Marker interfaces are also known as tagging inter-
faces. They are themselves empty and serve as a mark [or tag] on the type that
extends or implements them. This is a form of simple binary meta-attribution.
In the case of event listeners, the marker is used to find listeners via introspec-
tion.) For example:

interface UserSleepsListener extends java.util.EventListener {
void userSleeps (UserSleepsEvent e);

}

A listener can implement a given event listener interface only once. If it is reg-
istered with multiple event sources that can all fire the same event, the listener
has to determine where an event came from before handling it. This can be
simplified by interposing an event adapter. An event adapter implements a lis-
tener interface and holds references to listeners. Thus, an event adapter is both
an event listener and an event source. A separate adapter can be registered with
each of the event sources. Each adapter then calls a different method of the lis-
tener. Thus, event adapters can be used to demultiplex events. In principle,
event adapters can perform arbitrary event-filtering functions. Note that, in
the absence of method types and method variables, event adapters lead either
to an explosion of classes or to slow and unnatural generic solutions based on
the reflection service. Such generic demultiplexing adapters were indeed pro-
posed in the JavaBeans specification (Sun, 1996, pp. 35–37). Since Java 1.1,
this problem has been reduced by supporting in-line construction of light-
weight adapter classes – so-called anonymous inner classes, somewhat similar
to Smalltalk blocks. A more modern approach uses nested classes to implement
the required functionality directly rather than forwarding calls, which mini-
mizes code redundancy.

286

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 286

JavaBeans

An event source needs to provide pairs of listener register and unregister
methods:

public void addUserSleepsListener (UserSleepsListener l);
public void removeUserSleepsListener (UserSleepsListener l);

If a source requires unicast semantics, it can throw a TooManyListenersException:

public void addUserSleepsListener (UserSleepsListener l)
throws java.util.TooManyListenersException;

Event propagation in a multicast environment introduces a number of subtle
problems (see the discussion of callbacks and re-entrance in Chapter 5). The
set of listeners can change while an event is propagated. JavaBeans does not
specify how this is addressed, but a typical way is to copy the collection of reg-
istered listeners before starting a multicast. Also, exceptions may occur while
the multicast is in progress. Again, JavaBeans does not specify whether or not
the multicast should still continue to address the remaining listeners. Finally, a
listener may itself issue an event broadcast on reception of an event. This raises
the difficult problem of relative event ordering; JavaBeans does not specify any
constraints on the ordering of event delivery (see section 10.6 for a detailed
discussion of the ordering issues of event-based programming).

Event ordering issues are aggravated in multithreaded environments such as
Java. For example, an event source may hold locks that are required by event
listeners to process events. The result would be a deadlock if the event listener
uses a separate thread to acquire such locks. Indeed, the authors of the
JavaBeans specification (Sun, 1996, p. 31):

“strongly recommend that event sources should avoid holding their
own internal locks when they call event listener methods.”

This is clearly subtle. For one, problems only arise if the event listener uses
additional threads besides the one carrying the event notification, because the
notifying thread continues to hold all the locks held by the event source,
which would prevent deadlocks. Also, it is not even clear if this recipe can be
followed generally without breaking encapsulation. It may not be at all easy to
determine whether and which locks the event source already holds. More pre-
cise advice continues:

“Specifically, [...] they should avoid using a synchronized method to
fire an event and should instead merely use a synchronized block to
locate the target listeners and then call the event listeners from
unsynchronized code.”

As indicated above, “to locate the target listeners” is best interpreted as perform-
ing a synchronized copy of the collection holding references to the target listeners.
Otherwise, if listeners were added or removed during an ongoing notification,
then standard Java collections would throw a ConcurrentModificationException,

287

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 287

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

following the “fail fast” pattern. Although this specific advice clearly needs to be
followed, it is not sufficient to avoid subtle deadlocks that result from a combina-
tion of multithreading and event-based communication. More effective advice is
to not use event-based models in combination with multiple threads. (For a dis-
cussion of Java threading in general, see section 14.2.3.)

14.3.2 Properties

A bean can define a number of properties of arbitrary types. A property is a
discrete named attribute that can affect a bean instance’s appearance or behav-
ior. Properties may be used by scripting environments, can be accessed
programmatically by calling getter and setter methods, or can be accessed
using property sheets at assembly time or runtime. Typical properties are per-
sistent attributes of a bean instance. Property changes at assembly time are
used to customize a bean instance. A property change at runtime may be part
of the interaction with the user, another bean instance, or the environment.

Access to properties is via a pair of methods. For example, the setter
and getter methods for a property “background color” might take the follow-
ing form:

public java.awt.Color getBackground ();
public void setBackground (java.awt.Color color);

To optimize the common case where an array of property values needs to be
maintained, indexed properties are also supported. The corresponding setter
and getter methods simply take an index or an entire array of values:

public java.awt.Color getSpectrum (int index);
public java.awt.Color[] getSpectrum ();
public void setSpectrum (int index, java.awt.Color color);
public void setSpectrum (java.awt.Color[] colors);

A property can be bound. Changes to a bound property trigger the firing of a
property change event. Registered listeners will receive an event object of type
java.beans.PropertyChangeEvent that encapsulates the locale-independent
name of the property and its old and new value:

public class PropertyChangeEvent extends java.util.EventObject {
public Object getNewValue ();
public Object getOldValue ();
public String getPropertyName ();

}

The methods required to register and unregister property change listeners are:

public void addPropertyChangeListener (PropertyChangeListener x);
public void removePropertyChangeListener (PropertyChangeListener x);

288

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 288

JavaBeans

The interface java.beans.PropertyChangeListener introduces the method to be
called on property changes:

void propertyChange (PropertyChangeEvent evt);

A property can also be constrained. For a constrained property, the property
setter method is declared to throw PropertyVetoExceptions. Whenever a
change of a constrained property is attempted, a VetoableChangeEvent is
passed to all registered vetoable-change listeners. Each of these listeners may
throw a java.beans.PropertyVetoException. If at least one does, the property
change is vetoed and will not take place. If no veto exception is thrown, the
property is changed in the usual way and a PropertyChangeEvent is passed to
all change listeners.

The methods required to register and unregister vetoable property change
listeners are:

public void addVetoableChangeListener (VetoableChangeListener x);
public void removeVetoableChangeListener (VetoableChangeListener x);

The interface java.beans.VetoableChangeListener introduces the method to be
called on property changes:

public void vetoableChange (VetoableChangeEvent evt)
throws PropertyVetoException;

Normally, properties are edited by property editors as determined by a
java.beans.PropertyEditorManager object. This object maintains a registry to
map between Java types and appropriate property editor classes. However, a
bean can override this selection by specifying a property editor class to be used
when editing a particular property of that bean. Furthermore, where cus-
tomization of a bean is complex or involves many properties, a bean can also
nominate a customizer class that implements a specific customization interface.
A customizer will normally take a separate dialog window, whereas typical
property editors are controls. Thus, property editors can be used in the dialog
implemented by a customizer.

14.3.3 Introspection

Events and properties are supported by a combination of new standard interfaces
and classes. Examples are EventListener, EventObject, EventSetDescriptor, and
PropertyDescriptor (for more information on the property and event models, see
the following sections). The use of interfaces such as EventListener allows an
assembly tool using the reflection services (see below) to discover support of cer-
tain features by a given bean. In addition, JavaBeans introduces the new notion
of method patterns. (In the JavaBeans specification, these are called “design pat-
terns”; Sun, 1996. This is confusing. The term “method pattern” used here is

289

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 289

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

much closer to what is meant.) A method pattern is a combination of rules for
the formation of a method’s signature, its return type, and even its name.
Method patterns allow for the lightweight classification of individual methods of
an interface or class. For example, here is the method pattern used to indicate a
pair of getter and setter methods for a specific property:

public <PropertyType> get<PropertyName> ();
public void set<PropertyName> (<PropertyType> a);

For a property “background” of type java.awt.Color, this pattern yields the fol-
lowing two methods:

public java.awt.Color getBackground ();
public void setBackground (java.awt.Color color);

The use of conventional names in method patterns can be avoided – a bean
can implement interface java.beans.BeanInfo. If this interface is implemented,
an assembly tool will use it to query a bean instance explicitly for the names of
property getters, property setters, and event source registration methods. The
signatures prescribed by the patterns still need to be followed, of course, as
otherwise the assembly could not take place. The following excerpts from class
BeanInfo and related classes (JavaBeans as in JDK 1.4) hint at how BeanInfo
information can be used to find out about the supported events, properties,
and exposed methods:

package java.beans;
public interface BeanInfo {

// some constants elided

public BeanInfo[] getAdditionalBeanInfo ();
// current info takes precedence over additional bean info

public BeanDescriptor getBeanDescriptor ();
public int getDefaultEventIndex ();
public int getDefaultPropertyIndex ();
public EventSetDescriptor[] getEventSetDescriptors ();
public Image getIcon (int iconKind);
public MethodDescriptor[] getMethodDescriptors ();
public PropertyDescriptor[] getPropertyDescriptors ();

}

public class FeatureDescriptor {
public Enumeration attributeNames ();
public String getDisplayName ();
public String getName ();
public String getShortDescription ();
public boolean isExpert (); // feature for expert users only
public boolean isHidden (); // feature for tool-use only
public boolean isPreferred (); // important for human inspection

290

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 290

JavaBeans

public Object getValue (String attributeName);
public void setValue (String attributeName, Object value);

// setValue and getValue allow to associate arbitrary named attributes
// with a feature

// other set-methods elided
}

public class BeanDescriptor extends FeatureDescriptor {
// constructors elided
public Class getBeanClass (); // the class representing the entire bean
public Class getCustomizerClass (); // null, if the bean has no customizer

}

public class EventSetDescriptor extends FeatureDescriptor {
// constructors elided
public java.lang.reflect.Method getAddListenerMethod ();
public java.lang.reflect.Method getRemoveListenerMethod ();
public java.lang.reflect.Method getGetListenerMethod ();
public java.lang.reflect.MethodDescriptor[] getListenerMethodDescriptors ();
public java.lang.reflect.Method[] getListenerMethods ();
public Class getListenerType();
public boolean isInDefaultEventSet ();
public void setInDefaultEventSet (boolean inDefaultEventSet);
public boolean isUnicast ();

// this is a unicast event source: at most one listener
public void setUnicast (boolean unicast);

}

public class MethodDescriptor extends FeatureDescriptor {
// constructors elided
public java.lang.reflect.Method getMethod ();
ParameterDescriptor[] getParameterDescriptors ();

}

public class ParameterDescriptor extends FeatureDescriptor {}

public class PropertyDescriptor extends FeatureDescriptor {
// constructors elided
public Class getPropertyEditorClass ();
public Class getPropertyType ();
public java.lang.reflect.Method getReadMethod ();
public java.lang.reflect.Method getWriteMethod ();
public boolean isBound ();

// change of bound property fires PropertyChange event
public boolean isConstrained (); // attempted change may be vetoed
// set-methods elided

}

291

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 291

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

Method patterns are an interesting deviation from the established Java design
principles. Normally, a Java class that has a certain property, or implements
certain functionality, signals this by implementing a corresponding interface.
Consider the following hypothetical substitution of the method pattern for
property getters and setters. A standard empty interface Property is provided.
For each property, a subinterface is defined. A bean class that has some of
these properties then has to implement the corresponding property interfaces:

interface BackgroundProp extends Property { // hypothetical!
public Color getBackground ();
public void setBackground (Color color);

}

The names of the set and get method should still contain the property name
to avoid conflicts with set and get methods from other property interfaces.
Java reflection could now be used directly to look for property interfaces in a
class. The triggering key would be extension of interface Property rather than
detection of methods of a certain pattern. It is not clear why this straightfor-
ward use of interfaces and reflection, instead of method patterns, was not used
for the specification of JavaBeans. This is particularly surprising as a similar
approach is used for event listener interfaces.

