
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-26: Introduction to Python

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

2

▪ Python Developed by Guido van Rossum in the early 1990s
▪ In July 2018, Van Rossum stepped down as the leader in the language community after

30 years.

▪ Named after Monty Python

▪ Available for download from http://www.python.org

Slides freely adapted from:
“Full Python Tutorial”

http://www.python.org/

4

Language features
▪ Interpreted

▪ Dynamically typed

▪ Object oriented (simple object system)

▪ Supports imperative and functional paradigms

▪ Several sequence types
▪ Strings; List, mutable; Tuples, immutable; Sets

▪ Dictionaries (hash maps)

▪ Powerful subscripting (slicing)

▪ Higher-order functions (@decorators)

▪ Flexible signatures

▪ Iterators and generators

▪ Exceptions as in Java

▪ Supports multi-threading

▪ Indentation instead of braces ({…})

5

Pragmatics: Why Python?
▪ Most used general purpose language

▪ Better Machine Learning libraries!

▪ Very good example of scripting, “glue” language

▪ “Pythonic” style is very concise

▪ Powerful but unobtrusive object system

▪ Every value is an object

▪ Powerful collection and iteration abstractions

▪ Dynamic typing makes generics easy

6

Dynamic typing – the key difference

▪ Java & others: statically typed
▪ Variable declaration (or type inference) fixes the type

▪ Python
▪ Variables come into existence when first assigned to

▪ Variables are not typed: Values are typed!

▪ A variable can refer to an object of any type
▪ Even to objects of different types in the same execution

▪ Strongly typed: value type does not change in
unexpected ways

▪ Type-safe: no conversion or operation can be applied to
values of wrong type
▪ Really? Not proved… and Bools…

▪ Clearly, type errors are only caught at runtime

▪ Duck typing (vs. traits and type classes)

“Pythonic” style is very concise

Suggested reading:

▪ PEP 8- Style Guide for Python Code
▪ http://www.python.org/dev/peps/pep-0008/

▪ The official style guide to Python, contains many helpful
programming tips

▪ Concise syntax, avoid top-level declarations

▪ Python 2.7 supported till 1/1/2020. Now Python 3.12
7

class Hello { // Java

public static void main(String[] args) {

System.out.println("Hello, world!");

}

}

print "Hello, world!\n" # Python

http://www.python.org/dev/peps/pep-0008/

Useful commands of Python interpreter
▪ Download it from https://www.python.org/
▪ Current version: 3.12.0

▪ help() Enters Python interactive help utility

▪ help(arg) Prints documentation about arg
▪ Example: help(1), help(str), help({}), help(print), help(builtins)

▪ type(arg) Prints the type of arg
▪ Example: type(1), type("Hello"), type(str), type(type)

▪ _ : in the interpreter is the value of the last expression

▪ Since "everything is an object", try "dot-completion" to
see what are the options…
▪ Example: 1. <tab><tab> "hello". <tab><tab>

▪ NB: the latter might not work. Try: "hello" <ret>; _. <tab><tab>

8

The dir() Function

▪ The built-in function dir() returns a sorted list of
strings containing all names defined in a module,
a class, or an object

9

>>> import sys

>>> dir(sys) # Prints names defined in sys
['__displayhook__', '__doc__', '__excepthook__', '__loader__',

'__name__', '__package__', '__stderr__', '__stdin__',

...

>>> dir() # Prints names defined currently

...

>>> import builtins

>>> dir(builtins) #Prints built-in functions and variables

>>> dir(str) #Prints all members of class str

Defining Modules
▪ Modules are files containing definitions and statements. A

module defines a new namespace.

▪ Modules can be organized hierarchically in packages

10

File fibo.py - Fibonacci numbers module

def fib(n): # write Fibonacci series up to n

a, b = 0, 1

while b < n:

print(b, end=' ')

a, b = b, a+b

print()

def fib2(n): # return Fibonacci series up to n

result = []

a, b = 0, 1

while b < n:

result.append(b)

a, b = b, a+b

return result

Importing a module

11

>>> import fibo # imports module from local file

'fibo.py'

>>> fibo.fib(6) # dot notation

[1, 1, 2, 3, 5]

>>> fibo.__name__ # special attribute __name__

'fibo'

>>> fibo.fib.__module__ # special attribute __module__

'fibo'

>>> from fibo import fib, fib2

or from fibo import *

>>> fib(500)

>>> fib.__module__ # special attribute __module__

'fibo'

>>> fibo.__name__ # NameError: name 'fibo' is not defined

Selective import

Executing a module as a script
▪ A module can be invoked as a script from the shell as

▪ Executed with __name__ set to "__main__".

