
CHAPTER ONE

Introduction

This chapter defines the term software component and summarizes the key
arguments in favor of component software. Components are well established
in all other engineering disciplines, but, until the 1990s, were unsuccessful in
the world of software. The reasons behind this failure can be linked to the par-
ticular nature of software. The chapter concludes with a discussion of the
nature of software, its consequences for component software, and lessons
learned from successful and unsuccessful approaches.

Components are for composition

One thing can be stated with certainty: components are for composition.
Nomen est omen. (Literally, “the name is a sign”; usually interpreted as: one’s
name predicts one’s fate.) Composition enables prefabricated “things” to be
reused by rearranging them in ever-new composites. Beyond this trivial obser-
vation, much is unclear. Are most current software abstractions not designed for
composition as well? What about reusable parts of designs or architectures? Is
reuse not the driving factor behind most of these compositional abstractions?

Reuse is a very broad term covering the general concept of a reusable asset.
Such assets can be arbitrary descriptions capturing the results of a design effort.
Descriptions themselves normally depend on other, more detailed and more
specialized descriptions. To become a reusable asset, it is not enough to start
with a monolithic design of a complete solution and then partition it into frag-
ments. The likely benefits of doing so are minimal. Instead, descriptions have to
be carefully generalized to allow for reuse in a sufficient number of different
contexts. Overgeneralization has to be avoided to keep the descriptions nimble
and lightweight enough for actual reuse to remain practicable. Descriptions in
this sense are sometimes called components (Sametinger, 1997).

This book is not about reuse in general, but about the use of software com-
ponents. To be specific, for the purposes of this book, software components
are executable units of independent production, acquisition, and deployment
that can be composed into a functioning system. To enable composition, a

1.1

3

8557 Chapter 1 p1-16 3/10/02 10:24 PM Page 3

Introduction

software component adheres to a particular component model and targets a
particular component platform. (The details will be explored later; also, there
are several other attempts at defining this and related concepts; see Chapter
11.) Composite systems composed of software components are called compo-
nent software. The requirement for independence and executable form rules
out many software abstractions, such as type declarations, C macros, C++ tem-
plates, or Smalltalk blocks. Other abstractions, such as procedures, classes,
modules, or even entire applications, could form components, as long as they
are in an executable form that remains composable. Indeed, procedural
libraries are the oldest example of software components. Insisting on potential
independence and executable form is essential in order to allow for multiple
independent vendors, independent development, and robust integration.
These issues are therefore covered in great detail in this book.

What is the motive for producing, distributing, buying, or using software
components? What are the benefits of component software? The simplest
answer is that components are the way to go because all other engineering dis-
ciplines introduced components as they became mature – and still use them.
Shortly after the term software crisis was coined, the solution to the often-
cited crisis was also envisioned: software integrated circuits (ICs) (McIlroy,
1968; Cox, 1990)! Since then, for 30 years, people have wondered why this
intuitive idea never truly came to fruition.

Components – custom-made versus standard software

In the following discussions it is assumed that component software technology
is available. The question addressed in this section is “What are the benefits of
using components?”

Traditional software development can broadly be divided into two camps.
At one extreme, a project is developed entirely from scratch, with the help of
only programming tools and libraries. At the other extreme, everything is
“outsourced” – in other words, standard software is bought and parametrized
to provide a solution that is “close enough” to what is needed. Full custom-
made software has a significant advantage (when it works): it can be optimally
adapted to the user’s business model and can take advantage of any in-house
proprietary knowledge or practices. Hence, custom-made software can provide
the competitive edge in the information age – if it works.

Custom-made software also has severe disadvantages, even if it does work.
Production from scratch is a very expensive undertaking. Suboptimal solutions
in all but the local areas of expertise are likely. Maintenance and “chasing” of the
state-of-the-art, such as incorporating web access, can become a major burden.
Interoperability requirements further the burden, with other in-house systems
and, more critically, also with business partners and customers. As a result, most
large projects fail partially or completely, leading to a substantial risk. Also, in a
world of rapidly changing business requirements, custom-made software is often
too late – too late to be productive before becoming obsolete.

