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The RUST programming language

• Brief history 
• Memory safety
• Avoiding Aliases + Mutable
• Ownership and borrowing
• Lifetimes
• Enums, Structs, Generics, Traits…
• Unsafe
• Smart Pointers
• Concurrency 
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Traits

• Equivalent to Type Classes in Haskell and to Concepts in 
C++20, similar to Interfaces in Java

• A trait can include abstract and concrete (default) 
methods. It cannot contain fields / variables.

• A struct can implement a trait providing an 
implementation for at least its abstract methods

impl <TraitName> for <StructName>{ … } 

• The #[derive] clause can be used to derive 
automatically an implementation of a trait, if possible 

• Support for bounded universal explicit polymorphism 
with generics, as in Java, where bounds are one or 
more traits.
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Trait example: Stack of Slots of <T>
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trait Stack<T> {

fn new() -> Self;

fn is_empty(&self) -> bool;

fn push(&mut self, data: Box<T>);

fn pop(&mut self) -> Option<Box<T>>;

}

impl<T> Stack<T> for SLStack<T> {

fn new() -> SLStack<T> {

SLStack{ top: None }

}

...

fn is_empty(&self) -> bool {

match self.top {

None     => true,

Some(..) => false,

}

}

}

struct Slot<T> {

data: Box<T>,

prev: Option<Box<Slot<T>>>

}

struct SLStack<T> {

top: Option<Box<Slot<T>>>

}



Generic functions: Bounded 
polymorphism

• Generic functions may have the generic type of parameter 
bound by one or more traits. Within such a function, the 
generic value can only be used through those traits.

• Therefore a generic function can be type-checked when 
defined (as in Java, unlike C++ templates). 

• However, implementation of Rust generics is similar to
typical implementation of C++ templates: a separate copy 
of the code is generated for each instantiation. 

• Thus Rust uses monomorphization and contrasts with the 
type erasure scheme of Java. 
– Pros: optimized code for each specific use case
– Cons: increased compile time and size of the resulting binaries. 
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Using Traits for Bounded 
Polymorphism
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trait Stack<T> {

fn new() -> Self;

fn is_empty(&self) -> bool;

fn push(&mut self, data: Box<T>);

fn pop(&mut self) -> Option<Box<T>>;

}

fn generic_push<T, S: Stack<T>>(stk: &mut S, 

data: Box<T>) {

stk.push(data);

}

fn main() {

let mut stk = SLStack::<u32>::new();

let data = Box::new(2048);

generic_push(&mut stk, data);

}



Multiple Traits as bounds
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trait Clone {

fn clone(&self) -> Self;

}

impl<T> Clone for SLStack<T> {

...

}

fn immut_push<T, S: Stack<T>+Clone>(stk: &S, data: Box<T>) -> S {

let mut dup = stk.clone();

dup.push(data);

dup

}

fn main() {

let stk = SLStack::<u32>::new();

let data = Box::new(2048);

let stk = immut_push(&stk, data);

}



System Traits

• Traits are widely used as predicates/annotations on data types, 
useful for the compiler

• Clone: allows to create a deep copy of a value using the method 
clone(). The duplication process might involve running arbitrary 
code

• Copy: allows to duplicate a value by only copying bits stored on the 
stack; no arbitrary code is necessary. Marker trait

• Debug: support default conversion to text, for printing (marker)

• Display: programmable conversion to text, fmt() 

• Deref and Drop: implemented by Smart Pointers

• Synch and Send: declare if a data type can be moved to another 
thread  (marker) 
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Smart Pointers

• Originate in C++. Generalize references 
(borrowing in Rust, &s)

• Smart pointers: act as a pointer but with 
additional metadata and capabilities

• Examples: String (encapsulate &str), 
Vect<T>,…

• Typically structs, implementing Deref (*) and 
Drop (reclaiming when out of scope)

• “Deref Coercion”… 
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Box<T>

• Allow to store a data of type T on the heap

• No performance overhead

• Deref (*)  returns the value. Optional by coercion.