12

File fibo.py - Fibonacci numbers module

def fib(n): # write Fibonacci series up to n

...

def fib2(n): # return Fibonacci series up to n

...

if __name__ == "__main__": # added code

import sys

fib(int(sys.argv[1]))

> python fibo.py 60

> python fibo.py 60

1 1 2 3 5 8 13 21 34

>

Basics of Python

▪ Don’t bother with a class unless you actually want to make an
object

▪ Functions don't need return or parameter types
▪ Indentations matter, not { }.
▪ Begin functions with : and end by unindenting
▪ Strings can be " " or ' ', comments begin with #
▪ No semicolons needed 13

public class Hello { // Java

public static void main(String[] args) {

// print to the console

System.out.println("Hello, world");

}

}

def main(args): # Python

print to the console

print('Hello, world')

14

Basic data types and operators

▪ Unbounded integers

▪ Floating point numbers: 64 bits

▪ For numbers + - * / % as expected. // int division.

▪ Special use of % for string formatting (as with printf in C)

▪ Logical operators are words (and, or, not), not
symbols

▪ Strings enclosed in '_', "_", """_"""
▪ + also for string concatenation.

▪ EOL-comments: # …

▪ Docstrings:
def my_function(x, y):

"""This is the docstring. This

function does blah blah blah. """

The code would go here...

15

Assignment

▪ Assignment in Python does not create a copy

▪ It sets the name to hold a reference to some object.

▪ A variable is created the first time it appears on the
left side of an assignment expression:

x = 3

▪ An object is deleted (by the garbage collector) once it
becomes unreachable.

▪ CPython uses Reference Counting + Mark & Sweep
for garbage collection

▪ Multiple assignment:
>>> x, y = 2, 3

>>> x

2

>>> y

3

16

Sequence Types

1. Tuples: immutable, ordered, heterogeneous
• Syntax: (), (2, 3.14, False),

((2,3), [], "ljshdb")

2. Strings (str): immutable, ordered, only chars (UTF-8
Unicode)

3. Lists : mutable, ordered, heterogeneous
▪ Syntax: [], [2, 3.14, False],

[[2,3], (), "ljshdb"]

▪ Use list(_) and tuple(_) for conversion

▪ Element selector: <seq>[<index>]
▪ 0 based

▪ Negative index start from right (-1)
▪ [1,2,3][0] == 1 [1,2,3][-2] == 2

17

Operators on sequences
▪ Slicing: returns a subsequence of the original sequence, a copy. Start copying

at the first index, and stop copying before the second index.

>>> t = (23, 'abc', 4.56, (2,3), 'def')

>>> t[1:4] # ('abc', 4.56, (2,3))

>>> t[1:-1] # negative indices ('abc', 4.56, (2,3))

>>> t[1:-1:2] # optional argument: step ('abc', (2,3))

>>> t[:2] # no first index: from beginning (23, 'abc’)

>>> t[2:] # no second index: to end (4.56, (2,3), 'def')

>>> t[:] # no indexes: creates a copy (23, 'abc', 4.56, (2,3), 'def’)

▪ Concatenation: + also for tuples and lists: new sequence

▪ Membership: in operator

>>> t = [1, 2, 4, 5]
>>> 3 in t
False
>>> 4 in t
True
>>> 4 not in t
False

>>> a = 'abcde'
>>> 'c' in a
True
>>> 'cd' in a
True
>>> 'ac' in a
False

18

Operators on lists only

▪ Only lists are mutable: we can change them in place.

▪ append and insert

▪ extend: like +, but it adds elements in place

▪ index, count: first occurrence / number of occs [also tuples]

▪ remove, reverse, sort, …

>>> li = ['abc', 23, 4.34, 23]

>>> li[1] = 45

>>> li

['abc', 45, 4.34, 23]

>>> li = [1, 11, 3, 4, 5]

>>> li.append('a') # Note the method syntax

>>> li

[1, 11, 3, 4, 5, 'a']

>>> li.insert(2, 'i')

>>> li

[1, 11, 'i', 3, 4, 5, 'a']

List Comprehensions

[expression for name in list]
▪ Where expression is some calculation or operation acting upon

the variable name.

▪ For each member of the list, the list comprehension

1. sets name equal to that member, and

2. calculates a new value using expression,

▪ It then collects these new values into a list which is the return
value of the list comprehension.

19

>>> li = [3, 6, 2, 7]

>>> [elem*2 for elem in li]

[6, 12, 4, 14]

List Comprehensions 2

▪ If the elements of list are other collections, then name
can be replaced by a collection of names that match the
“shape” of the list members.