The feature introspection mechanism of JavaBeans allows attachment of
arbitrary named custom attributes (name-value pairs) to features of a bean. As
of SDK 1.4, this mechanism became fragile – class Introspector now uses soft
references to hold on to BeanInfo instances. As a result, any bean-info object
can be garbage collected as soon as the last client reference is gone. Sun rec-
ommends checking attribute attachments every time a bean-info object is
acquired – and re-attaching attributes in case they aren’t there any more
(because the previous info object has been collected). Doing so can become
quite tedious and requires keeping all attachment code central. The option to
use attached attributes to communicate between separate parts of a system is
essentially gone.

14.3.4 JAR files – packaging of Java components

Java class files were the only pre-beans means of packaging Java components in
pre-1.1 JDKs. All that a Java class file can contain is a single compiled class or
interface. A class file also contains all meta-information about the compiled
context. Resources cannot be included in a class file. To ship a component,
many separate files would need to be distributed.

The problem is solved by using Java Archive (JAR) files to package a
JavaBean. JAR files were originally introduced to support JavaBeans, but have
since been used to package all other Java components as well. Technically, a
JAR file is a ZIP-format archive file that includes a manifest file. Manifest files

292

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 292

Basic Java services

are used to provide information on the contents of an archive file (see below).
The archive may include:

■ a set of class files;
■ a set of serialized objects that is often used for bean prototype instances;
■ optional help files in HTML;
■ optional localization information used by the bean to localize itself;
■ optional icons held in .icon files in GIF format;
■ other resource files needed by the bean.

The serialized prototype contained in the JAR file allows a bean to be shipped
in an initialized default form. Serialization is performed using the object serial-
ization service (see section 14.4.2). New instances of such a bean are created
by deserializing the prototype, effectively producing a copy.

There can be multiple beans in a single JAR file – potentially, each of the
contained classes can be a bean and each of the serialized objects can be a bean
instance. The manifest file in the JAR file can be used to name the beans in the
JAR file.

Basic Java services

Over the years, there have been many additions to the services standardized
for Java. This section covers reflection, object serialization, and the Java native
interface (JNI).

14.4.1 Reflection

The Java core reflection service is a combination of original Java language fea-
tures, a set of support classes (introduced with JDK 1.1), and a language
feature to support class literals (expressions of type Class, such as MyFoo.class,
introduced with JDK 1.2). The reflection service, curbed by the active security
policy, allows:

■ inspection of classes and interfaces for their fields and methods;
■ construction of new class instances and new arrays;
■ access to and modification of fields of objects and classes;
■ access to and modification of elements of arrays;
■ invocation of methods on objects and classes.

The reflection service thus now covers all the Java language’s features. The
Java language-level access control mechanisms, such as privacy of a field, are
enforced. (Unrestricted access can be useful to implement trusted low-level
services, such as portable debuggers. A special interface for such unrestricted
access is part of the Java platform debugger architecture – JPDA.) To enable
reflective operations, the reflection service introduces a package
java.lang.reflect. (The default import of java.lang into all packages makes

14.4

293

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 293

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

java.lang itself effectively inextensible as otherwise there would be a risk of
name clashes with existing packages imported using the package.* syntax. The
introduction of java.lang.reflect, instead of introducing the new classes into
java.lang itself, avoids the conflict. This is somewhat unfortunate as the origi-
nal JDK 1.0 reflection classes, such as Class, are in java.lang. Also, once
compartmentalized, further additions that aren’t about reflection didn’t logi-
cally fit into java.lang.reflect – as of J2SE 1.4 there’s also java.lang.ref to
support special references; see section 14.2.4.)

Classes Field, Method, and Constructor provide reflective information about the
field, method, or constructor that they describe and allow for type-safe use of this
field, method, or constructor. All three are final and without public constructors.
All three implement interface Member, which makes it possible to find out how
the member is called and determine the member’s modifiers and to which class or
interface it belongs. Below are excerpts of some of these interfaces and classes:

package java.lang.reflect;
public interface Member {

public abstract Class getDeclaringClass ();
public abstract String getName ();
public abstract int getModifiers ();

// decodable using class java.lang.reflect.Modifier
}

public final class Field implements Member {
public Class getType ();
public Object get (Object obj) // if static field, obj is ignored

throws NullPointerException, IllegalArgumentException,
IllegalAccessException;

public boolean getBoolean (Object obj)
throws NullPointerException, IllegalArgumentException,

IllegalAccessException;
// similar for all other primitive types; avoids wrapping in get
public void set (Object obj, Object value)

throws NullPointerException, IllegalArgumentException,
IllegalAccessException;

public void setBoolean (Object obj, Boolean z)
throws NullPointerException, IllegalArgumentException,

IllegalAccessException;
// similar for all other primitive types; avoids wrapping in set

}

public final class Method implements Member {
public Class getReturnType ();
public Class[] getParameterTypes ();
public Class[] getExceptionTypes ();
public Object invoke (Object obj, Object[] args)

294

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 294

Basic Java services

// returns null if return type is void
throws NullPointerException, IllegalArgumentException,

IllegalAccessException,
InvocationTargetException; // wrapper for exception thrown

// by invoked method
}

Class Class (still in java.lang, not java.lang.reflect) has methods to return
instances of these classes when querying for the features of a particular class.
The important methods of class Class are:

public final class Class {
public static Class forName (String className)

throws ClassNotFoundException;
public Object newInstance ()

throws InstantiationException, IllegalAccessException;
public boolean isInstance (Object obj);
public boolean isInterface ();
public boolean isArray ();
public boolean isPrimitive ();
public String getName ();
public int getModifiers (); // decodable using java.lang.reflect.Modifier
public ClassLoader getClassLoader ();
public Class getSuperclass ();

// null if primitive, interface, or class Object
public Class[] getInterfaces ();
public Class getComponentType ();

// type of array components; null if not array
public Class getDeclaringClass ();

// next outer class, if this is an inner class or interface
public Class[] getClasses ();

// public inner classes or interfaces, incl. inherited ones
public Field[] getFields () throws SecurityException;

// public accessible fields, incl. inherited ones
public Method[] getMethods () throws SecurityException;

//public methods, incl. inherited ones
public Constructor[] getConstructors () throws SecurityException;

// public constructors
public Class[] getDeclaredClasses () throws SecurityException;

// all inner classes or interfaces, excl. inherited ones
public Field[] getDeclaredFields () throws SecurityException;

// all fields, excl. inherited ones
public Method[] getDeclaredMethods () throws SecurityException;

// all methods, excl. inherited ones

295

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 295

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

public Constructor[] getDeclaredConstructors () throws
SecurityException;

// all constructors
// further methods to get resources and
// (declared) field, method, constructor, or class by name

}

There are several constant objects (public static final) for the languages primi-
tive types. For example, there is an object java.lang.Boolean.TYPE that is the
Class object for primitive type boolean. While still supported, the preferred
and universal way to get to a Class object since JDK 1.2 is the form
boolean.class. Class Array supports dynamic construction and use of arrays.
Class Modifier simplifies the inspection of modifier information on classes,
fields, and methods.

package java.lang.reflect;
public final class Modifier {

public static boolean isPublic (int modifiers);
// true if modifiers incl. public

// similar for private, protected, static, final, synchronized, volatile,
// transient, strictfp, native, interface, abstract
// note that “interface” is viewed as a class modifier!

}

14.4.2 Object serialization

Up to JDK 1.0.2, Java did not support serialization of objects into bytestreams
– only primitive types were supported. If an application wanted to write an
entire web of objects to an output stream, it needed to traverse and serialize
the objects itself, using some ad hoc encoding scheme. The Java object seriali-
zation service overcomes this by defining a standard serial encoding scheme
and by providing the mechanisms to code and decode (“serialize” and “deseri-
alize”) webs of objects.

To be serializable, an object has to implement interface java.io.Serializable.
In addition, all fields that should not be serialized need to be marked with the
modifier transient. This is important, because fields may refer to huge com-
puted structures, such as caches, or values that are inherently bound to the
current JVM incarnation, such as descriptors of open files. For objects imple-
menting Serializable, sufficient information is written to a stream such that
deserialization continues to work, even if different (but compatible) versions of
classes are used. Methods readObject and writeObject can be implemented to
control further what information is written or to append further information
to the stream. If these methods are not implemented, all non-transient fields
referring to serializable objects are automatically serialized. Shared references
to objects are preserved.

296

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 296

Basic Java services

To make serialization safe and configurable, methods readObject and
writeObject are private! Therefore, there can be one such method per subclass
level. Reflection is used to find these methods for each extension level. If these
methods exist, they should call a method defaultReadObject (or
defaultWriteObject) before handling additional private data. The reason is that
readObject and writeObject on a given class extension level handle only the
fields introduced in this level, not those in subclasses or superclasses.

As an alternative to implementing interface java.io.Serializable, a class can
implement interface Externalizable. Then none of the object’s fields is auto-
matically handled and it is up to the object to save and store its contents.
Externalizable has methods writeExternal and readExternal for this purpose.
These methods are public, and objects implementing Externalizable open
themselves for access to their state that bypasses their regular public interface.
This requires some care to avoid safety problems.

A simple versioning scheme is supported – a serializable class can claim to be a
different version of a certain class by declaring a unique serial version unique ID
(SUID). A SUID is a 64-bit hash code (“fingerprint”) computed over the name
of a class and all implemented interfaces’ features of that class, including the fea-
tures’ types or signatures. It does not cover superclasses, because each extension
level has its own serial version ID and is responsible for its own evolution. The
serial version ID is computed automatically when an instance of a class is serial-
ized and that class does not declare a serial version ID. However, if it does, then
the class declares itself to be compatible with the class that originally had this ID.
The readObject method can be used to read serialized state from other versions
and thus preserve compatibility with serialized versions.

Object serialization must be used with care to avoid security holes. For exam-
ple, if a serialized stream can be tampered with, then it can be arranged to
deserialize a critical object in a way that its internal subobjects are shared by some
rogue object. These alias references can then be used to bypass security checks of
the critical object. Before J2SE 1.4, it was recommended to eagerly copy such pri-
vate subobjects after deserialization in order to break unwanted aliases. Such a
deep copy is expensive and non-trivial to implement. In version 1.4, new methods
readUnshared and writeUnshared are provided to solve this problem.

Object serialization creates a stream of bytes in a single-pass process – that
is, with no back-patching. Hence, while still serializing a web of objects, the
part of the stream that has been produced already can be forwarded to filters
or the destination. The stream is fully self-describing down to the level of Java
primitive types – a tag that describes the type of the following item precedes
every value in the stream. Compared with compact native formats, this can be
quite costly. However, the added robustness of the serial format probably out-
weighs the higher cost.