• Useful when
– Size of data not known statically (eg recursive types)

– Big data, and you want to transfer ownership without 
copying it
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enum Tree<T> { //OK

Empty,

Node(T, Box<Tree<T>>, Box<Tree<T>>)

}

fn main() {

let b = Box::new(5);

println!("b = {}", b);

}

enum Tree<T> { // error

Empty,

Node(T, Tree<T>, Tree<T>)

} // type has infinite size



Rc<T>: reference counting
• Rc<T>: supports immutable access to resource with 

reference counting
• Method Rc::clone() doesn’t clone! It returns a new 

reference, incrementing the counter
• Rc::strong_count returns the value of the counter
• When the counter is 0 the resource is reclaimed
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use crate::List::{Cons, Nil};

use std::rc::Rc;

enum List {

Cons(i32, Rc<List>),

Nil,

}

fn main() {

let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)))));

let b = Cons(3, Rc::clone(&a));

let c = Cons(4, Rc::clone(&a));

}



RefCell<T>: interior mutability
• RefCell<T>: supports shared access to a mutable 

resource through the interior mutability pattern
• It has methods borrow() and borrow_mut() which 

return a smart pointer (Ref<T> or RefMut<T>) 
• RefCell<T> keeps track of how many Ref<T> and 

RefMut<T> are active, and panics if the 
ownership/borrowing rules are invalidated.

• Single-threaded, typically used with Rc<T> to allow 
multiple accesses.
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enum List {

Cons(Rc<RefCell<i32>>, Rc<List>),

Nil,

}

...

fn main() {

let value = Rc::new(RefCell::new(5));

let a = Rc::new(Cons(Rc::clone(&value), Rc::new(Nil)));

let b = Cons(Rc::new(RefCell::new(3)), Rc::clone(&a));

let c = Cons(Rc::new(RefCell::new(4)), Rc::clone(&a));

*value.borrow_mut() += 10;

println!(...);

}



Comparing smart pointers

Type Sharable? Mutable? Thread Safe?

& yes * no no

&mut no * yes no

Box no yes no

Rc yes no no

Arc yes no yes

RefCell yes ** yes no

Mutex yes, in Arc yes yes

* but doesn't own contents, so lifetime restrictions.

** while there is no mutable borrow
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Closures, iterators, functional

• Closures can capture non-local variables in three ways, 
corresponding to ownership, mutable and immutable 
borrowing. 

• This is reflected in the trait they implement: FnOnce, 
FnMut and Fn. 

• This is inferred. With move before || FnOnce is 
enforced.
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fn main(){

let x = 5;

let greater_than_x = |y| y > x; // Parameters within ||

println!("{}",greater_than_x(3));  // prints “false”

}

let vector = vec![1, 2, 3, 4, 5]; // stream-like 

vector.iter()

.map(|x| x + 1)

.filter(|x| x % 2 == 0)

.for_each(|x| println!("{}", x));



Race Conditions: How Rust avoids them 
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// C++ code

int main() {

int counter = 0;

const auto task = [&] {

for (int i = 0; i < 100000; ++i) {

counter++;  

}

};

thread thread1(task);

thread thread2(task);

thread1.join();

thread2.join();

cout << counter << endl;

return 0;

}

// Rust: does not compile

fn main() {

let mut counter = 0;

let task = || { // closure

for _ in 0..100000 {

counter += 1;

}

};

let thread1 = thread::spawn(task);

let thread2 = thread::spawn(task);

thread1.join().unwrap();

thread2.join().unwrap();

println!("{}", counter);

}

error[E0373]: closure may outlive the current function, but it borrows

`counter`, which is owned by the current function

--> src\main.rs:57:16

let task = || {

^^ may outlive borrowed value `counter`

for _ in 0..100000 {

counter += 1;

------- `counter` is borrowed here

help: to force the closure to take ownership of `counter` (and any other

referenced variables), use the `move` keyword 

let task = move || {    // would it work?