1.2

4

8557 Chapter 1 p1-16 3/10/02 10:24 PM Page 4

Components – custom-made versus standard software

With all these guaranteed disadvantages in mind, which are offset by only
potential advantages, the major trend toward “outsourcing” in the industry is
understandable. Production of custom-made software is outsourced under fixed-
price contracts to limit the financial risk. To cover the time-to-market risk, there
is a strong trend toward using standard software – that is, software that is only
slightly adjusted to actual needs. The burden of maintenance, product evolution,
and interoperability is left to the vendor of the standard package. What remains
is to carry over parametrization and configuration detail when moving to the
next release – still a substantial effort, but unavoidable in a world of change.

What, then, is wrong with standard software? Several things. First, standard
software may necessitate a greater or lesser reorganization of the business pro-
cesses affected. Although business process re-engineering can be a very
worthwhile undertaking, it should be done for its own sake rather than to
make the best of suboptimally fitting standard software. Second, standard soft-
ware is a standard: competitors have it as well and no competitive edge can
possibly be achieved by using it (except by using it extraordinarily well). In any
case, this is acceptable only when tight regulations eliminate competitive
advantages. Third, as standard software is not under local control, it is not
nimble enough to adapt quickly to changing needs.

Here is an example of standard software forcing its footprint on to a large
and well-established organization. In 1996, Australia Post decided to use
SAP’s R/3 integrated solution. With R/3, Australia Post can keep track of
each individual transaction, down to the sale of a single stamp. Australia Post is
a large organization with a federated structure; each Australian state has its
own head office reporting to the central head office.

Traditionally, state head offices reported on the basis of summaries and
accounts “in-the-large.” For example, detailed sales figures for each branch
office were not passed on beyond the state head office. R/3, however, sup-
ports only a monotonic hierarchy of access authorizations. It is not possible to
grant the national head office access to the accounts in-the-large without also
granting access to every individual transaction. This was disturbing news for
state head offices as their tradition of relative autonomy in making local deci-
sions was undermined. Indeed, the strictly hierarchical business model
enforced by R/3 clashed with the concept of a federated organization that del-
egates much responsibility and authority to its members – in this case, the state
posts. SAP’s comment, when asked if this aspect of R/3 could be changed,
was: “Our systems implement best practice – why would you want to deviate
from that?” The key point is that adoption of a standard solution may force
drastic changes on the culture and operation of an organization.

With only two poles available, custom-made software loses out to a great
extent. Standard packages create a level playing field and a necessary competi-
tive edge has to come from other areas. Increasingly, software services are seen
as something that is necessary simply to survive. Clearly, this is far from ideal
when information and information processing have a great effect on most
businesses and even define many of the newer ones.

5

8557 Chapter 1 p1-16 3/10/02 10:24 PM Page 5

Introduction

The concept of component software represents a middle path that could
solve this problem. Although each bought component is a standardized prod-
uct, with all the attached advantages, the process of component assembly
allows the opportunity for significant customization. It is likely that compo-
nents of different qualities (level of performance, resource efficiency,
robustness, degree of certification, and so on) will be available at different
prices. It is thus possible to set individual priorities when assembling based on
a fixed budget. In addition, some individual components can be custom-made
to suit specific requirements or to foster strategic advantages. Figure 1.1 illus-
trates some of the tradeoffs brought about by the spectrum of possibilities
opened up by component software.

The figure is in no way quantitative, and the actual shape of the two curves
is somewhat arbitrary. Intuitively, however, it is clear that non-linear effects
will be observed when approaching the extremes. For example, at the left end
of the scale, when everything is custom-made, flexibility has no inherent limits,
but cost efficiency plummets.

Component software also puts an end to the age-old problem of massive
upgrade cycles. Traditional fully integrated solutions required periodic upgrad-
ing. Usually this was a painful process of migrating old databases, ensuring
upwards compatibility, retraining staff, buying more powerful hardware, and
so on. In a component-based solution, evolution replaces revolution, and indi-
vidual upgrading of components as needed and “out of phase” can allow for
much smoother operations. Obviously, this requires a different way of manag-
ing services, but the potential gains are immense.

Inevitability of components

Developing excellent component technology does not suffice to establish a
market. The discipline is full of examples of technically superior products that
failed to capture sufficiently large markets. Besides technical superiority, a com-
ponent approach needs critical mass to take off. A component approach gains

1.3

6

Figure 1.1 Spectrum between make-all and buy-all.