A major drawback of the current serialization service is the missing support
for graceful degradation in the case of missing or incompatible classes at the
receiving end. For example, if the serialized object is a document, then it

297

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 297

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

should be possible to deserialize and use that document even if some of its
embedded objects cannot (currently) be supported on the receiving platform.
The current service simply throws a ClassNotFound exception and does not
offer means to resynchronize and continue deserialization. In the document
example, it would also be desirable if an unsupported object could be kept in
serialized form to include it when serializing the document again. This is also
not supported by the current serialization service.

14.4.3 Java native interface

The Java native interface (JNI) specifies, for each platform, the native calling
conventions when interfacing to native code outside the Java virtual machine.
JNI also specifies how such external code can access Java objects for which ref-
erences were passed. This includes the possibility of invoking Java methods.
JNI does not specify a binary object model for Java – that is, it does not spec-
ify how fields are accessed or methods are invoked within a particular Java
virtual machine. Interoperation between Java virtual machines on the same
platform remains an unresolved issue, as does interfacing with services such as
just-in-time compilers. JNI allows native methods to:

■ create, inspect, and update Java objects;
■ call Java methods;
■ catch and throw exceptions;
■ load classes and obtain class information;
■ perform runtime type checking.

The actual layout of objects is not exposed to native code. Instead, all access is
through so-called JNI interface pointers (Figure 14.8) that use a runtime
structure identical to that of COM (p. 331).

Despite the superficial closeness to COM, JNI is different and not automat-
ically compatible with COM. A JNI interface pointer is used only to refer to a
thread-specific context and does not correspond to an individual Java object.
The JNI interface does not include standard COM functions QueryInterface,
AddRef, or Release. If these are added, the entire JVM could function as one

298

Figure 14.8 JNI interface pointer.

Interface
pointer

Interface
function 1

Interface
function 2

Per-thread JNI
data structure

……

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 298

Basic Java services

COM component object. A native method is called with a JNI interface
pointer as its first argument. Other arguments, including Java object refer-
ences, are passed directly, but all access to Java objects is via functions provided
by the JNI interface pointer.

For the Java garbage collector to work, the JVM keeps track of all references
handed out to native methods. References are handed out as local references,
and these are released by the JVM on return of the native method. Native
code can turn a local into a global reference. It is the responsibility of the
native code to inform the JVM when a global reference is no longer needed.

All access to fields or invocation of methods of Java objects from native
methods is performed using one of several accessor functions available via the
JNI interface pointer. Below are two sample JNI functions that show how to
invoke a Java object’s method, using C++ notation:

JNIEnv *env; // the JNI interface pointer
jmethodID mid = env->GetMethodID (classPtr, methodName,

methodSignature);
// methodSignature is a string representing the mangled signature

jdouble result = env->CallDoubleMethod(obj, mid, args);
// factoring of GetMethodID useful to avoid repeated method lookup

JNI specifies how to “mangle” signatures of methods. In the above example,
this is used to resolve overloaded methods when performing a method lookup.
As JNI does not reveal how a JVM implements objects or dispatches methods,
access is relatively expensive.

14.4.4 Java AWT and JFC/Swing

The Java abstract windowing toolkit (AWT) and Java foundation classes (JFC)
are central to any Java development providing a graphical user interface. Here
is a brief summary.

■ Delegation-based event model Perhaps the most dramatic change in JDK
1.1. The previous event model was based on inheriting from component
classes and overriding event handler methods. The subtle interaction of
super-calls, open lists of possible events, and local handling decision
procedures was found to be too complex and error-prone. (The 1.1
model has been described in section 14.3.1.) “Delegation-based” is a
misnomer, following the unfortunate example of the use of the term
delegation in COM. The 1.1 JDK really provides a forwarding-based
event model. Object connection and composition are used in favor of
implementation inheritance.

■ Data transfer and clipboard support Like the COM universal data
transfer service, AWT defines the notions of transferable data items.

299

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 299

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

Internet MIME (multipurpose internet mail extensions) types are used
to interact with non-Java applications. Data transfer between Java
applications can also directly use Java classes.

■ Drag and drop Support for drag and drop among Java and non-Java
applications (by hooking into the underlying system’s drag and drop
protocols, such as the OLE one on Windows).

■ Java 2D Classes for advanced 2D graphics and imaging. Java 2D
covers line art, text, and images. Supported features include image
compositing, alpha blending (transparency), accurate color space
definition and conversion, and display-oriented imaging operators.

■ Printing The printing model is straightforward. Graphical components
that do not explicitly handle printing will be printed using their screen-
rendering methods. Thus, for simple components, printing is free.
However, the printing model does not address the subtleties resulting
from printing embedded contents that need to spread over multiple pages.
(This is addressed, for example, by the ActiveX printing model, which
allows embedded controls to print across several pages in cooperation with
their container. This is a complex model, though, and few if any ActiveX
containers actually implement this advanced printing protocol.)

■ Accessibility Interface that allows so-called assistive technologies to
interact with JFC and AWT components. Assistive technologies include
screen readers, screen magnifiers, and speech recognition.

■ Internationalization Based on the Unicode 2.1 character encoding,
support is provided to adapt text, numbers, dates, currency, and user-
defined objects to the conventions of a locale, as identified by a pair of
language and region identifiers.

■ Swing components and pluggable look and feel In JDK 1.0, most user
interface components (buttons, list boxes, and so on) relied on native
implementation in so-called “peer classes.” This has the advantage that a
Java application truly looks and feels like a native one. Introduced later,
so-called Swing components (which are JavaBeans) are independent of
native peers and support pluggable look-and-feel. Whatever look-and-
feel is selected, it will be consistent across all platforms. Swing
components are written entirely in Java, without relying on native
window-system-specific code.

14.4.5 Advanced JavaBeans specifications

The following four specifications generalize the JavaBeans model – the con-
tainment and services protocol, the Java activation framework (JAF), the
long-term persistence model, and the InfoBus specification. Each is described
briefly below.

300

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 300

Basic Java services

Containment and services protocol

The containment and services protocol supports the concept of logically nest-
ing JavaBeans bean instances. All beans can assume the services of the JVM
and core Java APIs. With the containment and services protocol, a nested bean
can acquire additional services at runtime from its container and a container
can extend services to its nested beans.

Java activation framework (JAF)

JAF is used to determine the type of arbitrary data (by following the MIME
standard), the operations (“commands”) available over that type of data, and
to locate, load, and activate components that provide a particular operation
over a particular type of data. The central piece of a JAF implementation is a
command map – a registry for components that is indexed by pairs of MIME
types and command names.

Long-term persistence for JavaBeans

Long-term persistence – also called archiving – is an alternative to object serial-
ization (see section 14.4.2). The file format created by this archival process is
XML with a DTD or one of two proprietary Java file formats. While object
serialization aims to fully persist the entire state held in a graph of objects,
archiving only captures the part of the state that can be set through public
properties. As such public interfaces are far more stable over time than the
object’s implementations, it is much less likely that a future version of a com-
ponent can no longer read the state written by an older version (or, indeed,
the other way around.)

The process of creating and consuming such archived state is interesting. It
uses the same basic infrastructure as object serialization, but limits itself to
publicly settable properties. To prevent the writing of default values, the pro-
posed persisting form is immediately read again to create a copy of the original
object graph. Any attempt to set a property to a value that it already has
(because of defaults) is detected and such values are eliminated from the per-
sisted form. This approach compresses persisted forms nicely, but it also
introduces a new form of implementation dependency. If a particular default
value wasn’t picked according to a bean’s specification, but merely for imple-
mentation convenience, then it may be different in a future bean
implementation. Error handling is also done in an original way – exceptions
during reconstruction from persisted form are effectively ignored – in a hope
that a partially reconstituted object graph is better than none. This is problem-
atical and a protocol should be provided to allow the detection and handling
of inappropriate reconstruction failures.

301

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 301

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

InfoBus

The InfoBus specification creates a generic framework for a particular style of
composition. The idea is to design beans to be InfoBus-aware and categorize
beans into data producers, data consumers, and data controllers, all of which
can be coupled by an information bus determining data flow.

The InfoBus protocol distinguishes six steps. First, any Java component can
connect by implementing InfoBusMember, obtaining an InfoBus instance, and
having the member join it. Second, members receive notifications by imple-
menting an interface and registering it with the InfoBus. Two event listener
interfaces are defined to support data consumers receiving announcements
about data availability and data producers receiving requests for data. Third,
based on the name of some data item, data producers and data consumers ren-
dezvous to exchange data. Fourth, to allow producers and consumers to
operate in terms of their internal data representations, the InfoBus provides a
set of interfaces for various standard protocols, which are used to create data
items with common access. Fifth, data values are typically of primitive type or
collections to minimize dependencies between consumers and producers.
Sixth, a consumer can attempt to change data items, but the producer can
enforce policies as to what changes are acceptable.

Data controllers implement the InfoBusDataController interface and partici-
pate in the distribution of InfoBusEvents to consumers and producers on an
InfoBus. Multiple controllers can be added to the bus in order to optimize
communication, not interfere with actual data item exchange between produc-
ers and consumers. A data controller can intercept requests and, for instance,
implement a cache for data items from an expensive producer. Requests from
consumers and producers are offered to controllers in sequential order – the
first controller to declare the request handled stopping further propagation. A
default controller at the end of this chain handles all remaining requests.

Component variety – applets, servlets, beans, and
Enterprise beans

The Java universe defines five different component models, and more may
arrive in the future. Besides the applet and JavaBeans models (both part of
J2SE), there are Enterprise JavaBeans, servlets, and application client compo-
nents (all part of J2EE). This section presents a brief overview of these
different component models.

The two critical contributions to the J2EE server-side models are
servlets/JSPs and EJBs. These are covered in more detail in following subsec-
tions. All components in the J2EE space are packaged into JAR files, which
can be included in a J2EE application. An important aspect of all J2EE com-
ponents is the support of deployment descriptors. These are XML files
co-packaged with a component that describe how a particular component

14.5

302

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 302

Component variety – applets, servlets, beans, and Enterprise beans

should be deployed. Deployment is the act of readying a component for an
actual deployment context – a step that can be, and often is, separate from the
notion of installation. (It is possible to deploy a component once and then
install it many times. See sections 8.6 and 8.11.) The detailed nature of
deployment descriptors depends on the particular component model. For
instance, the descriptor of an EJB entity bean (see section 14.5.2) may request
container-managed persistence and detail how properties of the entity bean
should be mapped to tables in a database.

Applets were the first Java component model, aiming at downloadable light-
weight components that would augment websites displayed in a browser. The
initial applet security model was so tight that applets could not really deliver
much more than “eye candy” – an area that was rapidly captured by other tech-
nologies, such as GIF89a animated images, Macromedia’s Shockwave and Flash
technology, JScript, and refinements to the HTML world itself, including the
introduction of DHTML (dynamic HTML). Taking advantage of such browser-
level technologies, most J2EE-based applications use servlets and JSPs to
generate scripted HTML pages instead of sending applets.

The second Java component model, JavaBeans, focuses on supporting con-
nection-oriented programming and is, as such, useful on both clients and
servers. Historically, JavaBeans are more popular in the scope of client-side
rich applications and sometimes perceived as being replaced by EJB on the
server. This view is, technically, wrong. EJB, beyond its name, shares little with
JavaBeans. JavaBeans remain useful when building client-side applications as
they explicitly support a visual application design mode. (As of J2SE 1.3, a
bean can also be an applet. However, so far the support is limited – bean
applets will always receive an empty applet context and stub.)

