What a component is and is not

The terms “component” and “object” are often used interchangeably. In addi-
tion, constructions such as “component object” are used. Objects are said to
be instances of classes or clones of prototype objects. Objects and components
are both making their services available via interfaces, and interfaces are of cer-
tain types or categories. As if that was not enough, object and component
interactions are described using object and component patterns and prescribed
using object and component frameworks. Both components and frameworks
are said to be whitebox or blackbox, and some have even identified shades of
gray and glassboxes. Language designers add further irritation by also talking
about namespaces, modules, packages, and so on.

This plethora of terms and concepts needs to be reduced by eliminating
redundancies or it needs to be unfolded, explained, and justified. The next sec-
tion considers this universe of terms and concepts and provides brief
explanations, relating the concepts to each other. The goal is to establish some
degree of order and intuition as a basis for further discussions. Then, a refined
definition of the term “component” is presented and discussed. Finally, the
linkages to standards for horizontal and vertical markets are summarized.

4.1 Terms and concepts

Some degree of familiarity with most of the terms covered in this section is
assumed — and so is some degree of confusion about where one term ends and
another starts. One way to capture the intuitive meaning of a term is to enu-
merate characteristic properties. The idea is as follows: something is an A if it
has properties al, a2, and a3. For example, according to Wegner’s (1987)
famous definition, a language is called object-oriented if it supports objects,
classes, and inheritance.

Unfortunately, the concepts relevant to component technology encompass
many aspects. The massive overloading of the term object is the best example.
Over time, the notions of module, class, and component have all become
embraced by the term “object.” (More recently, the same is done to the term

35



36 What a component is and is not

“software component” — even to a point where plain old objects are now
called components!) Combining several terms into one can simplify things
superficially, but not to good advantage beyond the simplest thoughts. As pre-
cision and richness of the vocabulary decrease, so does the richness of
expressible and distinguishable, yet concise, thoughts. It is essential to strive
for a balance, preserving conciseness and intuition. The following subsections
thus present definitions of some key terms and relate them to each other.

4.1.1 Components
The characteristic properties of a component are that it:

is a unit of independent deployment;
is a unit of third-party composition;
has no (externally) observable state.

These properties have several implications. For a component to be independ-
ently deployable, it needs to be well separated from its environment and other
components. A component, therefore, encapsulates its constituent features.
Also, as it is a unit of deployment, a component will never be deployed par-
tially. In this context, a third party is one that cannot be expected to have
access to the construction details of all the components involved.

For a component to be composable with other components by such a third
party, it needs to be sufficiently self-contained. Also, it needs to come with
clear specifications of what it requires and provides. In other words, a compo-
nent needs to encapsulate its implementation and interact with its environment
by means of well-defined interfaces.

Finally, a component should not have any (externally) observable state — it is
required that the component cannot be distinguished from copies of its own.
Possible exceptions to this rule are attributes not contributing to the compo-
nent’s functionality, such as serial numbers used for accounting. The specific
exclusion of observable state allows for permissible technical uses of state that
can be crucial for performance without affecting the observable behavior of a
component. In particular, a component can use state for caching purposes (a
cache is a store that can be eliminated without any consequence, except possi-
bly reduced performance).

A component can be loaded into and activated in a particular system.
However, due to the stateless nature of components, it makes little sense to
have multiple copies in the same operating system process as these would be
mutually indistinguishable anyway. In other words, in any given process (or
other loading context), there will be at most one copy of a particular compo-
nent. Hence, it is not meaningful to talk about the number of available copies
of a component.

In many current approaches, components are heavyweight units with exactly
one instance in a system. For example, a database server could be a compo-



Terms and concepts 37

nent. If there is only one database maintained by this class of server, then it is
easy to confuse the instance with the concept. An example would be the pay-
roll server of a company. For example, the database server, together with the
database, might be seen as a module with an observable state. According to
the above definition, this “instance” of the database concept is not a compo-
nent. Instead, the static database server program is, and it supports a single
instance — the database “object.” In the example, the payroll database server
program may be a component, while the payroll data is an instance (an
object). This separation of the immutable “plan” from the mutable “instances”
is essential to avoid massive maintenance problems. If components were
allowed to have observable state, then no two installations of the “same” com-
ponent would have the same properties.