++++
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// Rust code: Doesn’t compile

fn main() {

let mut counter = 0;    

let task = || {

for _ in 0..100000 {

counter += 1;

}

};

let thread1 = thread::spawn(task);

let thread2 = thread::spawn(task);

thread1.join().unwrap();

thread2.join().unwrap();

println!("{}", counter);

}

error[E0594]: cannot assign to data in an `Arc`

--> src\main.rs:52:13

*c1 += 1;

^^^^^^^^ cannot assign

help: trait `DerefMut` is required to modify 

through a dereference, but it is not 

implemented for `Arc<i32>`

// Rust code with Arc<T>: Doesn’t compile

fn main() {

let mut counter = Arc::new(0);

let c1 = Arc::clone(&counter);

let c2 = Arc::clone(&counter);

let thread1 = thread::spawn(move || {

for _ in 0..100000 {

*c1 += 1; // Increment c1

}

});

let thread2 = thread::spawn(move || {

for _ in 0..100000 {

*c2 += 1; // Increment c2

}

});

thread1.join().unwrap();

thread2.join().unwrap();

println!("{}", counter);

}

Race Conditions: How Rust avoids them

The only solution is to use a 
Mutex wrapped into an Arc, but 
with Mutex race conditions 
cannot happen



Traits Sync and Send (markers)

• Send : an error is signaled by the compiler if the ownership of 
a value not implementing Send is passed to another thread.

• For a value to be referenced by more threads,it has to
implement Sync

• A type T implements Send if and only if &T implements Sync

• Examples: Rc<T> is neither Send nor Sync: operations on the 
internal counter are not thread safe

• Arc<T> is the thread-safe version of Rc<T>: it is Send and Sync

• Mutex<T> supports mutual exclusive access to a value via a 
lock. It is both Send and Sync, and typically wrapped in Arc
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And if Mutably Sharing is necessary?

•Mutably sharing is inevitable in the real world.

•Example: mutable doubly linked list

prev

next

prev

next

prev

next

struct Node {

prev: option<Box<Node>>,

next: option<Box<Node>>

}

18



Rust’s Solution: Raw Pointers

•Compiler does NOT check the memory safety of 
most operations wrt. raw pointers.

•Most operations wrt. raw pointers should be 
encapsulated in a unsafe {} syntactic structure.

prev

next

prev

next

prev

next

struct Node {

prev: option<Box<Node>>,

next: *mut Node

}
Raw pointer
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Rust’s Solution: Raw Pointers

let a = 3;

unsafe {

let b = &a as *const i32 as *mut i32;

*b = 4;

} 

println!("a = {}", a);

I know what I’m doing

Print “a = 4”
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Foreign Function Interface (FFI)

All foreign functions are unsafe.

extern {

fn write(fd: i32, data: *const u8, len: u32) -> i32;

}

fn main() {

let msg = "Hello, world!\n";

unsafe {

write(1, &msg[0], msg.len());

}

}
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Unsafe superpowers

• Dereference a raw pointer
• raw pointers can be initialised in safe Rust, but they cannot be 

dereferenced because it is not guaranteed that the memory
they point to is actually allocated

• Call an unsafe function or method
• using unsafe functions gives one access to the Rust allocator 

which is inherently unsafe as it has to deal with the OS

• Access or modify a mutable static variable
• Implement an unsafe trait
• Access fields of unions
Note: unsafe{} does not switch off the borrow checker
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Correctness of Rust: RustBelt

The RustBelt project provides a formalization of Rust and of its typing rules. These 
are used to formally prove its correctness as “absence of undefined behaviour”.

The proof is divided into three steps:

(1) Verifying that the typing rules are semantically sound, i.e. that the semantic 

interpretation of the conclusion follows from the semantic interpretation of 

the premises.

(2) Verifying that if a program is semantically well-typed, then its execution will 

not have problems such as undefined behaviours.

(3) Verifying that libraries using unsafe are semantically safe when used through 

their interface.

• Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. “Rust-
Belt: Securing the Foundations of the Rust Programming Language”. In: Proc. 
ACM Program. Lang. 2.POPL (2017)
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