EJB, Java’s third component model, focuses on container-integrated serv-
ices supporting EJB beans (components) that request services using declarative
attributes and deployment descriptors. In a later revision, a container model
was added to JavaBeans as well, but JavaBeans containers are very different
from EJB containers. The former are a mere mechanism for containment,
while the latter are partially driven by declarative constructs. As JavaBeans does
not require the presence of an interactive user outside of design-time, it is con-
ceivable to use JavaBeans to construct more complex EJBs. (JavaBeans and
EJBs correspond roughly to component classes and serviced component
classes in the .NET Framework.)

The fourth Java component model is servlets. These pick up the spirit of
applets, but live on a server and are (usually) lightweight components instanti-
ated by a web server processing, typically, web pages. A matching technology,
Java ServerPages (JSP), can be used to declaratively define web pages to be
generated. JSPs are then compiled to servlets. (Servlets and JSP correspond
roughly to page classes and pages in ASP.NET; see section 15.13.3.)

J2EE introduces a fifth Java component model – application client compo-
nents. These are essentially unconstrained Java applications that reside on

303

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 303

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

clients. A client component uses the JNDI enterprise naming context (see sec-
tion 14.6.3) to access environment properties, EJBs, and resources on J2EE
servers. Such resources can include access to e-mail (via JavaMail) or databases
(via JDBC).

At a distribution and deployment format level, J2EE enterprise applications
are packaged in .ear (enterprise archive) files that contain .war and .jar files.
Servlets and JSPs are packaged in .war (web archive) files; applets, JavaBeans,
and EJBs are packaged in .jar files. All these files follow the ZIP archive file
format (www.pkware.com).

J2EE deployment descriptors serve two purposes. First, they enable the
component developer to communicate requirements on the side of the com-
ponent. Requesting container-managed persistence is an example. Second,
they enable the component deployer to fill in the blanks. For example, for a
component that requests container-managed persistence, a deployer would
specify exactly how the state of that component’s instances should be mapped
to particular relational tables. The role of the deployer is distinct and often
served by a person different than the component developer, potentially in a
separate organization. (For comparison, in COM+ and CLR, the equivalent of
deployment descriptors shows in two different places, aligned with these two
different roles. Deployment information provided by the developer is capture
in attributes that are closely aligned with the code. In the CLR case, these are
conveniently attached using language-supported custom attributes.
Deployment information that is modified or provided by the deployer is kept
in separate XML-based configuration files.)

The variety of supported Java component models is a reflection of different
needs. However, to actually establish component markets in these various
areas, deeper standardization of domain-specific concepts has to happen.
Today, only a few EJB components, to name just one case, are used beyond
even the one enterprise application for which they were developed.

14.5.1 Java server pages (JSP) and servlets

Serving web pages and other formatted contents can be viewed as a combina-
tion of three core functions. First, incoming requests for such contents need to
be accepted, checked for proper authorization, and routed to the appropriate
components ready to handle a particular request. Second, such components
need to draw on information sources and processes to retrieve or synthesize
the requested contents. Third, the retrieved or generated contents need to be
sent to the requesting party.

The prototypical model handling these three steps is that of a web server.
Incoming HTTP requests are received by a web server that interprets the
request and the target URL, including possible parameters. A simple web
server will either find a static HTML page, typically in the local file system, or
use the URL to activate a component via a simple interface called CGI

304

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 304

Component variety – applets, servlets, beans, and Enterprise beans

(common gateway interface). The component receives the URL (and, in par-
ticular, the parameters that it may include) and generates an HTML page. In
both cases, the server will then send the HTML page back to the client, typi-
cally a web browser.

The same model can also be used to serve up content that is not in HTML
format. For instance, a web server can be used to provide XML web services.
In that case, incoming SOAP requests are routed to the right component,
processed, and SOAP replies are sent back.

A common property of the above scenarios is that the web server infrastruc-
ture is common up to the point where specific components need to take over
to process requests and retrieve or synthesize replies in a customizable way.
For instance, the Windows internet information service (IIS) handles incom-
ing HTTP requests, determines whether or not to send back information
found in a file directly, or activate an appropriate component and send back
the results produced by that component.

Writing the customizing components requires not much more than a simple
interface to the server infrastructure – at least when aiming for simple cases
only. An example of such an interface in the context of IIS is ISAPI (internet
server API), an efficient low-level interface that enables high performance, but
that is quite demanding on the developer of a customizing component. To
simplify this situation for the bulk of website requirements, Microsoft intro-
duced ASP (active server pages), a model that allows raw web pages to include
server-side script code. The ASP server executes such scripts, which will typi-
cally synthesize HTML fragments as their result. ASP then places computed
HTML fragments where the script used to be and returns the resulting
HTML page to the client.

Java server pages (JSP) improved on the ASP model by compiling JSP pages
(pages containing HTML with inserted Java fragments) into servlets. A JSP
server activates servlets as needed to handle requests. In addition, servlets are
also supported by explicit API definitions. It is possible and common to imple-
ment servlets instead of writing JSP pages. The result is an inversion of the
page programming model. At the level of ASP and JSP pages, code fragments
reside in line in HTML (or other markup, such as XML). At the level of
servlets, HTML (or other markup) resides in line in Java source code. (This is
a simplified description as, in both cases, the in line fragments can be included
by reference to separate files.) The following simple example shows how a
doGet method on a servlet produces a simple HTML result:

import javax.servlet.*;
import javax.servlet.http.*;
public class HelloWorld extends HttpServlet {

protected void doGet (HttpServletRequest request,
HttpServletResponse response)

throws ServletException, java.io.IOException

305

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 305

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

{
java.util.Calendar calendar = new java.util.GregorianCalendar();
int hour = calendar.get(currTime.HOUR);
int minute = calendar.get(currTime.MINUTE);
ServletOutputStream out = response.getWriter();
out.print(“<HTML><BODY>\r\n”);
out.print(“The time is: “ + hour + “:” + minute +

“ – or it was when I looked.\r\n”);
out.print(“</BODY></HTML>\r\n”);

}
}

As can be seen, the servlet programming model is quite natural if relatively
small static HTML (or other markup) fragments need to be combined with
computed results. The servlet container supports servlets by providing simple
access to HTTP Request parameters and by managing sessions. However, if
large amounts of static markup contents need to be produced with print calls,
readability quickly suffers. In addition, if the markup fragments need to be
open for localization (such as translation into another language), then embed-
ding these fragments as string literals into source code is a bad choice. The
fragments can be factored into separate files to enable reasonable localization,
but that leads to further reduction of code readability.

The dual model to embedding markup in source code is to embed source
code in markup. This is exactly what a JSP page does, where the content of
<% … %> tags is interpreted as Java source code. The following example
shows a JSP page that leads to the same result as the servlet above. Note the
use of tag <%= … %> to request evaluation of a Java expression and output
of the result by printing to the page stream.

<HTML><BODY>
<%

java.util.Calendar calendar = new java.util.GregorianCalendar();
int hour = calendar.get(currTime.HOUR);
int minute = calendar.get(currTime.MINUTE);

%>
The time is: <%= hour %>:<%= minute %> – or it was when I looked.
</BODY></HTML>

When processed, this JSP page causes the generation of, essentially, the servlet
above. It is thus appropriate to always think of web page and other contents
handling as being performed by servlets, even if the source is kept in the form
of JSP pages. To keep JSP pages largely contents-oriented and maintain both
readability and localizability, it is useful to minimize code in JSP pages. Unlike
contents, Java code is supported by natural abstraction mechanisms – pack-
ages, classes and methods. Thus, instead of embedding large pieces of Java

306

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 306

Component variety – applets, servlets, beans, and Enterprise beans

code in JSP pages, it is preferable to keep most code in separate Java packages
and reduce code in JSP pages to the necessary glue – invocation of methods
on appropriately created objects and insertion of results into page streams.
This helps avoid another source of possible confusion – server-side Java and
client-side JavaScript may coexist in the same JSP page, which clearly does not
help readability.

By means of special and custom tags, JSP can go further towards eliminat-
ing server-side code in JSP pages. For instance, there is a set of tags to create
JavaBeans instances and access their properties from JSP pages. Custom
tag extensions can be added easily, for instance by implementing just two
methods (doStartTag and doEndTag) on a class derived from class
javax.servlet.jsp.tagext.TagSupport. In the following example, two custom tags
are used to retrieve the current hour and minute, respectively, and insert the
value into the page output stream.

<% taglib uri=“/hour” prefix=“calendar” %>
<% taglib uri=“/minute” prefix=“calendar” %>
<HTML><BODY>
The time is: <calendar:hour>:<calendar:minute> – or it was when I looked.
</BODY></HTML>

The JSP standard tag library (JSTL) includes control flow tags such as itera-
tion and conditionals, tags for manipulating XML documents,
internationalization tags, and SQL tags. JSTL also introduces an expression
language to simplify page development and a framework for integrating exist-
ing custom tags with JSTL tags.

When combining the servlet concepts with libraries that support the pro-
cessing of XML, JSP servlets can be used to implement simple web services.
To do so, the JSP server itself needs to be augmented with support for the
underlying web service protocols (essentially SOAP and possibly web service
standards for security and other aspects). This is essentially the path that
ASP.NET follows to support web services (see section 15.13.3).

Servlets do not have to directly produce the contents stream eventually
output by the server to the client. Instead, a request can be handled by one
servlet that contains relevant business logic. Once such logic has been
processed, that servlet can hand off output generation to another servlet class.
In other words, it is possible to factor servlets, yielding more specialized and
easier to maintain components.

If web requests are only one point of entry into larger enterprise applica-
tions or if complex integration across applications is required, it becomes
useful to further factor the approach. To do so, servlets can build on the serv-
ices of EJBs (see the next subsection). Where such a separation is performed, it
is important to recognize the overheads naturally introduced by building on
two separate component models and their (partially) separate infrastructure. It
is possible to colocate a JSP server and an EJB container on the same machine

307

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 307

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

and even in the same process, sharing the same JVM instance. However, it is
equally possible to distribute JSP and EJB processing across separate machines,
potentially enabling better scalability – but at an increased base overhead.

14.5.2 Contextual composition – Enterprise JavaBeans (EJB)

The naming of Enterprise JavaBeans suggests a close relationship to JavaBeans
(see section 14.3). This is, in fact, not the case. The JavaBeans approach to
composition is connection-oriented programming or, as it is sometimes called,
wiring. Beans can define both event sources and event listeners. By connecting
one bean instance’s listener to another bean instance’s event source, events
flow. Later improvements of the JavaBeans model introduce support for hier-
archical container structures (see section 14.4.5), so, instead of placing all
bean instances in a flat space and relying on peer-to-peer connections only,
containers allow the hierarchical creation of subsystems. Another addition to
JavaBeans, the InfoBus, allows for a flexible decoupling of event sources and
event listeners by routing some or all communication through a bus structure
that allows for the interception of messages and application of policies without
requiring cooperation from the event source or listener and without a need to
re-wire. With JavaBeans containment and services infrastructure in place and
the availability of the InfoBus, JavaBeans could move beyond connection-ori-
ented composition to forms of contextual composition and data-driven
composition. In practice, this potential is rarely exploited as, while the infra-
structural design is in place, the critical mass of contextual services or
messaging infrastructure is not.

