
<Insert Picture Here>

From Lambdas to Bytecode
Brian Goetz
Java Language Architect

The image part with

SAM conversion

•  Lambda expressions are anonymous methods
•  Always converted to “SAM” (single abstract method) types

 interface Predicate<T> { boolean apply(T t); }

 Collection<T> filter(Predicate<T> p) { ... }

 kids = people.filter(#{ p -> p.age < 18 });

•  Compiler takes care of type inference and SAM
target selection
•  Figures out that the lambda can be converted to

Predicate<Person>

•  But then, what bytecode should the compiler emit?

The image part with

Translation options

•  Could just translate to inner classes
•  #{ p -> p.age < TARGET } translates to
class Foo$1 implements Predicate<Person> {
 private final int v0;
 Foo$1(int $v0) { this.$v0 = v0 }
 public boolean apply(Person p) {
 return (p.age < $v0);
 }
}

•  Capture == invoke constructor (new Foo$1(TARGET))
•  One class per lambda expression – yuck
•  Would burden lambdas with identity

•  Would like to improve performance over inner classes
•  Why copy yesterday’s mistakes?

The image part with

Translation options

•  Could translate directly to method handles
•  Desugar lambda body to a static method
•  Capture == take method reference + curry captured args
•  Invocation == MethodHandle.invoke

•  Whatever translation we choose becomes not only
implementation, but a binary specification
•  Want to choose something that will be good forever
•  Is the MH API ready to be a permanent binary specification?
•  Are raw MHs yet performance-competitive with inner

classes?

The image part with

Translation options

•  What about “inner classes now and method handles
later”?
•  But old class files would still have the inner class translation
•  Java has never had “recompile to get better performance”

before

•  Whatever we do now should be where we want to
stay
•  But the “old” technology is bad
•  And the “new” technology isn’t proven yet
•  What to do?

The image part with

Invokedynamic to the rescue!

•  We can use invokedynamic to delay the translation
strategy until runtime
•  Invokedynamic was originally intended for dynamic

languages, not statically typed languages like Java
•  But why should the dynamic languages keep all the dynamic

fun for themselves?

•  We can use invokedynamic to embed a recipe for
constructing a lambda at the capture site
•  At first capture, a translation strategy is chosen and the call

site linked
•  Subsequent captures bypass the slow path
•  As a bonus, stateless lambdas translated to constant loads

The image part with

Layers of cost for lambdas

•  Any translation scheme imposes costs at several
levels:
•  Linkage cost – one-time cost of setting up capture
•  Capture cost – cost of creating a lambda
•  Invocation cost – cost of invoking the lambda method

•  For inner class instances, these correspond to:
•  Linkage: loading the class
•  Capture: invoking the constructor
•  Invocation: invokeinterface

•  The key cost to optimize is invocation cost

The image part with

Code generation strategy

•  All lambda bodies are desugared to static methods
•  For “stateless” (non-capturing) lambdas, lambda signature

matches SAM signature exactly
#{ String s -> s.length() == 10 }
•  Becomes (when translated to Predicate<String>)

 static boolean lambda$1(String s) {

 return s.length() == 10;

 }

The image part with

Code generation strategy

•  For lambdas that capture variables from the
enclosing context, these are prepended to the
argument list
•  We only allow capture of (effectively) final variables
•  So we can freely copy variables at point of capture
#{ String s -> s.length() == target }
•  Becomes (when translated to Predicate<String>)

 static void lambda$1(int target, String s) {

 return s.length() == target;

 }

The image part with

Code generation strategy

•  At point of lambda capture, compiler emits
invokedynamic call to create SAM (“lambda factory”)
•  Call arguments are the captured values (if any)
•  Bootstrap is method in language runtime (“metafactory”)
•  Static arguments identify properties of the lambda and SAM
list.filter(#{ s -> s.length() == target });

Becomes
list.filter(indy[bsm=mf, args=...](target));

•  Static args encode properties of lambda and SAM
•  Is lambda cacheable?
•  Is SAM serializable?

The image part with

Static bootstrap arguments

•  Static bootstrap arguments might look like

metaFactory(Lookup caller, // provided by VM

 String invokedName, // provided by VM

 MethodType invokedType, // provided by VM

 Class<?> samClass, // SAM conversion target

 String samMethodName, // SAM conversion target

 MethodType samMethodType, // SAM conversion target

 MethodHandle handle, // lambda body

 Class<?> implClass, // lambda body

 String implName, // lambda body

 MethodType implType, // lambda body

 String uniqueToken) // needed for serialization

The image part with

Benefits of invokedynamic

•  Invokedynamic is the ultimate lazy evaluation idiom
•  For stateless lambdas that can be cached, they are

initialized at first use and cached at the capture site
•  Programmers frequently cache inner class instances (like

Comparators) in static fields, but indy does this better

•  No overhead if lambda is never used
•  No field, no static initializer
•  Just some extra constant pool entries

•  SAM conversion strategy becomes a pure
implementation detail
•  Can be changed dynamically by changing metafactory

The image part with

Possible translation strategies

•  Spin inner classes dynamically
•  Generate the same class the compiler would, just at runtime
•  This is likely to be the initial strategy, until we can prove that

there’s a better one
•  Spin per-SAM wrapper classes (one wrapper class per

SAM type)
•  Use method handles, for invocation
•  Use ClassValue to cache wrapper for SAM
•  Some annoying interactions with erasure here

•  Use dynamic proxies
•  Use MethodHandle.asInstance

•  This is basically pushing the problem to the MH runtime
•  Use VM-private APIs to build object from scratch

The image part with

Serialization

•  Users will expect this code to work:
interface Foo extends Serializable {
 public boolean eval();
}
Foo f = #{ false };
// now serialize f

•  Since our code generation strategy is dynamic, our
serialization strategy must be also
•  Answer: use readResolve / writeReplace
•  Instead of serializing lambda directly, serialize the recipe (say,

to some well defined interface SerializedLambda)
•  On deserialization, reconstitute from recipe

•  Using then-current lambda creation strategy, which might
be different from the one that originally created the lambda