Cost
efficiency

Flexibility,
nimbleness,

competitive edge

0
% bought

100

8557 Chapter 1 p1-16 3/10/02 10:24 PM Page 6

Inevitability of components

critical mass if the offered components are of sufficient variety and quality,
there is an obvious benefit of using the components, and the offering is backed
by sufficiently strong sources or sufficiently many second sources. Once critical
mass is reached in a market segment, use of components in that segment
quickly becomes inevitable. A “vortex” forms that pulls in traditional solutions
in the area.

Not using available components requires reinvention of solutions. This can
only be justified when the made solution is greatly superior to the buyable
alternatives. Also, in a competitive market, components will improve in quality
much faster than “hand-crafted” solutions. The result is the above-mentioned
vortex: it becomes increasingly difficult to escape from using components.

As long as all solutions to problems are created from scratch, growth can be
at most linear. As components act as multipliers in a market, growth can
become exponential. In other words, a product that utilizes components bene-
fits from the combined productivity and innovation of all component vendors.
The component vendors are focused, supply many different customers, and are
thus able to perfect their components rapidly. Therefore, even where an organ-
ization manages to sustain its proprietary technology, its relative market share
will quickly dwindle in a market rapidly dominated by component technology.
Avoiding the proximity of a component vortex promises calm waters but also
eliminates the impulse that can be gained from the mighty pull of the vortex.

Preparedness for an emerging component market can be the deciding suc-
cess factor for a company approaching such a vortex. Insistence on proprietary
approaches can be catastrophic. Part of being prepared is the adoption of soft-
ware engineering approaches that are component friendly – that is, they
support modularity of requirements, architectures, designs, and implementa-
tions. Preparing for components thus leads to substantial advantages as a result
of a better software engineering process, even if component markets are still
seen as beyond the “planning horizon.”

Out of preparedness a more proactive role can be developed. The first
organization to create a convincing set of components for a certain market
segment can set standards and shape the then emerging market to its own
advantage. Instead of waiting for others or claiming that it is unlikely that, in a
particular domain, a component market will ever form, stronger organizations
may want to take the lead. An interesting example was the move by Sun to
make its Solaris operating system “modular” (Wirthman, 1997). Instead of
offering a collection of specialized operating systems, Sun factored Solaris into
modules that can be combined according to needs (Mauro and McDougall,
2001). In a similar fashion, Microsoft factored Windows CE and provides
means to custom-assemble a Windows CE version for a particular device to
trim resource consumption and match device capabilities and purpose (Boling,
2001; Wilson and Havewala, 2001). These are first steps. If Sun or Microsoft
allowed third-party modules (beyond device drivers), then this could well
create a component market supporting the creation of highly customized
operating infrastructure for specialized devices and appliances.

7

8557 Chapter 1 p1-16 3/10/02 10:24 PM Page 7

Introduction

The nature of software and deployable entities

Software components were initially considered to be analogous to hardware
components in general and to integrated circuits in particular. Thus, the term
software IC became fashionable. Other related notions followed, such as soft-
ware bus and software backplane (Figure 1.2).

Also popular is the analogy between software components and components
of stereo equipment. More far fetched are analogies with the fields of mechani-
cal and civil engineering – gith gears, nuts, and bolts, for example. However,
comparisons did not stop at engineering disciplines and continued on into
areas as extreme as the world of toys. The Lego block model of object technol-
ogy was conceived but has also been strongly criticized. These analogies
helped to sell the idea of software components by referring to other disciplines
and areas in which component technology has been in use for some time and
had begun to fulfill its promises.

All the analogies tend to give the impression that the whole world, with the
one exception of software technology, is already component oriented! Thus, it
ought to be possible – if not straightforward – to follow the analogies and
introduce components to software as well. This did not happen for most of the
industry, and for good reason. None of the analogies aids understanding of the
true nature of software.

Software is different from products in all other engineering disciplines (for a
comprehensive analysis, see Messerschmitt and Szyperski, 2002). Rather than
delivering a final product, delivery of software means delivering the blueprints
for products. Computers can be seen as fully automatic factories that accept
such blueprints and instantiate them. Special measures must be taken to pre-
vent repeated instantiation – the normal case is that a computer can instantiate
delivered software as often as required. The term software IC and the associ-
ated analogy thus fail to capture one of the most distinctive aspects of software
as a metaproduct. It is important to remember that it is these metaproducts
that are actually deployed when acquiring software. The same holds true for
software components.