EJB follows an entirely different path. There are no provisions for connec-
tion-oriented programming at all. (Adding these is one of the main
improvements of CCM over EJB; see section 13.3.) Instead, EJB components
(e-beans) follow a relatively conventional model of object-oriented composi-
tion. For example, if an e-bean instance needs a fresh instance of another
e-bean, it simply creates one. If it needs to communicate with another e-bean
instance, it simply calls methods. That is, EJB is not about systematically
improving compositionality of e-beans via wiring of connections. E-beans are
just as composable as their specific design made them and the generic EJB
architecture does little to improve or hinder. For the remainder of this subsec-
tion, e-beans will be called just beans for brevity and to align with the
common EJB lingo. It is important, however, to remember that EJB beans
and JavaBeans beans are entirely different.

If EJB is weak at the connection-oriented composition level, it is strong at
the level of contextual composition. (Since EJB 2.0, data-driven composition
is also well covered; see the following subsection.) Contextual composition is
about the automatic composition of component instances with appropriate
services and resources (see section 21.2 for a theoretical discussion). Two
important examples of services in the EJB space are the handling of transac-

308

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 308

Component variety – applets, servlets, beans, and Enterprise beans

tions and security policies. An EJB container configures services to match the
needs of contained beans. These needs are expressed declaratively in a bean’s
deployment descriptor (see section 14.5). The skeleton of an EJB deployment
descriptor has the following form:

<!DOCTYPE ejb-jar PUBLIC
“-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN”
“http://java.sun.com/dtd/ejb-jar_2_0.dtd”>

<ejb-jar>
<enterprise-beans>

<session> … </session>
<entity> … </entity>
<message-driven> … </message-driven>

</enterprise-beans>
<relationships>

<ejb-relation> … </ejb-relation>
</relationships>
<assembly-descriptor>

<security-role>
<description> … </description>
<role-name> … </role-name>

</security-role>
<method-permission>

<role-name> …as defined in a security role entry… </role-name>
<method>

<ejb-name> …bean name… </ejb-name>
<method-name> …method name or * for all methods…

</method-name>
</method>

</method-permission>
<container-transaction>

<method> …as above… </method>
<trans-attribute> … </trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

In this example skeleton, three different beans (a session, entity, and message-
driven bean) are described (with all details elided). The following relationships
map declares relationships among entity beans, which are used by the con-
tainer to manage relationships and persistence of entity beans. For example,
the container can use declared relationships to automatically find the entity
bean instance at the other end of a relationship of an entity bean instance. The
application descriptor section covers security and transaction requirements. For
instance, it might grant the right to call a particular set of methods to anyone

309

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 309

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

acting in a particular named role. (Mappings from role names to specific roles
in the deployment environment are declared separately using a deployment
tool.) Likewise, the transaction attribute might be set to Required, which
instructs the container to create a new transaction if the bean’s caller isn’t
already enlisted in one. As deployment descriptors can get long and detailed,
good tool support at development and deployment-time is essential. (One
issue here is that a lot of information appears redundantly in multiple places.
For example, the name of a method on an EJB object interface appears in the
deployment descriptor, on the object interface – twice if local and remote are
supported – and on the bean class. All four occurrences cannot be checked by
the compiler for mutual consistency.)

Deployed beans are contextually composed with services and resources by
an EJB container. Contextual composition works by placing a hull around
instances and intercepting communication from and to that instance. The hull
itself can be thought of as a wall of proxies placed on all references to and from
the instance inside the hull. To enable interaction between services and an
instance, contextual access to services is provided to the instance – thus con-
textual composition. That is, the instance receives some form of reference to
its context. The combination of the service implementations, intercepting hull,
and context is referred to as a container in EJB. EJB containers are provided
by servers. In the case of J2EE, the standard architectural enclosure for EJB,
this server is a J2EE application server that will also provide containers for
servlets (see previous subsection).

EJB realizes the hull around beans by not allowing any direct access to a
bean’s fields, methods, or constructors from any other bean, including beans
colocated on the same server in the same container. Instead, all access to beans is
required to go through one of two interfaces – the EJB home interface for life-
cycle operations and the equivalent of static methods and the EJB object
interface for all methods on the bean instance. Non-local clients will see these
interfaces implemented on stub objects that use RMI or RMI-over-IIOP to
communicate with the corresponding EJB container, which then relays calls to
bean instances it contains. As of EJB 2.0, local clients can request local versions
of both home and object interfaces. Local clients are still not allowed to access
other beans directly and, as home and object interfaces never return anything
but home and object interfaces of other beans, there is actually no way to do so.
(Technically, a local bean could use reflection to subvert containment. However,
a server implementation could use deployment-time code inspection and run-
time checking techniques to discover and prevent such attempts.) Figure 14.9
shows how client, server, container, bean, home, and object relate in EJB.

The EJB specification does not detail how a particular container wraps bean
instances. As part of the deployment process, tools provided with a container
implementation take a bean in a JAR file, including the compiled interfaces
and classes defining the bean and its deployment descriptor. These tools gener-
ate the bean’s EJB object and EJB home. They are free to either generate
classes implementing the local and remote EJB object and home interfaces

310

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 310

Component variety – applets, servlets, beans, and Enterprise beans

that wrap the bean’s class, to synthesize subclasses that combine container-sup-
plied object and home code with the code found in the bean’s class, or even to
synthesize classes that directly combine the implementation of the bean’s class
and the container-specific code. (In the latter cases, reflection would reveal
additional members on the bean’s class and, again, the EJB server could take
deployment and runtime measures to prevent that.)

Beans of many flavors

There are four kinds of EJB beans – stateless session, stateful session, entity,
and message-driven beans. Message-driven beans are new in EJB 2.0 and
somewhat different from session and entity beans (they are described in the
following subsection). The three flavors of session and entity beans are covered
in more detail further below. They are all united by a common top-level con-
tract between beans and containers and their use of deployment descriptors.
Session and entity beans in addition share the design of EJB object and EJB
home interfaces. (These are not standardized Java interfaces but are synthe-
sized according to a standard pattern for any given bean.)

Every EJB home interface has a standard method create to instantiate a bean.
In the case of entity beans it also has a standard method findByPrimaryKey to
locate an existing instance by its primary key. A home interface can have addi-
tional, bean-specific methods as specified in the deployment descriptor. As such
methods are not associated with any specific bean instance, they roughly corre-
spond to static methods on a Java class. The methods on an EJB object interface
are all bean-specific as specified in the deployment descriptor.

The EJB container cycles beans through defined lifetime stages. Immediately
after creation, setEntityContext or setSessionContext is called to establish a
backlink to the container’s context for the new bean. Then ejbCreate is called,
which is matched by a call to ejbRemove just before a bean instance is finally
released. For entity beans, removal also implies deletion from the database as,

311

Figure 14.9 Isolation of EJB beans in containers via EJB home and EJB object interfaces. After
Fig. 2-2 in Monson-Haefel, R. (2001) Enterprise JavaBeans, 3rd Edition, reprinted by permission
of O’Reilly and Associates, Inc.

Remote
or local

EJB Server

EJB home

EJB object

EJB bean

EJB Container

Home

EJB Server

EJB home
stub

EJB object
stub

Remote
or local

Home

Client

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 311

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

unlike session beans, entity beans are thus only removed when their deletion is
explicityly requested (via their home interface). As a container may need to keep
many bean instances logically around, but parked at some low-cost level, it can
call ejbPassivate to request release of any non-essential resource held by a bean
instance. Then the container serializes a stateful session bean to some exterhal
store or writes an entity bean back to the database, respectively. The container
calls ejbActivate to return a bean to a ready state, after deserializing it from exter-
nal store or loading it from a database.

Although the container context is attached to a bean in such a special way, it
hasn’t been designed in a particularly durable way. Of its ten methods, three
have been deprecated. The remaining seven allow a bean some control over the
current transaction, limited access to the security context, and access to the
bean’s own local and remote home. However, the “mother of all contexts” is
not available – the initial context of JNDI (section 14.6.3). Instead, every bean
has to find this initial context in a way that, up to EJB 2.0, is not portable.

An EJB container serializes all invocations of beans, so there is no need to
synchronize within beans and the use of the synchronized keyword on bean
methods and the creation of new threads is even illegal. The container also
protects beans from re-entrant calls (with the exception of entity beans that
explicitly declare that they can tolerate re-entrancy; see below), throwing an
exception whenever a re-entrant call is attempted. Finally, the container iso-
lates faults, so if a bean throws an exception, its EJB object is immediately
invalidated and the offending bean instance destroyed, the remove method
having not been called.

Session beans

A session bean is created by a client as a session-specific contact point. For
instance, a servlet may create a session bean to process web requests that the
servlet received. A stateless session bean does not maintain state across multi-
ple invocations – a container can therefore decide to keep instances in a pool
instead of creating new ones for every invocation in every session. A stateful
session bean, on the other hand, remains associated with the one session for its
lifetime and thus can retain state across method invocations.

The deployment descriptor of a session bean, in skeleton form, has the fol-
lowing form:

<session>
<ejb-name> …name of the session bean… </ejb-name>
<home> …name of EJB home interface… </home>
<remote> …name of EJB object interface… </remote>
<local-home> …name of local EJB home interface… </local-home>
<local> …name of local EJB object interface… </local>
<ejb-class> …name of class implementing this EJB… </ejb-class>
<session-type> …Stateless or Stateful… </session-type>
<transaction-type> …Container or Bean… </transaction-type>

312

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 312

Component variety – applets, servlets, beans, and Enterprise beans

<ejb-ref> …import of other beans referenced by this bean… </ejb-ref>
<security-identity> …run-as role-name or use-caller-identity…

</security-identity>
</session>

Besides assigning a name to the session bean itself, the descriptor assigns
names to the EJB home and object interfaces and, if supported, their local
counterparts. (A bean that does not declare local interfaces will not receive any
when deployed.) The EJB class is the main class implementing the bean. The
session type determines whether or not the container will associate the bean
with a particular session and, therefore, whether the container will create a
new instance per call or not. Session (and message-driven) beans have an
option to explicitly control transactions – so-called bean-managed transactions
– or follow the default of container-managed transactions. Explicitly control-
ling transactions is subtle and error-prone, but it allows for covering scenarios
where the container-managed approach does not work. This is usually the case
only when interfacing with external systems that are not coordinated with the
container. The list of EJB references is like an import clause in that it lists the
names of other beans and their local and remote EJB home and object inter-
faces. During deployment, this list is used to make sure that a deployed bean
refers to the right synthesized interfaces and classes. Finally, the security iden-
tity field (new in EJB 2.0) allows a bean to either run under the caller’s
identity or under some specified role.

Entity beans

The idea behind entity beans is to use objects corresponding to database enti-
ties and encapsulate access to actual database records. An entity bean can
correspond to a single row in a relational table, but more likely it corresponds
to a row in the result of a join operation. The mapping of entity beans to and
from database rows is called persistence. Entity beans can manage their own
persistence by directly using JDBC to operate over databases. Alternatively,
they can use container-managed persistence driven by object-to-table map-
pings defined during the deployment process.