▪ Sort of pattern matching, also possible for plain assignment…

▪ Try:

[expression for name in list]

20

>>> li = [('a', 1), ('b', 2), ('c', 7)]

>>> [n * 3 for (x, n) in li]

[3, 6, 21]

>>> (x, y)= (2, 3)

>>> [x, y]= [2, 3]

>>> (x, y)= [2, 3]

>>> (x, y)= "23"

Filtered List Comprehension

▪ Filter determines whether expression is performed on each
member of the list.

▪ When processing each element of list, first check if it
satisfies the filter condition.

▪ If the filter condition returns False, that element is omitted
from the list before the list comprehension is evaluated.

▪ Only 6, 7, and 9 satisfy the filter condition.

▪ So, only 12, 14, and 18 are produced.

[expression for name in list if filter]

21

>>> li = [3, 6, 2, 7, 1, 9]

>>> [elem * 2 for elem in li if elem > 4]

[12, 14, 18]

▪ Since list comprehensions take a list as input and produce
a list as output, they are easily nested:

▪ The inner comprehension produces: [4, 3, 5, 2].

▪ So, the outer one produces: [8, 6, 10, 4].

Nested List Comprehensions

22

>>> li = [3, 2, 4, 1]

>>> [elem*2 for elem in

[item+1 for item in li]]

[8, 6, 10, 4]

Sets

23

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange',

'banana'}

>>> print(basket) # show that duplicates have been removed

{'orange', 'banana', 'pear', 'apple'}

>>> 'orange' in basket # fast membership testing

True

>>> 'crabgrass' in basket

False

>>> # Demonstrate set operations on unique letters from two words

>>> a = set('abracadabra')

>>> b = set('alacazam')

>>> a # unique letters in a

{'a', 'r', 'b', 'c', 'd'}

>>> a - b # letters in a but not in b

{'r', 'd', 'b'}

>>> a | b # letters in a or b or both

{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}

>>> a & b # letters in both a and b

{'a', 'c'}

>>> a ^ b # letters in a or b but not both

{'r', 'd', 'b', 'm', 'z', 'l'}

• Empty set: set()

• Indexing not supported

• Mixed types

Dictionaries: Like maps in Java

▪ Dictionaries store a mapping between a set of keys and a set
of values.

▪ Keys can be of any immutable hashable type

▪ cannot contain mutable components

▪ Values can be any type

▪ Values and keys can be of different types in a single dictionary

▪ You can
▪ define

▪ modify

▪ view

▪ lookup

▪ delete

the key-value pairs in the dictionary.
24

Creating and accessing dictionaries

▪ Keys must be unique.

25

>>> d = {'user':'bozo', 'pswd':1234}

>>> d['user']

'bozo'

>>> d['pswd']

1234

>>> d['bozo']

Traceback (innermost last):

File ‘<interactive input>’ line 1, in ?

KeyError: bozo

>>> d1 = {1:7,1:5}

>>> d1

{1: 5}

▪ Assigning to an existing key changes the value.

Updating Dictionaries

26

>>> d = {'user':'bozo', 'pswd':1234}

>>> d['user'] = 'clown'

>>> d

{'user':'clown', 'pswd':1234}

>>> d['id'] = 45

>>> d

{'user':'clown’, 'id':45, 'pswd':1234}

▪ Assigning to a non-existing key adds a new pair.

▪ Dictionaries are unordered
▪ New entry might appear anywhere in the output.

▪ (Dictionaries work by hashing)

Removing dictionary entries
>>> d = {'user':'bozo', 'p':1234, 'i':34}

>>> del d['user'] # Remove one. Note that del is

a function.

>>> d

{'p':1234, 'i':34}

>>> d.clear() # Remove all.

>>> d

{}

>>> a=[1,2]

>>> del a[1] # (del also works on lists)

>>> a

[1]

27

Useful Accessor Methods
>>> d = {'user':'bozo', 'p':1234, 'i':34}

>>> list(d.keys()) # List of current keys

['user', 'p', 'i']

>>> list(d.values()) # List of current values.

['bozo', 1234, 34]

>>> list(d.items()) # List of item tuples.