It is important to avoid a common confusion at this point. The component
concept argued for here does not in any way promote or demote the use of
state, observable or not, at the level of objects. Also, it is unrelated to the life-
time of such object state (per call, per session, or persistent). These are all
object-level concerns that are not tied to the component concept, although
components can be used to provide objects of any of these natures.

4.1.2 Objects

The notions of instantiation, identity, and encapsulation lead to the notion of
objects. In contrast to the properties characterizing components, the charac-
teristic properties of an object are that it:

is a unit of instantiation, it has a unique identity;
may have state and this can be externally observable;
encapsulates its state and behavior.

Again, a number of object properties directly follow. Because an object is a
unit of instantiation, it cannot be partially instantiated. Since an object has
individual state, it also has a unique identity that suffices to identify the object
despite state changes for its entire lifetime. Consider the apocryphal story
about George Washington’s axe. It had five new handles and four new axe
heads, but was still George Washington’s axe. This is a good example of a real-
life object of which nothing but its abstract identity remained stable over time.
As objects are instantiated, there needs to be a construction plan that
describes the state space, initial state, and behavior of a new object. Also, that
plan needs to exist before the object can come into existence. Such a plan may
be explicitly available and is then called a class. Alternatively, it may be implicitly
available in the form of an object that already exists — that is, sufficiently close to
the object to be created, and can be cloned. Such a pre-existing object is called a
prototype object (Lieberman, 1986; Ungar and Smith, 1987; Blaschek, 1994).
Whether using classes or prototype objects, the newly instantiated object
needs to be set to an initial state. The initial state needs to be a valid state of



38 What a component is and is not

the constructed object, but it may also depend on parameters specified by the
client asking for the new object. The code required to control object creation
and initialization can be a static procedure — usually called a constructor if it is
part of the object’s class. Alternatively, it can be an object of its own — usually
called a factory object, or factory for short if it is dedicated to this purpose.
Methods on objects that return freshly created other objects are another varia-
tion — usually called factory method:s.

4.1.3 Components and objects

Obviously, a component is likely to act through objects and therefore would
normally consist of one or more classes or immutable prototype objects. In
addition, it might contain a set of immutable objects that capture default ini-
tial state and other component resources.

However, there is no need for a component to contain classes only, or even
to contain classes at all. Instead, a component could contain traditional proce-
dures and even have global (static) variables (as long as the resulting state
remains unobservable), or it may be realized in its entirety using a functional
programming approach, or using assembly language, or any other approach.
Objects created in a component — more precisely, references to such objects —
can leave the component and become visible to the component’s clients, usu-
ally other components. If only objects become visible to clients, there is no
way to tell whether or not a component is “all object-oriented” inside.

What, then, is the difference between state maintained by objects created by
a component and state maintained by a component? This is a subtle but criti-
cally important point. State maintained by an object is abstracted by that
object’s reference. A component that does not maintain observable state
cannot (observably) maintain references even to the objects it created. A refer-
ence to the component itself (the component’s fully qualified name) cannot be
used to retrieve any objects. Interestingly, this property can be achieved in a
non-object-oriented setting. A functional component can create closures and a
procedural component can maintain tables of stateful records that are only
manipulated in table indices, which themselves are not kept by the component.
Whether or not any such state (in objects, closures, or tables) is persistent
across component activations is a separate question, the correct answer to
which depends on the intended use of a particular component.

A component may contain multiple classes, but a class is necessarily con-
fined to being part of a single component. Partial deployment of a class would
not normally make sense. Of course, just as classes can depend on other classes
using inheritance, components can depend on other components — this is an
import relation.