Entities in a database schema are related to each other. Thus, there is a need
to find entity bean instances by navigating entity relationships. The correspon-
ding mechanisms can again be either bean or container-managed relationships,
as selected by the deployment descriptor. It is interesting to note that con-
tainer-managed relationships map entity relationship (ER) models straight into
object models. The database model is no longer relational, but instead of net-
work-style. Network databases were introduced well before relational ones and
they can have performance advantages. However, as they do not support con-
cepts of normalization, network databases are known to be fragile. If the
schema changes, client code needs to change as well. By keeping the data in
normalized form (in a relational database), ER model changes will only affect
the code inside entity beans.

313

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 313

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

An entity bean is either newly created or located by its primary key. In the
former case, a new entity bean is created and associated with a new primary
key. In the latter case, the container checks whether or not the corresponding
bean instance is already available. If so, it is returned. If not, the container cre-
ates a new instance and associates it with the primary key. Then either the
container or, in the bean-managed case, the bean class locate the underlying
data in a database in order to initialize the new instance.

The deployment descriptor for an entity bean takes the following skeleton
form:

<entity>
<ejb-name> …name of the entity bean… </ejb-name>
<home> …name of EJB home interface… </home>
<remote> …name of EJB object interface… </remote>
<local-home> …name of local EJB home interface… </local-home>
<local> …name of EJB object interface… </local>
<ejb-class> …name of class implementing this EJB… </ejb-class>
<persistence-type> …Container or Bean… </persistence-type>
<prim-key-class> … </prim-key-class>
<reentrant> …True or False… </reentrant>
<abstract-schema-name> … </abstract-schema-name>
<prim-key-field> …field name… </prim-key-field>
<cmp-field> <field-name> …field name… </field-name> </cmp-field>
<security-identity> …run-as role-name or use-caller-identity…

</security-identity>
</entity>

The initial fields match those of session bean descriptors. The persistence type
can be container- or bean-managed, as discussed above. The primary key class
defines which Java class to use to hold primary key values. This can range from
java.lang.Integer to complex compound key types. The re-entrance field can be
used to enable re-entrant calls as, by default, re-entrance of EJB beans is pro-
hibited and causes the container to throw an exception. This cannot be
overridden for session beans, but entity bean designers can decide to support
re-entrancy as it can be difficult to prevent cases of re-entrance when navigat-
ing from entity to entity along the relationship graph. The abstract schema
name is one that is unique to the particular bean that is used in EJB’s query
language (EJB QL; see below). Each field descriptor for container-managed
persistence is interpreted as the name of a property (as of EJB 2.0) that has a
setter and a getter method to be called by the container.

Entity relationships and database mapping

As mentioned above, combining the descriptors for relationship among entity
beans and those for container-managed persistent fields yields an abstraction

314

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 314

Component variety – applets, servlets, beans, and Enterprise beans

for a flexible object-to-relational mapping. This approach is at the heart of
the improved portability of entity beans in EJB 2.0 from one J2EE server
product to another. (EJB 1.1 introduced a container-managed persistence
model that was severely limited and essentially made portable entity beans
non-existent. While not described in this book, EJB 1.1 persistence lives on,
but to enable backwards compatibility, an EJB 2.0 container has to also
implement EJB 1.1 persistence.)

EJB 2.0 supports one-to-one, one-to-many, and many-to-many relation-
ships – all in both unidirectional and bidirectional versions. In addition, EJB
2.0 introduced a query language similar to SQL called EJB QL. This language
is used in deployment descriptors to declaratively specify additional find meth-
ods for the home interfaces of entity beans. For example, to define a find
method that locates an entity by name (rather than by primary key), the fol-
lowing fragment could be added to a deployment descriptor:

<entity>
…
<query>

<query-method>
<method-name>findByName</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>
<ejb-ql>

SELECT OBJECT(x) FROM Employee e WHERE e.name = ?1
</ejb-ql>

</query-method>
</query>

</entity>

This descriptor fragment causes the implementation of a findByName method
that takes a single string-typed argument. The SELECT statement is similar to
SQL; ?1 refers to the first (and, in this case, only) method argument. In EJB
2.0, the specification of EJB QL still has a number of shortcomings (Monson-
Haefel, 2001). For example, it is not possible to select rows in sorted order
and it is not possible to properly handle dates. The lack of support for sorted
order, especially, is a significant drawback for high-performance applications.

Container-managed persistence and relationships, as defined in EJB 2.0, are
a powerful abstraction of the data-mapping machinery. However, there is a
danger that developers lose touch with actual performance. At the time of
writing, IBM’s WebSphere implementation of J2EE 1.3.1 was one of the few
that integrated the EJB 2.0 container mechanisms with the caching system of
the database server. Without such a deep integration, container-managed per-
sistence and relationships can lead to surprising performance problems because
entities are brought in either in small increments or at once – both of which
can seriously degrade performance.

315

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 315

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

14.5.3 Data-driven composition – message-driven beans in
EJB 2.0

With the introduction of EJB 2.0, support for data-driven composition was
added to the EJB model. In essence, this is done by adding an entirely new e-
bean type – message-driven beans (md-beans). Like session and entity beans,
md-beans reside inside an EJB container. Like session bean instances, they
have no container-managed peristent state. Unlike session and entity beans,
they also don’t have a remote or local interface or home interface. The only
way to instantiate and use an md-bean is to register it for a particular message
queue or topic as defined by the Java message service (JMS, see section
14.6.3). An md-bean can be registered with exactly one such queue or topic
only, requiring external collection of messages meant to be handled by an md-
bean into a single queue or topic.

When the container schedules a message in a queue or topic for processing, it
creates a new instance of any bound md-bean (or recycles an existing instance) and
then calls its ejbCreate method. The container calls setMessageDrivenContext to
associate the new md-bean with its context. Then the actual message handling is
requested by calling the one central method of any md-bean – onMessage. An
md-bean handling a message behaves a bit like a stateless session bean handling an
incoming method call – it does not maintain specific state when returning from
onMessage. The container is free to recycle an md-bean instance to handle multi-
ple messages. Eventually, the container cleans up by calling the ejbRemove
method, allowing the md-bean to release any resources it might have acquired.
Unlike any other bean, an md-bean cannot return invocation results. To have any
permanent effect whatsoever, an md-bean draws on other beans including entity
beans. It can also draw on any resource accessible via its context, which, in EJB
2.0, has to include a JMS provider via which the md-bean can send messages.
There are many more options, such as accessing databases or other external
resources via JDBC or JCA resource connectors, respectively (see section 14.6.3).

It is possible to write all application logic using md-beans. The resulting
message-queue-oriented design is fully asynchronous and thus not suitable for
serving interactive sessions. However, the gained flexibility at the message
queuing and scheduling level leads to a composition model that is well suited
to workflow-oriented automatic distribution of work items.

Advanced Java services

This section covers Java support for distributed computing at an enterprise
scale. There are actually four different models supporting distributed comput-
ing in Java – RMI, RMI over IIOP, CORBA, and EJB containers (that
themselves build on RMI or RMI over IIOP). EJB was covered in the previous
section; this section covers the remaining approaches, followed by the most
important services supporting distributed applications.

14.6

316

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 316

Advanced Java services

14.6.1 Distributed object model and RMI

Distributed computing is mainly supported by the object serialization service
(as described above) and the remote method invocation (RMI) service, both
introduced with JDK 1.1. This subsection describes RMI and RMI over IIOP,
which are subtly different.

A distributed object is handled via references of interface type – it is not
possible to refer to a remote object’s class or any of its superclasses. Interfaces
that can be accessed remotely have to be derived from java.rmi.Remote. A
remote operation can always fail as a result of network or remote hardware
problems. All methods of a remote interface are therefore required to declare
the checked exception java.rmi.RemoteException. Parameter passing to remote
operations is interesting. If an argument is of a remote interface type, then the
reference will be passed. In all other cases, passing is by value – that is, the argu-
ment is serialized at the call site and deserialized before invoking the remote
interface. Java objects are not necessarily serializable. An attempt to pass a
non-serializable object by value raises a runtime exception. If Java RMI
conventions were made parts of the language, then the compiler could statically
enforce that only serializable objects are passed by value and that all methods
declare RemoteException.

The Java distribution model extends garbage collection as well. Fully distrib-
uted garbage collection is supported, based on a careful bookkeeping of which
objects may have remote references to them. The collector is based on the work
for Network Objects (Birrel, 1993). Distributed garbage collection is the most
outstanding feature of Java RMI compared with almost all other mainstream
approaches today. The only other approach that also builds on Network Objects
and the idea of leased references is CLI remoting (see section 15.13.1), which
was introduced about four years after the debut of Java RMI.

The Java distributed object model has a number of quirks, however. First,
Java RMI interferes with the notion of object identity in Java. Second, Java
RMI interferes with the Java locking system’s semantics, which normally pre-
vents self-inflicted deadlocks. These two problems are explained below. (Both
of these problems are solved by the CLI approach.)

Java RMI affects object identity as a result of its model of implementing
remote references. If a remote interface reference is passed around, proxy objects
are created on remote sites. A reference to a remote interface, once passed in a
remote method invocation, is thus not a reference to the remote object but to
the local proxy of that object. Even if such a remote reference is sent back to the
object’s home server, it will still point to a proxy – one that is in the same server
that the object itself is residing in. It is thus not possible to send out a reference,
get it back, and compare it against a local object to see whether or not the
returned reference matches that of the local object. (In contrast, DCOM and
CLR maintain object identity on proxies. That is, they do not create multiple
proxies for the same remote object in the same client context.)

317

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 317

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

Self-inflicted deadlocks are caused by locking systems that do not allow a
thread to re-enter an area locked by that same thread. In regular Java, threads
can acquire locks any number of times without causing a deadlock. In Java
RMI, the situation is different. The notion of a thread identity does not span
multiple machines. If a remote invocation performs a nested remote invoca-
tion back to the original requester, then a distributed deadlock can occur. Such
a deadlock is caused by the original requester holding locks that are also
needed by the recursive callback. (Compare this to logical threads, supported
by DCOM and CLR, that can span process and machine boundaries.)

The special handling of identities by Java RMI has further effects. Several
methods defined in java.lang.Object had been introduced with the Java object
identity model in mind. Under Java RMI, the Object method’s equivalents,
hashCode and toString, need to be implemented differently. Proper handling
can be achieved by extending class java.rmi.RemoteObject when creating a
class that implements remote interfaces. Obviously, this precludes extending
some other class and it may therefore be necessary to override these three
methods “manually.”

The situation is somewhat worse for the Object methods getClass, notify,
notifyAll, and wait. These are declared final in java.lang.Object and cannot be
adjusted by RemoteObject or another class. Although none of these methods
malfunctions in the context of Java RMI, they all have potentially unexpected
semantics. When operating on remote references, all these methods operate on
the proxy object. For getClass, this makes the synthesized proxy class visible,
instead of returning the real class of the remote object. For the wait and notify
operations, there is no synchronization between the local proxy and the
remote object. (The latter is usually desirable, as remote locking would be a
fairly inefficient operation.)

14.6.2 Java and CORBA

An OMG IDL to Java binding and, an OMG first, a Java to OMG IDL reverse
binding were defined in 1998 as part of CORBA 2.2 (see section 13.1.2). An
important reason to incorporate CORBA into Java projects is to enable the use
of IIOP for communication with non-Java subsystems. For access to
CORBAservices it is usually more convenient to go through Java-specific
access interfaces that can map to CORBA-compliant and other service imple-
mentations. Several of these Java service interface standards are discussed in
the following subsections.

CORBA and Java usually coexist in almost all application server products
today. It is therefore often reasonable to assume the presence of CORBA mecha-
nisms (for interoperation) when implementing for the application server tier.

