
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-25: RUST #3

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

The RUST programming language

• Brief history
• Memory safety
• Avoiding Aliases + Mutable
• Ownership and borrowing
• Lifetimes
• Enums, Structs, Generics, Traits…
• Unsafe
• Smart Pointers
• Concurrency

2

Traits

• Equivalent to Type Classes in Haskell and to Concepts in
C++20, similar to Interfaces in Java

• A trait can include abstract and concrete (default)
methods. It cannot contain fields / variables.

• A struct can implement a trait providing an
implementation for at least its abstract methods

impl <TraitName> for <StructName>{ … }

• The #[derive] clause can be used to derive
automatically an implementation of a trait, if possible

• Support for bounded universal explicit polymorphism
with generics, as in Java, where bounds are one or
more traits.

3

Trait example: Stack of Slots of <T>

4

trait Stack<T> {

fn new() -> Self;

fn is_empty(&self) -> bool;

fn push(&mut self, data: Box<T>);

fn pop(&mut self) -> Option<Box<T>>;

}

impl<T> Stack<T> for SLStack<T> {

fn new() -> SLStack<T> {

SLStack{ top: None }

}

...

fn is_empty(&self) -> bool {

match self.top {

None => true,

Some(..) => false,

}

}

}

struct Slot<T> {

data: Box<T>,

prev: Option<Box<Slot<T>>>

}

struct SLStack<T> {

top: Option<Box<Slot<T>>>

}

Generic functions: Bounded
polymorphism

• Generic functions may have the generic type of parameter
bound by one or more traits. Within such a function, the
generic value can only be used through those traits.

• Therefore a generic function can be type-checked when
defined (as in Java, unlike C++ templates).

• However, implementation of Rust generics is similar to
typical implementation of C++ templates: a separate copy
of the code is generated for each instantiation.

• Thus Rust uses monomorphization and contrasts with the
type erasure scheme of Java.
– Pros: optimized code for each specific use case
– Cons: increased compile time and size of the resulting binaries.

5

Using Traits for Bounded
Polymorphism

6

trait Stack<T> {

fn new() -> Self;

fn is_empty(&self) -> bool;

fn push(&mut self, data: Box<T>);

fn pop(&mut self) -> Option<Box<T>>;

}

fn generic_push<T, S: Stack<T>>(stk: &mut S,

data: Box<T>) {

stk.push(data);

}

fn main() {

let mut stk = SLStack::<u32>::new();

let data = Box::new(2048);

generic_push(&mut stk, data);

}

Multiple Traits as bounds

7

trait Clone {

fn clone(&self) -> Self;

}

impl<T> Clone for SLStack<T> {

...

}

fn immut_push<T, S: Stack<T>+Clone>(stk: &S, data: Box<T>) -> S {

let mut dup = stk.clone();

dup.push(data);

dup

}

fn main() {

let stk = SLStack::<u32>::new();

let data = Box::new(2048);

let stk = immut_push(&stk, data);

}

System Traits

• Traits are widely used as predicates/annotations on data types,
useful for the compiler

• Clone: allows to create a deep copy of a value using the method
clone(). The duplication process might involve running arbitrary
code

• Copy: allows to duplicate a value by only copying bits stored on the
stack; no arbitrary code is necessary. Marker trait

• Debug: support default conversion to text, for printing (marker)

• Display: programmable conversion to text, fmt()

• Deref and Drop: implemented by Smart Pointers

• Synch and Send: declare if a data type can be moved to another
thread (marker)

8

Smart Pointers

• Originate in C++. Generalize references
(borrowing in Rust, &s)

• Smart pointers: act as a pointer but with
additional metadata and capabilities

• Examples: String (encapsulate &str),
Vect<T>,…

• Typically structs, implementing Deref (*) and
Drop (reclaiming when out of scope)

• “Deref Coercion”…

9

Box<T>

• Allow to store a data of type T on the heap

• No performance overhead

• Deref (*) returns the value. Optional by coercion.