The superclasses of a class do not necessarily need to reside in the same
component as the class itself. Where a class has a superclass in another compo-
nent, the inheritance relation between these two classes crosses component



Terms and concepts 39

boundaries, forcing a corresponding import relationship between the two
underlying components. Inheritance of specifications is an essential technique
for establishing correctness, as, by referring to the same specification, two
components establish a common basis. Whether or not inheritance of imple-
mentations across components is a good thing is the focus of a heated debate
between different schools of thought. The deeper theoretical reasoning behind
this clash is interesting and close to the essence of component orientation.
Further detail and arguments follow in Chapter 7.

4.1.4 Modules

From the discussions so far, it should be clear that components are rather close
to modules, as introduced by modular languages in the late 1970s (Wirth,
1977; Mitchell et al., 1979). The most popular modular languages are
Modula-2 (Wirth, 1982) and Ada. In Ada, modules are called packages, but
the concepts are almost identical. An important hallmark of truly modular
approaches is the support of separate compilation, including the ability to
type-check across module boundaries properly.

With the introduction of the language FEiftel, it was claimed that a class is a
better module (Meyer, 1988). This seemed to be justified, based on the early
ideas that modules would each implement one abstract data type (ADT). After
all, a class can be seen as implementing an ADT, with the additional properties
of inheritance and polymorphism. However, modules can be used, and always
have been used, to package multiple entities, such as ADTs or, indeed, classes,
into one unit. Also, modules do not have a concept of instantiation, whereas
classes do. (In module-less languages, this frequently leads to the introduction
of “static” classes that essentially serve as simple modules.)

In more recent language designs — such as Oberon, Modula-3, Component
Pascal, and C* - the notions of modules (or assemblies in C#) and classes are
kept separate. In all cases, a module can contain multiple classes. (In languages
such as Java that do not have a separate module concept, modules can be emu-
lated to a degree by using nested classes.) Where classes inherit from each
other, they can do so across module boundaries. As an aside, it should be men-
tioned that in Smalltalk systems, it was traditionally acceptable to modity
existing classes to build an application. Attempts have been made to define
“module” systems for Smalltalk capturing components that cut through classes
— for example Fresco (Wills, 1991). Composition of such modules from inde-
pendent sources is not normally possible, though, and this approach is
therefore not further followed in this book.

Unlike classes, modules can indeed be used to form minimal components.
Even modules that do not contain any classes can function as components. A
good example is traditional math libraries that can be packaged into modules
and are of a functional rather than object-oriented nature. Nevertheless, one
aspect of fully fledged components is not normally supported by module concepts.



40 What a component is and is not

There are no persistent immutable resources that come with a module, beyond
what has been hardwired as constants in the code. Resources parameterize a
component. Replacing these resources allows the component to be configured
without the need to rebuild its code. For example, resource configuration can
be used for localization. The configuration of resources seems to assign muta-
ble state to a component. However, as components are not supposed to
modify their own resources, resources fall into the same category as the com-
piled code that also forms part of a component. Indeed, it is useful to regard a
localized version of a component as a different (but related) component.
Tracking the relationship between a component and its derived localized ver-
sions is similar to tracking the relationship between different release versions of
a component.

It is instructive to explore cases where modules do not quality as compo-
nents. Under the definition used here, components do not permit observable
state, while modules can clearly be built to use global (static) variables to
expose observable state. Furthermore, modules tend to depend statically on
implementations in other modules by importing direct interfaces from other
modules. For components, such static dependencies on component-external
implementations are allowed but not recommended. Static dependencies
should be limited to contractual elements, including types and constants.
Dependencies on implementations should be relegated to the object level by
preferring indirect over direct interfaces in module dependencies to enable
flexible compositions using multiple implementations of the same interface.

To summarize, modularity is a prerequisite for component technology, but
rules beyond the traditional modularity criteria are needed to form compo-
nents rather than just modules. Many modularity criteria go back to Parnas
(1972) and include the principle of maximizing cohesion of modules while
minimizing dependencies between modules. Modularity is thus certainly not a
new concept. Unfortunately, the vast majority of software solutions today are
not even modular. For example, it is common practice for huge enterprise
solutions to operate on a single database, allowing any part of the system to
depend on any part of the data model. Adopting component technology
requires adoption of principles of independence and controlled explicit
dependencies. Component technology unavoidably leads to modular solutions.
The software engineering benefits can be sufficient to justify initial investment
into component technology, even when component markets are not foreseen
in the mid-term.