RMI is normally implemented using a proprietary protocol (Java Remote
Method Protocol – JRMP), which limits the use of RMI to Java-to-Java com-

318

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 318

Advanced Java services

munication. The RMI-over-IIOP specification was introduced in 1999 and is
part of the JDK since J2SE 1.3. It supports a restricted RMI variant to be used
over the CORBA IIOP protocol, reaching any CORBA 2.4-compliant ORB.
This specification requires a recent addition to CORBA that enables the send-
ing of objects by value – that is, the sending of a copy of the object rather than
the sending of a reference to the object staying behind.

RMI-over-IIOP does not support the RMI distributed garbage collection
model and thus falls back on CORBA’s lifecycle management approach to deal
with the lifetime of remote objects explicitly. In addition, RMI-over-IIOP cre-
ates proxies that do not allow normal Java instanceof/cast mechanisms to be
used to discover interfaces or subclasses. Instead, a service method must be
called to determine whether or not some type is supported – and, if so, that
method returns a new proxy. The fact that a new proxy instance may be
returned does, as such, not add new complications as RMI is already removing
the object identity property and several proxy instances may refer to the same
remote object.

With J2SE 1.4, introduced in 2002, support was added for POA (portable
object adapter), portable interceptors, INS (interoperable naming nervice),
GIOP 1.2 (general interoperability protocol), and dynamic any’s. J2SE 1.4
also includes a tool to remotely manage a persistent server and an ORB
daemon (ORBD) that enables clients to transparently locate and invoke per-
sistent objects on CORBA-supporting servers.

14.6.3 Enterprise service interfaces

Important parts of the J2EE architecture are several suites of interfaces that
address enterprise-level services. Such service interfaces could also be estab-
lished via CORBA (see section 14.6.2). However, Java-CORBA integration
necessarily introduces some friction. In contrast, the Java-centric interfaces dis-
cussed in this section are designed to minimize any such friction, both from a
client’s and an implementer’s point of view.

Java naming and directory interface (JNDI)

A universal problem in computing systems is the location of services by exact
name or attributes. Naming services address the former and directory services
the latter problem. Examples of naming services include the internet domain
name service (DNS), the RMI registry, and the CORBA naming service.
Examples of directory services include LDAP-compliant directories such as
Novell’s eDirectory, Microsoft’s Active Directory, or the open source
OpenLDAP (www.openldap.org).

JNDI provides uniform APIs for naming (javax.naming) and directory
(javax.naming.directory) services. The most commonly used interface – Context
– makes a particular naming context available on which method lookup can be
used to locate objects by name. A naming context can also be used to list all

319

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 319

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

bindings in the context, remove a binding, or create and destroy subcontexts.
An important naming context for EJB beans is the environment naming con-
text (ENC) provided by the EJB container. It enables access to environment
properties, other beans, and resources.

Interface DirContext extends Context to provide directory functionality of
examining and updating attributes associated with an object listed in the direc-
tory and searching a directory context by value. As DirContext extends Context,
a directory context is also a naming context. Most contexts are themselves
found by recursive lookup on another context. The starting point is the initial
context that is always accessible by instantiating class InitialContext.

JNDI also defines an event API (javax.naming.event), an LDAP API
(javax.naming.ldap) that supports the LDAP v3 features that go beyond the
DirContext features, and a service provider interface (javax.naming.spi) that
enables providers of naming and directory services to hook into JNDI. The
event mechanism is used to register for change notifications. J2SE 1.4 comes
with four built-in service providers – CORBA naming, DNS, LDAP, and RMI.

Java message service (JMS)

Asynchronous messaging enables composition models that decouple and over-
lap operations of the instances communicating by messages. Transacted
message queues establish the level of reliabilty that normally requires synchro-
nous call-based models. Flexible message routing, multicasting, and filtering
further improve flexibility. JMS is a Java access mechanism to messaging sys-
tems – it doesn’t implement messaging itself. JMS support message queues for
point-to-point delivery of messages. It also supports message topics that allow
for multiple targets to subscribe. Messages published to a topic are delivered to
all subscribers of that topic.

JMS supports a variety of message types (bytes, streams, name-value maps,
serialized objects, and text). Using declarations that are close to the SQL
WHERE clause, message filters can be set up.

Java database connectivity (JDBC)

JDBC followed the popular Microsoft ODBC (open database connectivity)
standard in establishing a common way of interacting with a database. The
JDBC API is split into the core API (found in package java.sql and part of
J2SE) and the JDBC optional package (found in javax.sql and optional in
J2SE, but mandatory in J2EE). Like ODBC, JDBC depends on drivers to map
the JDBC API to the native interfaces of a particular database.

There are four types of JDBC drivers. Type 1 and Type 2 drivers use native
(non-Java) code accessed via JNI. Type 1 drivers use native code with a
common interface, while Type 2 allows for database-specific interfaces. The
most common Type 1 driver is the JDBC-ODBC bridge included in the JDK
– it maps JDBC calls to ODBC calls. This is relatively slow as ODBC uses its

320

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 320

Advanced Java services

own driver model to access specific databases. Type 3 and Type 4 drivers are
pure Java.Type 3 accesses a database indirectly via a network protocol and a
database gateway, while Type 4 accesses a database directly. Drivers can be
selected without affecting client code as the JDBC API itself is unaffected by
the choice of driver. In terms of typical performance, Type 4 is usually the
best, followed by Type 2, then Type 1, and finally Type 3.

Available JDBC drivers are tracked by the driver manager. Typically, a driver
registers with the driver manager using a static initializer. That is, merely loading
a driver suffices to cause registration. The following statement is commonly used
to load a driver – the JDBC-ODBC bridge driver in this example.

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Once a driver has been located, the Driver interface can be used to create a
database connection, which is reflected by a returned object that implements
interface Connection. The Connection interface is the main JDBC hub – it can
be used to retrieve meta-information about the database itself, create database
statements (SQL statements), and manage database transactions. Statements
come in three variants – plain, prepared, and callable statements. Prepared
statements are effectively SQL templates, which are SQL commands with vari-
ables. Before executing a prepared statement, these variables are filled in by
calling methods that associate a variable with a value. Callable statements
invoke SQL stored procedures. Some statements perform a database command
that has no results (such as deleting a row of data), but most yield a result.
Results are objects that implements interface ResultSet. Unless a result is read-
only, it can be updated and pushed back to the database.

Database connections (and open statements per connection) are a relatively
expensive resource and most systems impose tight limits. This is an area where
reliance on the JVM’s garbage collector is not acceptable practice. Instead,
developers must take care to explicitly call the corresponding close methods to
ensure release of such resources as soon as they are no longer needed. There
are further complications in this space. For instance, while prepared statements
are good candidates for shared use – they can be created once and then used
repeatedly with variable bindings – they are always associated with a single spe-
cific connection. However, connection pooling is a common technique to
enhance performance, forcing the creation of a new statement every time as
the connection instance will vary.

Java transaction API and service (JTA, JTS)

While transaction management is almost always delegated to an EJB’s con-
tainer, there are cases where explicit transaction management is required. The
CORBA object transaction service (OTS) or its Java implementation (JTS) can
be used for this purpose. However, a much simpler interface was introduced
with EJB, namely the Java transaction API. It comprises a low-level XA interface

321

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 321

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

(the X/Open transaction API standard) used by server/container implementa-
tions and a high-level client interface accessible to EJB beans implementations.
The most common high-level interface is javax.transaction.UserTransaction
with six simple methods (with exception lists elided for brevity):

package javax.transaction;
public interface UserTransaction {

void begin () throws …;
void commit () throws …;
int getStatus () throws …;
void rollback () throws …;
void setRollbackOnly () throws …;
void setTransactionTimeout (int seconds) throws …;

}

The use of JTS (or OTS) requires explicit and careful enlistment of resources
in transactions and, thus, the explicit demarcation of transaction boundaries.
With the high-level JTA interfaces, this error-prone function is performed by
the EJB container. However, explicit transaction management is still error-
prone and can lead to inconsistencies or inefficencies due to resources held by
long-running transactions.

J2EE connector architecture (JCA)

Introduced with J2EE 1.3, JCA standardizes connectors between a J2EE
application server and enterprise information systems (EIS) such as database
management, enterprise resource planning (ERP), enterprise asset manage-
ment (EAM), and customer relationship management (CRM) systems.
Enterprise applications not written in Java or within the J2EE framework are
also candidates for JCA connection. The JCA is defined in package
javax.resource and its subpackages (cci, spi, and spi.security). (JCA is a case of
frontal acronym collision as the same acronym is also used for the Java cryp-
tography API.)

JCA defines resource adapters that plug into a J2EE application server –
one such adapter per EIS type. Resource adapters interact with an application
server to support connection pooling, security, and transactions. This collabo-
ration is formalized by three corresponding JCA system contracts that specify
how application servers and application components establish connections as
well as security and transaction contexts. In addition, the JCA common client
interface (CCI) defines a client API for application components that need to
access an EIS. The CCI is preferably used by enterprise application integration
(EAI) frameworks and by tools.

In early 2002, nine J2EE application servers supported JCA, including
BEA’s WebLogic, IBM’s WebSphere, Borland’s Enterprise Server and Oracle’s

322

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 322

Interfaces versus classes in Java, revisited

9iAS application server (java.sun.com/j2ee/connector/products.html). At the
same time, 16 EIS and EAI products supported JCA, with an additional 16
announced or in beta. Connectable EIS include BEA’s Tuxedo, SAP’s R/3,
IBM’s CICS, IMS, and MQ/Series, JD Edward’s, Oracle’s, Peoplesoft’s and
SAP’s ERP systems, and Siebel’s CRM system.

14.6.4 Java and XML

Sun has been one of the early promoters of XML. Yet, initially, XML support
for Java was limited to interfaces supporting the processing of XML docu-
ments, presenting the XML document (DOM) and XML streaming (SAX)
models. More complete support for XML, including XML Schema, and sup-
port for web services standards has been added as a pre-release (“early
adoption”) in early 2002.

The Java Architecture for XML Binding (JAXB) provides an API and tools
that automate the mapping between XML documents and Java objects,
although the early access version released in early 2002 only supports DTDs,
not XML Schema.

Java API for XML messaging (JAXM) is a J2SE optional package that imple-
ments the simple object access protocol (SOAP), v1.1 with attachments.
Messaging profiles are included to enable pluggability of higher-level protocols.

The Java API for XML-based RPC (JAX-RPC) supports the construction
of web services and clients that interact using SOAP and that are described
using WSDL.

Java API for XML processing (JAXP) is a collection of DOM, SAX, and
XSLT implementations.

Java API for XML registries (JAXR) provides uniform and standard access
to different kinds of XML registries, including the ebXML registry and reposi-
tory standard and the UDDI specification.

Interfaces versus classes in Java, revisited

Java separates and supports classes and interfaces, where an interface is essen-
tially a fully abstract class. As Java classes can be fully abstract, Java
programmers have to choose whether to use an interface or an abstract class. It
is interesting to observe the current trend away from the use of classes and
toward the increasing use of interfaces. As interfaces rule out implementation
inheritance, this trend also favors object composition and message-forwarding
techniques. A few examples of this ongoing trend are described below.