It is as important to distinguish between software and its instances as it is to
distinguish between blueprints and products, between plans and a building, or
between beings and their genes (between phenotypes and genotypes).
Whereas such lines are clearly drawn in other engineering disciplines, software
seems “soft” enough to tolerate a confusion of these matters.

1.4

8

Figure 1.2 The software IC connected to a software bus.

8557 Chapter 1 p1-16 3/10/02 10:24 PM Page 8

The nature of software and deployable entities

There has been confusion about abstractions and instances since entity–rela-
tionship modeling (this was pointed out to the author by Alan Wills). To
reintroduce a distinction that should have been in place from the beginning,
phrases such as “entity occurrence” and “entity definition” are used. This con-
fusion is even encouraged in the world of object technology. The
corresponding distinction between class and object is frequently omitted,
although there is occasional clarification of something as an “object instance”
or an “object class.” The established practice of not distinguishing between
objects and classes leads the way, so the large number of nebulous publications
on objects is not astonishing. To take an arbitrary example, consider the fol-
lowing astounding quotation (Cheung, 1996, p. 72):

“The port class has 1024 virtual-circuit classes.”

The article refers to an object model diagram as defined by the object model-
ing technique (OMT) (Rumbaugh et al., 1991). A small excerpt of the
diagram is shown in Figure 1.3.

What the author meant was: “The port object has 1024 virtual-circuit
objects.” There is nothing wrong with the cited article. The most likely expla-
nation is that this “glitch” was the result of an attempt by the editor to
introduce sharpness of terms and not call everything an object. This sort of
mistake is easy to make – OMT object model diagrams describe the static rela-
tions of classes, but, when annotations refer to numbers of partners in a
relation class, instances (objects) are meant. The UML diagrams and notation
used throughout this book are much clearer in that they advocate a clear dis-
tinction between objects and classes.

The confusion between objects and classes is closely related to the nature of
software. For example, both the plan of a building and the building itself can
be modeled as objects. At the same time, the plan is the “class” of the build-
ing. There is nothing wrong with this, as long as the two kinds of objects are
kept apart. In the world of logic, but also in database theory, this is called
stratification – that is, introduction and maintenance of strata or levels of
organization. Construction (and breach) of such layers has to be based on
deep understanding. Some might argue that this lighthearted way of dealing

9

Figure 1.3 OMT object model with quantified “has” relationship. (After Rumbaugh, J., Blaha, M.,
Lorenson, W., Eddy, F., and Premerlani, W. (1991) Object-Oriented Modelling and Design. Prentice
Hall, Englewood Cliffs, NJ.)

Virtual circuit

1024

has

Port

8557 Chapter 1 p1-16 3/10/02 10:24 PM Page 9

Introduction

with object-oriented (OO) terminology had to be expected. After all, “object”
is one of the most indefinite and imprecise terms that people could possibly
use to name a concept. It seems fairly objective to say that.

To understand why it is so important to differentiate between plans and
instances, it is useful to take a brief look at some of the ramifications of deliver-
ing plans rather than instances. Plans can be parametrized, applied recursively,
scaled, and instantiated any number of times. None of this is possible with
actual instances. As, with software, it is the plans that are delivered, instances
can be of different shapes by using different parametrizations of the plan. In
other words, software is a generic metaproduct that can be used to create
entire families of instances.

If analogies to components in other engineering disciplines break down,
then what about mathematics? Although defended by some, the purely mathe-
matical approach fails exactly where the engineering analogies help – and vice
versa. Mathematics and logic draw their strength from the isolation of aspects,
their orthogonal treatment, and their static capturing. These are excellent
tools to understand the software concepts of uniformity of resources, arbitrary
copying, recursive nesting, parametrization, or configuration. However, math-
ematical modeling fails to capture the engineering and market aspects of
component technology – that is, the need to combine all facets, functional and
extra-functional, into one interacting whole, forming a viable product.