4.1.5 Whitebox versus blackbox abstractions and reuse

Blackbox and whitebox abstraction refer to the visibility of an implementation
“behind” its interface. In an ideal blackbox abstraction, clients know no details
beyond the interface and its specification. In a whitebox abstraction, the inter-
face may still enforce encapsulation and limit what clients can do, although



Terms and concepts 41

implementation inheritance allows for substantial interference. However, the
implementation of a whitebox is fully available and can thus be studied to
enhance the understanding of what the abstraction does. (Some authors fur-
ther distinguish between whiteboxes and glassboxes, with a whitebox allowing
for manipulation of the implementation and a glassbox merely allowing study
of the implementation.)

Grayboxes are those that reveal a controlled part of their implementation.
This is a dubious notion, as a partially revealed implementation could be seen
as part of the specification. A complete implementation would merely have to
ensure that, as far as was observable by clients, the complete implementation
performs as the abstract partial one. This is the standard notion of refinement
of a specification into an implementation. Indeed, specification statements can
be seen as graybox specifications (Biichi and Weck, 1997).

Blackbox reuse refers to the concept of reusing implementations without
relying on anything but their interfaces and specifications. For example, in
most systems, application programming interfaces (APIs) reveal nothing about
the underlying implementation. Building on such an API is equivalent to
blackbox reuse of the implementation of that API.

In contrast, whitebox reuse refers to using a software fragment, through its
interfaces, while relying on the understanding gained from studying the actual
implementation. Most class libraries and frameworks are delivered in source
form, and application developers study the classes’ implementation to under-
stand what a subclass can or has to do.

The serious problems of whitebox reuse are analyzed in detail in Chapter 7.
For now it suffices to say that whitebox reuse renders it unlikely that the
reused software can be replaced by a new release. Such a replacement will
probably break some of the reusing clients, as these depend on implementa-
tion details that may have changed in the new release.

A definition: software component

From the above characterization, the following definition can be formed:

“A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by third parties.”

This definition was first formulated at the 1996 European Conference on
Object-Oriented Programming (ECOOP) as one outcome of the Workshop
on Component-Oriented Programming (Szyperski and Pfister, 1997).
The definition covers the characteristic properties of components discussed
before. It has a technical part, with aspects such as independence, contractual
interfaces, and composition. It also has a market-related part, with aspects such
as third parties and deployment. It is a property unique to components, not
only in the software world, to combine technical and market aspects. (An



42 What a component is and is not

interpretation of this definition from a purely technical point of view is pre-
sented in Chapter 20.)

From a more modern point of view, this definition requires some clarifica-
tion. The contract of a deployable component specifies more than
dependencies and interfaces, it specifies how the component can be deployed,
how, once deployed (and installed), it can be instantiated, and how the
instances behave through the advertised interfaces. This latter aspect goes
beyond a mere sum of per-interface specifications — an instance maintains an
invariant that couples the per-interface specifications. In fact, the per-interface
specifications need to be seen in isolation from any particular component that
provides or requires an implementation of such an interface.

For example, consider a queuing component that requires stable storage via
one interface and provides enqueue and dequeue operations via two further
interfaces. The component contract states that what is enqueued via one inter-
face can be dequeued via the other — a correlation that the individual
interface’s specifications cannot provide. The component contract also states
that the component, once instantiated, can only be used by connecting it to a
provider implementing the stable storage interface. This latter notion of con-
necting components that have matching provided and required interfaces
needs to be effected by the composition rules of a supporting component
model. The details of deployment and installation need to be supported by a
specific component platform.

Interfaces are discussed in more detail in the following subsection. A discus-
sion of context dependencies follows in the subsequent subsection.