• Useful when
– Size of data not known statically (eg recursive types)

– Big data, and you want to transfer ownership without
copying it

10

enum Tree<T> { //OK

Empty,

Node(T, Box<Tree<T>>, Box<Tree<T>>)

}

fn main() {

let b = Box::new(5);

println!("b = {}", b);

}

enum Tree<T> { // error

Empty,

Node(T, Tree<T>, Tree<T>)

} // type has infinite size

Rc<T>: reference counting
• Rc<T>: supports immutable access to resource with

reference counting
• Method Rc::clone() doesn’t clone! It returns a new

reference, incrementing the counter
• Rc::strong_count returns the value of the counter
• When the counter is 0 the resource is reclaimed

11

use crate::List::{Cons, Nil};

use std::rc::Rc;

enum List {

Cons(i32, Rc<List>),

Nil,

}

fn main() {

let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)))));

let b = Cons(3, Rc::clone(&a));

let c = Cons(4, Rc::clone(&a));

}

RefCell<T>: interior mutability
• RefCell<T>: supports shared access to a mutable

resource through the interior mutability pattern
• It has methods borrow() and borrow_mut() which

return a smart pointer (Ref<T> or RefMut<T>)
• RefCell<T> keeps track of how many Ref<T> and

RefMut<T> are active, and panics if the
ownership/borrowing rules are invalidated.

• Single-threaded, typically used with Rc<T> to allow
multiple accesses.

12

enum List {

Cons(Rc<RefCell<i32>>, Rc<List>),

Nil,

}

...

fn main() {

let value = Rc::new(RefCell::new(5));

let a = Rc::new(Cons(Rc::clone(&value), Rc::new(Nil)));

let b = Cons(Rc::new(RefCell::new(3)), Rc::clone(&a));

let c = Cons(Rc::new(RefCell::new(4)), Rc::clone(&a));

*value.borrow_mut() += 10;

println!(...);

}

Comparing smart pointers

Type Sharable? Mutable? Thread Safe?

& yes * no no

&mut no * yes no

Box no yes no

Rc yes no no

Arc yes no yes

RefCell yes ** yes no

Mutex yes, in Arc yes yes

* but doesn't own contents, so lifetime restrictions.

** while there is no mutable borrow
13

http://creativecommons.org/licenses/by-sa/4.0/

Closures, iterators, functional

• Closures can capture non-local variables in three ways,
corresponding to ownership, mutable and immutable
borrowing.

• This is reflected in the trait they implement: FnOnce,
FnMut and Fn.

• This is inferred. With move before || FnOnce is
enforced.

14

fn main(){

let x = 5;

let greater_than_x = |y| y > x; // Parameters within ||

println!("{}",greater_than_x(3)); // prints “false”

}

let vector = vec![1, 2, 3, 4, 5]; // stream-like

vector.iter()

.map(|x| x + 1)

.filter(|x| x % 2 == 0)

.for_each(|x| println!("{}", x));

Race Conditions: How Rust avoids them

15

// C++ code

int main() {

int counter = 0;

const auto task = [&] {

for (int i = 0; i < 100000; ++i) {

counter++;

}

};

thread thread1(task);

thread thread2(task);

thread1.join();

thread2.join();

cout << counter << endl;

return 0;

}

// Rust: does not compile

fn main() {

let mut counter = 0;

let task = || { // closure

for _ in 0..100000 {

counter += 1;

}

};

let thread1 = thread::spawn(task);

let thread2 = thread::spawn(task);

thread1.join().unwrap();

thread2.join().unwrap();

println!("{}", counter);

}

error[E0373]: closure may outlive the current function, but it borrows

`counter`, which is owned by the current function

--> src\main.rs:57:16

let task = || {

^^ may outlive borrowed value `counter`

for _ in 0..100000 {

counter += 1;

------- `counter` is borrowed here

help: to force the closure to take ownership of `counter` (and any other

referenced variables), use the `move` keyword

let task = move || { // would it work?

++++

16

// Rust code: Doesn’t compile

fn main() {

let mut counter = 0;

let task = || {

for _ in 0..100000 {

counter += 1;

}

};

let thread1 = thread::spawn(task);

let thread2 = thread::spawn(task);

thread1.join().unwrap();

thread2.join().unwrap();

println!("{}", counter);

}

error[E0594]: cannot assign to data in an `Arc`

--> src\main.rs:52:13

*c1 += 1;

^^^^^^^^ cannot assign

help: trait `DerefMut` is required to modify

through a dereference, but it is not

implemented for `Arc<i32>`

// Rust code with Arc<T>: Doesn’t compile

fn main() {

let mut counter = Arc::new(0);

let c1 = Arc::clone(&counter);

let c2 = Arc::clone(&counter);

let thread1 = thread::spawn(move || {

for _ in 0..100000 {

*c1 += 1; // Increment c1

}

});

let thread2 = thread::spawn(move || {

for _ in 0..100000 {

*c2 += 1; // Increment c2

}

});

thread1.join().unwrap();

thread2.join().unwrap();

println!("{}", counter);

}

Race Conditions: How Rust avoids them

The only solution is to use a
Mutex wrapped into an Arc, but
with Mutex race conditions
cannot happen

Traits Sync and Send (markers)

• Send : an error is signaled by the compiler if the ownership of
a value not implementing Send is passed to another thread.