In conclusion, software technology is an engineering discipline in its own
right, with its own principles and laws. Analogies with other engineering disci-
plines help us to understand certain requirements, such as those of proper
interaction with markets and consideration of complex feature interactions. At
the same time, these analogies break down quickly when going into technical
detail. Deriving software architecture (component-oriented or not) by analogy
with approaches in other disciplines is downright dangerous. The distinguish-
ing properties of software are of a mathematical rather than a physical nature.
However, placing emphasis solely on the mathematical underpinning is never
enough to carry any engineering discipline. In particular, from a purely formal
point of view, there is nothing that could be done with components that could
not be done without them. The differences are concepts such as reuse, time to
market, quality, and viability. All of these are of a non-mathematical nature –
and value. Mathematics is not goal-driven, whereas engineering is: the goal is
to create products.

Components are units of deployment

A software component is what is actually deployed – as an isolatable part of a
system – in a component-based approach. Contrary to frequent claims, objects
are almost never sold, bought, or deployed. The unit of deployment is some-
thing rather more static, such as a class, or, more likely, a set or framework of
classes, compiled and linked into some package. Objects that logically form

1.5

10

8557 Chapter 1 p1-16 3/10/02 10:24 PM Page 10

Components are units of deployment

parts of component “instances” are instantiated as needed, based on the classes
that have been deployed with a component. Although a component can be a
single class, it is more likely to be a collection of classes, sometimes called a
module. (Components have further characteristics that distinguish them from
modules – details can be found in section 20.3.) Components as a whole are
thus not normally instantiated. Also, a component could just as well use some
totally different implementation technology, such as pure functions or assembly
language, and look not at all object-oriented from the inside (Udell, 1994):

“Object orientation has failed but component software is succeeding.”

If classes are so similar to components, why did object technology not suc-
ceed in establishing significant component markets? The answers are
manifold. First, the definition of objects is purely technical – briefly, encapsu-
lation of state and behavior, polymorphism, and inheritance. The definition
does not include notions of independence or late composition. Although
such conditions can be added (Chapter 4, section 4.1), their lack has led to
the current situation in which object technology is mostly used to construct
monolithic applications.

Second, object technology tends largely to ignore the aspects of economies
and markets and their technical consequences. Early proponents of object
orientation predicted object markets, places that would offer catalogs full of
objects or, more likely, classes, class libraries, and frameworks (Cox, 1990).
The opposite has in fact occurred (Nierstrasz, 1991). Today we have only a
small number of such sources. Most of them are driven by vendors that pro-
vide such semifinished software products to sell something else. The classic
Microsoft Foundation Classes (MFC) is a good example. MFC primarily serves
as a vehicle to simplify and unify programming for Microsoft’s operating sys-
tems, component model, and application environments. There is no doubt
that the vision of object markets did not happen. On the contrary, most of the
few early component success stories were not even object-oriented, although
some are object-based. (The relatively successful class libraries and frameworks
are not software components in the strict sense used here.)

More recently, and based on true component technologies, successful markets
began forming. Companies such as ComponentSource.com or Flashline.com sell
thousands of ready-made components, mostly in the COM and Java categories,
but VCL (a Delphi/C++ Builder technology by Borland) and .NET compo-
nents are also present. CORBA components, however, are essentially
non-existent on these markets. Companies such as ILOG and Rogue Wave
Software generate substantial revenues by focusing on the production of compo-
nents. ILOG approached $80 million in revenues in its fiscal year ending mid
2001. ILOG focuses on C, C++, and Java components for simulation/optimiza-
tion, visual presentation, and business rule-based applications.

To some extent, the misprediction of object markets is understandable. For
a technologist, markets are too easily considered marginal, as something left

11

8557 Chapter 1 p1-16 3/10/02 10:24 PM Page 11

Introduction

for others to worry about once the technological problems have been solved.
However, components are as much about the potential of technology as they
are about technology. The additional investment required to produce compo-
nents – rather than fully specialized solutions – can only be justified if the
return on investment follows.

Typically, a component has to have a sufficiently large number of uses, and
therefore clients, for it to be viable. As a rule of thumb, most components need
to be used three times before breaking even. That is, two separate, from-scratch
development efforts are still cheaper than a single effort to produce a more
generic component. Repeated use is the central idea behind the notion of
“reuse.” For clients to use a component instead of a specialized solution, the
component needs to have substantial advantages. One advantage could be tech-
nological superiority, but other advantages are more likely to help, such as the
first solution to a known open problem, broad support base, brand name, and
so on. Obviously, for larger organizations, “markets” could be found in-house –
interestingly, most large organizations are now organized into cost centers and
selling to internal clients is not much simpler than selling to external clients.