4.1.6 Interfaces

Part One has already introduced the basic market aspects of component tech-
nology. Chapters 5-7 cover the aspects of interfaces, contracts, semantics, and
composition in detail. For the following, more market-oriented, discussion, it
suffices to consider the interface of a component to define the component’s
access points. These points allow clients of a component, usually components
themselves, to access the services provided by the component. Normally, a
component will have multiple interfaces corresponding to different access
points. Each access point may provide a different service, catering for different
client needs. Emphasizing the contractual nature of the interface specifications
is important because the component and its clients are developed in mutual
ignorance, so it is the contract that forms a common middle ground for suc-
cessful interaction.

What are the non-technical aspects that contractual interfaces have to obey
to be successful?

First, as mentioned in Part One, the economy of scale has to be kept in
mind. A component can have multiple interfaces, each representing a service
that the component offers. Some of the offered services may be less popular



Terms and concepts 43

than others, but if none is popular and the particular combination of offered
services is not popular either, the component has no market. In such a case,
the overheads involved in casting the particular solutions into a component
form may not be justified.

Notice, however, that individual adaptations of component systems may
well lead to the development of components that themselves have no market.
In this situation, extensions to the component system should build on what
the system provides, and the easiest way of achieving this may well be the
development of the extension in component form. In this case, the economic
argument applies indirectly in that the extending component itself is not
viable, but the resulting combination with the extended component system is.

Second, undue fragmentation of the market has to be avoided as it threat-
ens the viability of components. Redundant introductions of similar interfaces
have thus to be minimized. In a market economy, such a minimization is usu-
ally the result of either early standardization efforts among the main players in
a market segment or fierce eliminating competition. In the former case, the
danger is suboptimality due to “committee design” and, in the latter case, it is
suboptimality due to the non-technical nature of market forces.

Third, to maximize the reach of an interface specification and components
implementing this interface, there need to be common media to publicize and
advertise interfaces and components. If nothing else, this requires a small
number of widely accepted unique naming schemes. Just as ISBN
(International Standard Book Number) is a worldwide and unique naming
scheme to identify any published book, a similar scheme is needed to refer
abstractly to interfaces “by name.” Just as with an ISBN, an interface identifier
is not required to carry any meaning. An ISBN consists of a country code, a
publisher code, a publisher-assigned serial number, and a checking digit.
Although it reveals the book’s publisher, it does not code the book’s contents.
Meaning may be hinted at by the book’s title, but titles are not guaranteed to
be unique.

An interesting variation on the theme of interface standardization is the
standardization of message formats, schemas and protocols. Instead of formal-
izing interfaces as collections of parametric operations, the focus is on what is
passed back and forth. This viewpoint is sometimes described as the “view-
point of the wire” or as “wire formats,” alluding to the importance of
standardizing message schemas, formats, and protocols when interconnecting
machines in a network. Standardization of message formats, schemas and pro-
tocols is indeed the main approach of internet (IP, UDP, TCP, SNMP, and so
on) and web (HTTP, HTML, and so on) standards. To achieve broader
semantic coverage, it is useful to standardize message schemas in the context
of a single generic message format. This is the rationale behind XML, a single
generic format, the large number of related standards (including SOAP and
several XML web services standards), and the growing number of XML
schema standardization efforts (see Chapter 18).



44 What a component is and is not

4.1.7 EXxplicit context dependencies

Besides the specification of provides interfaces (more commonly called
required interfaces), the above definition of components also requires compo-
nents to specify their needs. In other words, the definition requires
specification of what the deployment environment will need to provide so that
the components can function. These needs are called context dependencies,
referring to the context of composition and deployment. They include the
component model that defines the rules of composition and the component
platform that defines the rules of deployment, installation, and activation of
components. If there were only one software component world, it would sut-
fice to enumerate requires interfaces (more commonly called required
interfaces) of other components to specify all context dependencies (Magee et
al., 1995; Olafsson and Bryan, 1997). For example, a mail merge component
would specify that it needs a file system interface. Note that, with today’s com-
ponents, even this list of required interfaces is not normally available. The
emphasis is usually just on provides interfaces. (Note that the more common
terms of provided and required interface aren’t quite accurate. Interfaces sit
between components and are, as such, neither required nor provided.)