• For a value to be referenced by more threads,it has to
implement Sync

• A type T implements Send if and only if &T implements Sync

• Examples: Rc<T> is neither Send nor Sync: operations on the
internal counter are not thread safe

• Arc<T> is the thread-safe version of Rc<T>: it is Send and Sync

• Mutex<T> supports mutual exclusive access to a value via a
lock. It is both Send and Sync, and typically wrapped in Arc

17

And if Mutably Sharing is necessary?

•Mutably sharing is inevitable in the real world.

•Example: mutable doubly linked list

prev

next

prev

next

prev

next

struct Node {

prev: option<Box<Node>>,

next: option<Box<Node>>

}

18

Rust’s Solution: Raw Pointers

•Compiler does NOT check the memory safety of
most operations wrt. raw pointers.

•Most operations wrt. raw pointers should be
encapsulated in a unsafe {} syntactic structure.

prev

next

prev

next

prev

next

struct Node {

prev: option<Box<Node>>,

next: *mut Node

}
Raw pointer

19

Rust’s Solution: Raw Pointers

let a = 3;

unsafe {

let b = &a as *const i32 as *mut i32;

*b = 4;

}

println!("a = {}", a);

I know what I’m doing

Print “a = 4”

20

Foreign Function Interface (FFI)

All foreign functions are unsafe.

extern {

fn write(fd: i32, data: *const u8, len: u32) -> i32;

}

fn main() {

let msg = "Hello, world!\n";

unsafe {

write(1, &msg[0], msg.len());

}

}

21

Unsafe superpowers

• Dereference a raw pointer
• raw pointers can be initialised in safe Rust, but they cannot be

dereferenced because it is not guaranteed that the memory
they point to is actually allocated

• Call an unsafe function or method
• using unsafe functions gives one access to the Rust allocator

which is inherently unsafe as it has to deal with the OS

• Access or modify a mutable static variable
• Implement an unsafe trait
• Access fields of unions
Note: unsafe{} does not switch off the borrow checker

22

Correctness of Rust: RustBelt

The RustBelt project provides a formalization of Rust and of its typing rules. These
are used to formally prove its correctness as “absence of undefined behaviour”.

The proof is divided into three steps:

(1) Verifying that the typing rules are semantically sound, i.e. that the semantic

interpretation of the conclusion follows from the semantic interpretation of

the premises.

(2) Verifying that if a program is semantically well-typed, then its execution will

not have problems such as undefined behaviours.

(3) Verifying that libraries using unsafe are semantically safe when used through

their interface.

• Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. “Rust-
Belt: Securing the Foundations of the Rust Programming Language”. In: Proc.
ACM Program. Lang. 2.POPL (2017)

	Diapositiva 1: 301AA - Advanced Programming
	Diapositiva 2: The RUST programming language
	Diapositiva 3: Traits
	Diapositiva 4: Trait example: Stack of Slots of <T>
	Diapositiva 5: Generic functions: Bounded polymorphism
	Diapositiva 6: Using Traits for Bounded Polymorphism
	Diapositiva 7: Multiple Traits as bounds
	Diapositiva 8: System Traits
	Diapositiva 9: Smart Pointers
	Diapositiva 10: Box<T>
	Diapositiva 11: Rc<T>: reference counting
	Diapositiva 12: RefCell<T>: interior mutability
	Diapositiva 13: Comparing smart pointers
	Diapositiva 14: Closures, iterators, functional
	Diapositiva 15: Race Conditions: How Rust avoids them
	Diapositiva 16: Race Conditions: How Rust avoids them
	Diapositiva 17: Traits Sync and Send (markers)
	Diapositiva 18: And if Mutably Sharing is necessary?
	Diapositiva 19: Rust’s Solution: Raw Pointers
	Diapositiva 20: Rust’s Solution: Raw Pointers
	Diapositiva 21: Foreign Function Interface (FFI)
	Diapositiva 22: Unsafe superpowers
	Diapositiva 23: Correctness of Rust: RustBelt