Lessons learned

Where are the mentioned component success stories? For many years, the
most popular has been Microsoft’s Visual Basic. Later, successes based on Java,
Enterprise JavaBeans (EJB) and COM+ have followed. However, the oldest
success stories are all modern operating systems. Applications are coarse-
grained components executing in the environment provided by an operating
system. Interoperability between such components is as old as the sharing of
file systems and common file formats, or the use of pipe-and-filter composi-
tion. Other older component examples are relational database engines and
transaction-processing monitors. Further, more recent successes, using finer-
grained components, are plugin architectures. These have been in widespread
use since the introduction of Netscape’s Navigator web browsers. One of the
first successful plugin architectures was Apple’s QuickTime. Plugins (under the
name of “extensions”) have also been cultivated in the Mac OS, where they
originated from “inits,” patches to the system software in ROM that are
loaded at boot time. DOS terminate-and-stay-resident applications (TSRs)
were of comparable nature. Active Server Pages (ASP) and Java Server Pages
(JSP) architectures for web servers follow a similar approach, accepting appli-
cation-specific plugins into the server to provide server-side computations and
web page synthesis to service incoming web requests. Finally, modern applica-
tion and integration servers around J2EE and COM+ / .NET offer refined
component models that bring much-needed discipline and opportunities for
component use to the complex realm of enterprise applications.

What do all the above examples have in common? In all cases there is an
infrastructure providing rich foundational functionality for the addressed

1.6

12

8557 Chapter 1 p1-16 3/10/02 10:24 PM Page 12

Lessons learned

domain. Components can be purchased from independent providers and
deployed by clients. The components provide services that are substantial
enough to make duplication of their development too difficult or not cost-
effective. Multiple components from different sources can coexist in the same
installation. None of the named systems really shines when it comes to arbi-
trary combinations of components. In all cases, such combinations can lead to
misbehavior. Apparently, for a working component market, it is sufficient that
composability is highly likely rather than absolutely guaranteed.

Besides all this, there is another aspect that is often overlooked. In all the
successful examples, components exist on a level of abstraction where they
directly mean something to the deploying client. With Visual Basic, this is
obvious – a control has a direct visual representation, displayable and editable
properties, and has meaning that is closely attached to its appearance. With
plugins, the client gains some explicable, high-level feature and the plugin
itself is a user-installed and configured component.

Most objects have no meaning to clients who are not programmers. Class
libraries and frameworks are typical developer tools and require highly trained
and qualified programmers for their proper use. It is appropriate that compo-
nent construction is left to persons of such standing. However, for
components to be successful, composition and integration – that is, compo-
nent assembly must not generally be confined to such a relatively small elite
group. Today, there are many more authors of scripts than there are program-
mers. These customers are more interested in products that are obviously
useful, easy to use, and can be safely mixed and matched – they are not in the
least interested in whether or not the products are internally object-oriented.

Objects are rarely shaped to allow for mix-and-match composition by a
third party – also known as “plug and play.” Configuring and integrating an
individual object into some given system is not normally possible, so objects
cannot be sold independently. Frameworks – the larger units, which are sold –
are even worse. Frameworks have traditionally been designed almost to
exclude composition. Combining multiple traditional object-oriented frame-
works is difficult, to say the least.

Taligent’s CommonPoint – the best-known approach that aimed at the con-
struction of many interoperating frameworks – failed to deliver on its promises
(although other projects at Taligent did lead to the successful development of
new technology). Above all, the approach was overdesigned, aiming for maxi-
mum flexibility everywhere, so even the simplest things turned out to be
complex. Individual developers were responsible for relatively small parts of
the system and thus naturally aimed for the solution. The result was an
extremely large system for its time. According to a 1995 Ovum report (Ring
and Carnelly, 1995), CommonPoint provided over 100 frameworks, covering
about 2000 public classes, an equal number of non-public classes and 53000
methods. For comparison, Win32, the Microsoft Windows API, supports
roughly 1500 calls. However, the Taligent size has been exceeded by both

13

8557 Chapter 1 p1-16 3/10/02 10:24 PM Page 13

Introduction

Sun’s Java and Microsoft’s .NET frameworks. The Java 2 Standard Edition,
version 1.4, comprises around 2700 classes and interfaces in about 130 pack-
ages. The Java 2 Enterprise Edition, v1.3 (which includes the Standard Edition
1.3), comprises around 3900 classes and interfaces (over 5000 when counting
CORBA and Apache contributions). The first version of the Microsoft .NET
Framework comprises around 4000 classes, interfaces, and types in about 70
assemblies. In comparison to these more recent frameworks, the size of the
Taligent effort almost pales, yet it would be fair to observe that these later
efforts learned from the Taligent attempt.