In reality, there are several component worlds that partially coexist, partially
compete, and partially conflict with each other. For example, today there are
three or four major component worlds, based on OMG’s CORBA, Sun’s Java,
and Microsoft’s COM and CLR. In addition, component worlds are them-
selves fragmented by the various computing and networking platforms that
they support. This is not likely to change soon. However, from another per-
spective, these worlds collapsed to only two — the CORBA+Java world and the
Microsoft world (including COM+ and .NET/CLR). Yet, despite this appar-
ent culmination in just two poles, there is a surprising diversity at the level of
actual offerings, even including an open source effort to independently imple-
ment the CLI specification underlying CLR (www.ximian.com).

Just as the markets have so far tolerated a surprising multitude of operating
systems, there will be room for multiple component worlds. In a situation in
which multiple component worlds share markets, a component’s specification
of context dependencies must include its required interfaces as well as the
component world (or worlds) that it has been prepared for. There will, of
course, also be secondary markets for cross-component world integration. By
analogy, consider the thriving market for power plug adapters for portable
electrical devices. Thus, chasms are mitigated by efforts to provide bridging
solutions. Examples are OMG’s Interworking standard (part of CORBA since
version 2.0, July 1996 revision), which forms a bridge between Microsoft’s
COM and CORBA, and OMG’s EJB interoperation specification that has
formed part of the CORBA Component Model since CORBA version 3.0.
Nevertheless, such bridging will always compromise where the bridged worlds
are too different for the gap to be closed fully. To a degree, it is even demon-
strably impossible to bridge separate component worlds completely (Smith ez



Terms and concepts 45

al., 1998). When having a single universal standard offers overwhelming bene-
fits, a “shake-out” effect is likely to eliminate most competing standards, as
happened with VCR standards (for a detailed discussion see Messerschmitt and
Szyperski, 2002). Following the same example, the ongoing emergence of new
media for video storage and recording, along with new standards (CD, CD-R,
CD-RW, DVD, DVD-RAM, memory stick, compact flash, and so on), also
suggests that such convergence is not necessarily durable in the presence of
technological evolution.

4.1.8 Component “weight”

Obviously, a component is most useful if it offers the “right” set of interfaces
and has no restricting context dependencies at all — in other words, if it can
perform in all component worlds and requires no interface beyond those the
availability of which is guaranteed by the different component worlds.
However, only very few components, if any, would be able to perform under
such weak environmental guarantees. Technically, a component could come
with all required software bundled in, but that would clearly defeat the pur-
pose of using components in the first place. Note that part of the
environmental requirements lie with the machine that the component can exe-
cute on. In the case of a virtual machine, such as the Java VM, this is a
straightforward part of the component world specification. On native code
platforms, a mechanism such as Apple’s “Fat Binaries,” which packs multiple
binaries into one file, would still allow a component to run “everywhere.”

Instead of constructing a self-sufficient component with everything built in,
a component designer may have opted for “maximum reuse.” To avoid redun-
dant implementations of secondary services within the component, the
designer decided to “outsource” everything but the prime functionality that
the component offers itself. Object-oriented design has a tendency toward this
end of the spectrum, and many object-oriented methodists advocate this maxi-
mization of reuse.

Although maximizing reuse has many oft-cited advantages, it has one sub-
stantial disadvantage — the explosion of context dependencies. If designs of
components were, after release, frozen for all time, and if all deployment envi-
ronments were the same, then this would not pose a problem. However, as
components evolve, and different environments provide different configura-
tions and version mixes, it becomes a showstopper to have a large number of
context dependencies. With each added context dependency, it becomes less
likely that a component will find clients that can satisfy the environmental
requirements. To summarize:

Maximizing reuse minimizes use.

In practice, component designers have to strive for a balance. When faced with
requirements that specify the interfaces that a component should at least provide,



46 What a component is and is not

,~ Leanness Robustness

/

’

0 100
% reuse (“outsourcing”)

Figure 4.1 Opposing forcefields of robustness (limited context dependence) and leanness (limited
“fat”), as controlled by the degree of reuse within a component.

a component designer has a choice. Increasing the context dependencies usu-
ally leads to leaner components by means of reuse, but also to smaller markets.
Additionally, higher vulnerability in the case of environmental evolution must
be expected, such as changes introduced by new versions. Increasing the
degree of self-containedness reduces context dependencies, increases the
market, and makes the component more robust over time, but also leads to
“fatter” components. Figure 4.1 illustrates the optimization problem resulting
from trading leanness against robustness.