JavaBeans still allows classes to surface on bean boundaries. Even implemen-
tation inheritance across bean boundaries is commonly used, although usually
to inherit from base libraries, not from other beans. However, the JavaBeans
specification (as of v1.00-A) recommends not using the Java type test and

14.7

323

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 323

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

guard operators (instanceof and checked narrowing cast). Instead, program-
mers should use the methods isInstanceOf and getInstanceOf in class
java.beans.Beans. The intention probably was to provide a hook for post-1.00
beans that can be represented to the outside by more than one object, similar
to the QueryInterface mechanism in COM, although this has yet to happen.

The Java AWT event model has been changed from an inheritance-based
solution in JDK 1.0 to a “delegation-based” (really a forwarding-based) solu-
tion in JDK 1.1. In addition to the resulting advantages and increased
flexibility, it was admitted that the 1.0 approach led to undue complexity and
was a source of subtle errors.

Whereas the non-distributed Java object model supports classes and inter-
faces, the distributed Java object model (based on RMI; see section 14.6.1)
restricts remote access to interfaces. In other words, where distribution is
used or planned for, direct use of classes is not advisable and all access should
be via interfaces.

Enterprise JavaBeans also restricts bean access to interfaces, but it goes even
further than RMI as there can be only one remote interface on an EJB bean. If
an EJB bean would need to implement multiple interfaces, it suffices to define
a single interface extending these interfaces.

It is interesting to see how the tension between interfaces and classes shaped
up as the Java specifications evolved. For instance, the ratio of classes to inter-
faces has markedly shifted from almost exclusive use of classes in the early Java
packages to much heavier use of interfaces in later Java specifications. A Sun
initiative, code-named “Glasgow,” aimed to generalize JavaBeans. Besides
other enhancements (see sections 14.4.4 and 14.4.5), this specification was
supposed to support object composition based on containment and aggrega-
tion. While Glasgow did add many new features to JavaBeans and the larger
user interface toolkit, including an interesting container design, it did not
deliver aggregation support.

JXTA and Jini

JXTA and Jini address a similar problem – the federation of systems over
loosely coupled distributed systems. Jini focuses on Java everywhere, with a
preference for (although not a strong restriction to) Java-specific networking
protocols such as RMI (www.sun.com/software/jini/; www.jini.org; Arnold et al.,
1999). Jini also moves Java components to where they are needed. Thus, Jini
requires the Java runtime environment on at least some of the involved com-
puters and devices. The surrogate project (www.jini.org) created the Jini
surrogate architecture, a design that enables non-Java endpoints to be hooked
into a Jini federation by having a Jini surrogate act on their behalf. (In stan-
dard networking terminology, a surrogate is a protocol bridge.) For instance, a
surrogate could be used to bridge between a Jini federation and a Universal
Plug-and-Play federation.

14.8

324

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 324

JXTA and Jini

JXTA (pronounced “juxta”, short for juxtaposition; Gong, 2001) is a Sun
initiative that aims at open peer-to-peer computing, preferring XML-based
conventions and protocols on the network (wwws.sun.com/software/jxta/;
www.jxta.org; Brookshier, 2002). There is no requirement that JXTA partici-
pants run Java, although JXTA naturally defines how Java-based endpoints can
be formed. The Jini surrogate architecture can be used to bridge between
JXTA and Jini.

Jiro is another Java-based approach that aims to use federation to specifi-
cally aid systems management. As it stands in early 2002, Jiro focuses even
more specifically on the domain of managing storage systems. See section 18.5
for a brief discussion of Jiro.

All three initiatives (Jini, JXTA and Jiro) have some overlap with the space
of web services. Jini’s and Jiro’s reliance on sending Java components across
the network limits it to non-XML web services. JXTA builds on XML conven-
tions and protocols, but, as it stands, does not use the standard protocols of
XML web services, such as SOAP, WSDL, and UDDI (see section 12.4.5).

14.8.1 Jini – federations of Java services and clients

Jini is a specification that describes how federations of Java services and clients
of such services can be formed over loosely coupled systems. Three problems
need to be addressed – how clients locate services, how services make them-
selves available, and how the overall system copes with partial failure and
reconfiguration. Jini addresses the problems of locating and publishing services
and partially addresses the problems of robustness under various failure modes.

Jini defines special services called lookup services that serve two purposes.
First, clients query the lookup services in order to find specific services and,
second, services publish themselves by registering with lookup services. This
introduces a bootstrap problem – how do clients and services locate lookup
services? Jini defines both a broadcast protocol for lookup service location
within smaller networks that support such broadcasts and a unicast protocol
to hierarchically locate lookup services in larger networks that don’t support
full broadcasts.

When a Jini service registers with a lookup service, it specifies a desired lease
period. This is similar to the RMI distributed garbage collection scheme (see
section 14.6.1) as, once the lease expires, the lookup service removes the regis-
tration entry of that service. A lookup service is free to constrain the lease
period and grant a lease only to an upper bound it can accommodate. In par-
ticular, Jini lookup services will never grant an infinite lease period.

A Jini service can register with more than one lookup service and multiple
Jini services can register under the same service type. A Jini client can consult
multiple lookup services. Hence, it is possible – and in a larger federation even
likely – that a client locates multiple services that could be used. It then picks
one of them and establishes contact. Once a client has located a service, Jini is

325

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 325

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

out of the loop. If a service fails while a client is connected, then it is that
client’s responsibility to either take appropriate measures or else simply fail as
well. As Jini services can be – and often are – clients of other Jini services, such
failure propagation can cause a ripple effect.

The dynamic proxy mechanism introduced in J2SE 1.3 can be used to iso-
late clients from certain service failures (Ledru, 2002). The idea is to
automatically fail over from a failed service to an equivalent one and do so
inside a proxy, such that a client doesn’t observe such a change. Clearly, there
is a strong assumption to be made – that the failed session didn’t build up any
session-specific or even longer-term state in the service. If such state existed, it
would be lost on fail over. In other words, even with such smart proxies in
place, it is still the responsibility of the developer of Jini services and clients to
deal with partial failure modes at a state level properly.

14.8.2 JXTA – peer-to-peer computing

JXTA is supposed to span programming languages, platforms (such as Unix
versus Windows), and networking infrastructure (such as TCP/IP versus
Bluetooth). The JXTA protocols establish a virtual network on top of existing
networks, hiding their underlying physical topology. Peer discovery and organ-
ization into peer groups is performed over this virtual network. The JXTA
protocols also address the advertising and discovery of resources and commu-
nication among and monitoring of peers. The following five abstractions form
the JXTA virtual network – uniform peer ID addressing, peer groups, adver-
tisements, resolvers, and pipes. JXTA defines a search approach that helps to
locate peers and resources efficiently in large networks.

Figure 14.10 shows the main layering of the JXTA architecture (Gong,
2001). JXTA comprises the following core protocols – peer discovery, peer
resolver, peer information, peer membership, pipe binding, and endpoint rout-
ing. Peers and resources are identified uniformly by UUIDs (128-bit “flat”
unique IDs). XML documents are used to advertise services and resources.
Peers are required to support a set of peer-level protocols. In addition, groups
of peers can form a virtual entity that supports additional group-level proto-
cols. Communication is by means of messages sent via pipes. Pipes are
directed, unreliable, unicast or multicast constructs that deliver messages
between peer endpoints. Thus, a pipe can be seen as a named unreliable mes-
sage queue. Higher-level communication semantics, such as reliable delivery,
can be built on top of basic pipes. The motivation is to get as close as possible
to the physical networks (say, UDP instead of TCP/IP), which usually do not
provide reliable communication.

The peer discovery protocol serves a peer to discover its peers, peer groups
and advertised resources (by discovering the describing advertisement, an
XML document). If no ID is specified, this protocol will return all advertise-
ments of a particular peer or peer group. By starting with a unique world peer

326

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 326

JXTA and Jini

group, a system can be bootstrapped. Notice that this is conceptually very sim-
ilar to the internet’s domain name service (DNS) supported by a hierarchy of
DNS servers, where nodes are identified by their IP address, which as of IPv6
is also a flat 128-bit value.

The peer resolver protocol is used to implement advanced search functional-
ity. It is typically implemented by peers that maintain repositories. The peer
information protocol can be used to retrieve status (liveness) and capability
information on other peers. The peer membership protocol allows peers to
discover credentials required to join a particular group, apply for membership,
update membership and credential information, and cancel membership.
Protection is provided in the form of authentication and security credentials.

The pipe-binding protocol allows peers to bind a pipe to one of their end-
points. Pipes can be created, opened, closed, or deleted. An open pipe can be
used to send and receive messages. Opening a pipe binds it to an endpoint;
closing it causes unbinding. Endpoints specify the actual sources and sinks of
messages within a peer implementation. The peer endpoint protocol enables
peers to become routers. Thus, if a peer needs to determine how to reach
another peer, it uses this protocol to discover possible routes. Any peer that
implements the protocol indicates that it can route messages over certain net-
works to certain other peers.

327

Figure 14.10 JXTA architectural layering. (From Gong, L. (2001) Project JXTA: A Technology
Overview. Sun Microsystems, Palo Alto, CA. (www.jxta.org/project/www/docs/TechOverview.pdf).)

JXTA applications

JXTA services

JXTA core

JXTA
shell

Peer
commandsSun • Indexing

JXTA • Searching
services • File sharing

Peer pipes Peer monitoringPeer groups

Sun
JXTA
applications

Peer on extended web

JXTA community
services

JXTA community
applications

Security

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 327

The Sun way – Java, JavaBeans, EJB, and Java 2 editions

On reflection, JXTA is a bit like a virtual internet over the internet. While
creating a clear opportunity for redesign of this space, it is not yet clear
whether or not the benefits of a hopefully cleaner design can outweigh the dis-
advantages of separation from the internet via this abstraction layer. The
internet was designed to scale to enormous size and has certainly successfully
done so. Its protocols may show signs of their age, but they don’t seem to
show fundamental flaws that would indicate an approaching end of scalability.
In particular, the large computers from the early days of the internet are now
matched by the capabilities of even the smallest devices. Useful implementa-
tions of SNMP, HTTP, and TCP/IP can now be squeezed into tiny devices
(www-ccs.cs.umass.edu/~shri/iPic.html; www.ipsil.com). It might well be that
JXTA would be more effective by complementing the existing internet proto-
col family, including the emerging web services protocols.

Java and web services – SunONE

SunONE (Sun open network environment) is an extension of J2EE that relies
on specialized servlets to handle web service protocols. SunONE also incorpo-
rates the J2EE server products formerly marketed by iPlanet (note that the
alliance between Netscape and Sun that was called iPlanet expired in early
2002, leaving the iPlanet products with Sun. In early 2002, iPlanet accounted
for around 7 percent market share in the J2EE space, following IBM’s
WebSphere and BEA’s WebLogic at 34 percent each and closely followed by
Oracle at 6 percent.)

With the release of early adopter versions of the Java web services developer
pack (Java WSDP) in early 2002, Sun provides support for SOAP, WSDL, and
UDDI. Java WDSP includes the Java APIs for XML messaging (JAXM), XML
processing (JAXP), XML registries (JAXR), and XML-based RPC (JAX-RPC).
It also includes the JSP standard tag library (JSTL), the Ant build tool, the
Java WSDP registry server, the web application deployment tool, and the
Apache Tomcat web server container.

14.9

328

8557 Chapter 14 p261-328 3/10/02 10:41 PM Page 328