Dependencies in such a large system need to be managed carefully. However,
the CommonPoint frameworks exposed far too many details and were only
weakly layered. In other words, the overall architecture was underdeveloped.
For the same reasons, other large industry projects have struggled before,
including the major redevelopment effort at Mentor Graphics (Lakos, 1996).

A direct contributor to many of the early fiascos was the chosen implementa-
tion language, C++. C++ does not directly support a component concept, so
management of dependencies becomes difficult. For example, a fundamental
mistake made at Taligent when designing CommonPoint was to assume that the
C++ object model would be an appropriate component model, whereas in real-
ity it is too fragile. Blackbox reuse, as introduced in later parts of the book, was
neglected in preference for deep and entangled multiple inheritance hierarchies.
Finally, overdesign and the C++ template facilities led to massive code bloat.

Merely replacing C++ with another, perhaps cleaner, object-oriented pro-
gramming language does not solve the problem. A component-oriented
approach goes much deeper than simply picking the right language. For exam-
ple, while some fragilities of C++ are avoided in the design of Java and even
more in the design of C#, it is still close to trivial to miss the boat with these lan-
guages. Truly component-oriented languages have yet to arrive and even then
they will not solve many of the intrinsic engineering tradeoffs that engineers of
software components and component software have to face and address.

A project that struggled for a long time is IBM’s SanFrancisco framework,
which has changed course and reset sails several times over the past years –
moving from C++ and CORBA on to Java, and finally to EJB. In its version
2.1 (released in October 2000) the SanFrancisco frameworks counted over
1100 components. In late 2001, IBM stopped SanFrancisco and instead
started promoting WebSphere Business Components (WSBC). Then, accord-
ing to IBM, WSBC was the largest component collection focusing on the
server side. WSBC consists of newly designed server-side EJB session and
entity components with a focus on financial industries. At least for the part of
WSBC that follows the EJB model of strong separation through declared and
configurable dependencies, WSBC may now succeed where previous frame-
work approaches failed.

For components to be independently deployable, their granularity and
mutual dependencies have to be carefully controlled from the outset. For large

14

8557 Chapter 1 p1-16 3/10/02 10:24 PM Page 14

Lessons learned

systems, it becomes clear that components are a major step forward from
objects (classes). This is not to say that objects are to be avoided. On the con-
trary, object technology, if harnessed carefully, is probably one of the best ways
to realize component technology. In particular, the modeling advantages of
object technology are certainly of value when constructing a component. On
the flip side, modeling of component-based systems is still a largely unsolved
problem, although there have been some recent inroads (for example,
D’Souza and Wills, 1999, and Cheeseman and Daniels, 2000). UML, for
instance, is still ill equipped to model component-based designs, though
improvements in this area are one of the major goals for the UML 2.0 defini-
tion (still in its early phases in early 2002).

Under the constant pressure of Moore’s law, the world of software has been
expanding to take advantage of exponentially more powerful hardware
resources. The resulting solutions reach into ever more areas of business and
society, leading to new requirements, new markets, and new overall dynamics
at a rapid pace. Software technology responded with a very dynamic evolution.
However, components are hard to establish in a world of extreme dynamics.
While much in the world of software needs to continue to progress rapidly,
certain aspects need to evolve more gradually at a more controlled pace. These
include the foundations of software components, including component models
and basic technologies. The significant market advantage that can be gained
from having third-party component backing for any platform creates the nec-
essary feedback loop. To grow and sustain any such third-party communities,
the major drivers of software technology, such as Sun and Microsoft, need to
maneuver carefully. Players focusing on supplying components can only be
viable if investments can be amortized (and profits drawn) before the rules
change again. The following chapter covers the interaction between technol-
ogy and markets in more depth.

15

8557 Chapter 1 p1-16 3/10/02 10:24 PM Page 15