The effective costs of making a component leaner, compared with making it
more robust, need to be estimated to turn the qualitative diagram of Figure
4.1 into a quantitative optimization problem. There is no universal rule here.
The actual costs depend on factors of the component-producing organization
and of the target markets for the component. The markets determine the typi-
cal deployment environment and client expectations, including component
“weight” and expected lifetime.

Note that it is not just coincidence that Figure 4.1 and Figure 1.1 (p. 6) are
so similar. The discussion in this section focused on the “outsourcing” of parts
of a component. In contrast, the discussion in Chapter 1 concentrated on the
outsourcing of parts of a system — that is, the outsourcing of components. The
former is about reuse across components, whereas the latter is about reuse of
components.

4.2 Standardization and normalization

The “sweet spot” of the optimization problem introduced above can be
shifted toward leaner components by improving the degree of normalization
and standardization of interface and component worlds. The more stable and
widely supported a particular aspect is, the less risky it becomes to make it a
specified requirement for a component. Context dependencies are harmless
where their support is ubiquitous. For example, only 50 years ago it would



Standardization and normalization 47

have been a bad idea in many cases to form a business that depends on its cus-
tomers having access to a telephone. Nowadays, in many areas of the world,
this is clearly safe. (In some areas and cases it is now even safe to assume that
customers have internet and web access. Assuming broadband connectivity will
be next.)

4.2.1 Horizontal versus vertical markets

When aiming for the formation of standards that cover all areas representing
sufficiently large markets, it is useful to distinguish standards for horizontal
and vertical markets. A horizontal market sector cuts through all or many dif-
ferent market domains; it affects all or most clients and providers. A vertical
market sector is specific to a particular domain and thus addresses a much
smaller number of clients and providers. For example, the internet and the
world wide web standards are both addressing horizontal market sectors. In
contrast, standards for the medical radiology sector address a narrow vertical
market sector, which, as in this case, can have a substantial market volume all
the same.

Standardization is hard in horizontal market sectors. If a service is relevant
to almost everyone, the length of the wish list tends to be excessive. Consider,
as an example, the situation that standards committees for general-purpose
programming languages have to face. At the same time, it is the horizontal
market sectors in which a successful standard has the highest impact. The web
is one of the best examples of this.

Surprisingly, standardization in vertical sectors is just as difficult as it is in
horizontal ones, but for different reasons. The number of players is smaller, so
the likelihood of finding a compromise should be higher. However, the verti-
cal sector considered for a standard has to be wide enough for a viable market.
Also, with a smaller number of players, the mechanisms of market economies
work less well and it is less likely that good, cost-etfective solutions are found
within a short time.

4.2.2 Standard component worlds and normalization

Component approaches are most successful where the basic component world
and the most important interface contracts are standardized and these stan-
dards are sufficiently supported by the relevant industry. However, for
standardization to help, it is important to keep the number of competing stan-
dards low. With a single strong international standardization body, a single
strong company, a strong coalition of companies, or other organization behind
a standard, this can work. However, more likely than not, standards will com-
pete. A particularly dramatic explosion of “mutually unaware” competitors can
arise if vertical fragmentation leads to the reinvention of standards in allegedly
different sectors when the same standard would suit multiple sectors. For



48 What a component is and is not

example, it is conceivable that several image-processing standards in, say, med-
ical radiology and radio astronomy could be shared.

The risk of having large numbers of competing standards — and thus small
markets for many of them — can be reduced by means of normalization. By
publishing and cataloging “patterns” of common design, it is likely that other-
wise mutually unaware standardization bodies will discover mutual similarities
in their target domains. It is, of course, a matter of scale whether discovery and
exploitation of such similarities are worthwhile — that is, cost-effective — or not.