[('user','bozo'), ('p',1234), ('i',34)]

>>> list(d) # When accessing a dictionary as

a list, the keys are returned

['user', 'p', 'i’]

28

Using dictionaries

29

Write a program to compute the frequency of the words

of a string read from the input. The output should print

the words in increasing alphanumerical order.

freq = {} # frequency of words in text [Python3]

line = input()

for word in line.split():

freq[word] = freq.get(word,0)+1

words = list(freq.keys())

words.sort()

for w in words:

print ("%s:%d" % (w,freq[w]))

Boolean expressions

▪ True and False only constants

▪ Other values are treated as equivalent to either True or
False when used in conditionals:
▪ False: zero, None, empty containers

▪ True: non-zero numbers, non-empty objects

▪ See PEP 8 for the most Pythonic ways to compare

▪ Comparison operators: ==, !=, <, <=, etc.
▪ X == Y # X and Y have same value (like Java equals method)

▪ X is Y # X and Y refer to the exact same object (like Java ==)

▪ Logical connectives
▪ a and b a or b not a

▪ Conditional expressions
▪ x = <true_value> if <condition> else <false_value>

lazy
30

Control statements: conditional

Note:

▪ Use of indentation for blocks

▪ Colon (:) after boolean expression

31

if x == 3:

print("X equals 3.")

elif x == 2:

print("X equals 2.")

else:

print("X equals something else.")

print ("This is outside the 'if'.")

while Loops

32

>>> x = 3

>>> while x < 5:

print (x, "still in the loop")

x = x + 1

3 still in the loop

4 still in the loop

>>> x = 6

>>> while x < 5:

>>> print (x, "still in the loop")

>>>

▪ break inside a loop to leave the while loop entirely.

▪ continue inside a loop stops processing the current
iteration and immediately go on to the next one.

assert

▪ An assert statement will check to make sure that
something is true during the course of a program.
▪ If the condition if false, the program throws an exception

(AssertionError)

assert(number_of_players < 5)

33

For Loops 1

▪ For-each is Python’s only form of for loop

▪ A for loop steps through each of the items in a collection type, or any
other type of object which is “iterable”

▪ If <collection> is a list or a tuple, then the loop steps through each
element of the sequence.

▪ If <collection> is a string, then the loop steps through each character
of the string.

34

for <item> in <collection>:

<statements>

for someChar in "Hello World":

print(someChar)

For Loops 2

▪ <item> can be more complex than a single variable name

▪ In that case it is matched against the structure of the
elements of <collection>

35

for (x, y) in [('a',1), ('b',2), ('c',3), ('d',4)]:

print(x)

for <item> in <collection>:

<statements>

For loops and the range() function

▪ We often want to write a loop where the variables ranges over some
sequence of numbers. The range() function returns an iterator
producing numbers from 0 up to but not including the number we
pass to it.

▪ range(5) returns an iterator producing 0, 1, 2, 3, 4.

▪ So we can write:

▪ Variant: range(start, stop[,step])

36

for x in range(5):

print(x)

Abuse of the range() function

▪ Don't use range() to iterate over a sequence solely to
have the index and elements available at the same time

▪ Avoid:

▪ Instead:

▪ This is an example of an anti-pattern in Python

▪ For more, see: http://lignos.org/py_antipatterns/

37

for (i, item) in enumerate(mylist):

print(i, item)

for i in range(len(mylist)):

print(i, mylist[i])

http://lignos.org/py_antipatterns/

	Diapositiva 1: 301AA - Advanced Programming
	Diapositiva 2: Slides freely adapted from: “Full Python Tutorial”
	Diapositiva 4: Language features
	Diapositiva 5: Pragmatics: Why Python?
	Diapositiva 6: Dynamic typing – the key difference
	Diapositiva 7: “Pythonic” style is very concise
	Diapositiva 8: Useful commands of Python interpreter
	Diapositiva 9: The dir() Function
	Diapositiva 10: Defining Modules
	Diapositiva 11: Importing a module
	Diapositiva 12: Executing a module as a script
	Diapositiva 13: Basics of Python
	Diapositiva 14: Basic data types and operators
	Diapositiva 15: Assignment
	Diapositiva 16: Sequence Types
	Diapositiva 17: Operators on sequences
	Diapositiva 18: Operators on lists only
	Diapositiva 19: List Comprehensions
	Diapositiva 20: List Comprehensions 2
	Diapositiva 21: Filtered List Comprehension
	Diapositiva 22: Nested List Comprehensions
	Diapositiva 23: Sets
	Diapositiva 24: Dictionaries: Like maps in Java
	Diapositiva 25: Creating and accessing dictionaries
	Diapositiva 26: Updating Dictionaries
	Diapositiva 27: Removing dictionary entries
	Diapositiva 28: Useful Accessor Methods
	Diapositiva 29: Using dictionaries
	Diapositiva 30: Boolean expressions
	Diapositiva 31: Control statements: conditional
	Diapositiva 32: while Loops
	Diapositiva 33: assert
	Diapositiva 34: For Loops 1
	Diapositiva 35: For Loops 2
	Diapositiva 36: For loops and the range() function
	Diapositiva 37: Abuse of the range() function

