
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-24: RUST #2

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

The RUST programming language

• Brief history
• Memory safety
• Avoiding Aliases + Mutable
• Ownership and borrowing
• Lifetimes
• Enums, Structs, Generics, Traits…
• Unsafe
• Smart Pointers
• Concurrency

2

Ownership System
• Rust has an ownership system, which supports

RAII in a strict way

• Based on the concepts of ownership and
borrowing

• Ownership can be summarized by three rules:

[O1] Every value is owned by a variable, identified
by a name (possiby a path);

[O2] Each value has at most one owner at a time;

[O3] When the owner goes out-of-scope, the
value is reclaimed / destroyed.

3

RECAP

Borrowing
• Ownership rules are too restrictive.

• A resource can be borrowed from its owner (via
assignment or parameter passing).

• To guarantee memory safety, borrowing rules ensure
that ALIASING and MUTABILITY cannot coexist

• Values can be passed
– by immutable reference (with x = &y)

– by mutable reference (with x = &mut y)

– or by value (with x = y)

5

Borrowing Rules
[B1] At most one mutable reference to a resource can
exist at any time

[B2] If there is a mutable reference, no immutable
references can exist

[B3] If there is no mutable reference, several
immutable references to the same resource can exist

• During borrowing, ownership is reduced or
suspended:

[B4] Owner cannot free or mutate its resource while it
is immutably borrowed

[B5] Owner cannot even read its resource while it is
mutably borrowed 6

Borrowing: examples
[B1] At most one mutable reference to a resource can exist at any time

[B2] If there is a mutable reference, no immutable references can exist

[B3] If there is no mutable reference, several immutable references to
the same resource can exist

7

let mut s = String::from("example");

let r1 = &mut s;

let r2 = &mut s;

println!("{} {}", r1, r2); // does not compile by rule B1

let mut s = String::from("example");

let r1 = &s;

let r2 = &mut s;

println!("{} {}", r1, r2); // does not compile by rule B2

let s = String::from("example");

let r1 = &s;

let r2 = &s;

println!("{} {}", r1, r2); // ok by rule B3

Strings in Rust

Two main types for strings:
• String: does not require to know the length at compilation

time, thus allocated on heap
• &str: size must be known statically, allocated on the stack
Method String::from() allocates memory on the heap: it takes
an argument of type &str and returns a String.
A String object has three components: a reference to the heap
location containing the character sequence, a capacity and a
length unsigned integer values.
String does not implement Copy, thus assignment has move
semantics.
Assignment creates a copy of length, capacity and reference,
but not of the char sequence in the heap.

8

Dangling pointers: not in Rust
Translation of C++ code does not compile by rule [B4]

10

string *s; // C++ code

{

string s1 = "scope 1";

s = &s1;

}

{

string s2 = "scope 2";

}

cout << *s << endl;

Prints "scope 1" if compiled with x86-64 clang 13.0.1, but it
prints "scope 2" if compiled with x86-64 gcc 11.2 (see
https://godbolt.org/)

fn main() { // Rust code

let s;

{

let s1 = String::from("scope 1");

s = &s1;

}

{

let _s2 = String::from("scope 2");

}

println!("s == {}", s);

}

error[E0597]: `s1` does not live long enough

--> src\main.rs:7:13

|

7 | s = &s1;

| ^^^ borrowed value does not live long enough

8 | }

| - `s1` dropped here while still borrowed

...

12 | println!("s == {}", s);

| - borrow later used here

Lifetimes
• A lifetime is a construct that the borrow checker uses to

ensure the validity of the above rules
• Lifetimes are associated with each individual ownership

and borrowing
• A lifetime begins when the ownership starts, and ends

when it is moved / destroyed.
• For borrowings, it ends where the borrowed value is

accessed the last time
• Lifetimes are mostly inferred. Sometimes must be made

explicit using the same syntax of generics
• Using lifetimes, the compiler checks the validity of the

rules of ownership and borrowing in the expected way
• In particular, it ensures that (the owner of) every

borrowed variable/reference has a lifetime that is longer
than the borrower [B4,B5]

11

Lifetime and borrowing: example

12

fn main() {

let mut s= String::from("ex-1");

println!("s-0 == {}", s);

let t = &mut s;

*t = String::from("ex-2");

// println!("s-1 == {}", s); // what happens if uncommented?

println!("t == {}", t);

println!("s-2 == {}", s);

let z = &s;

println!("s-3 == {}", s);

let w = z;

println!("{},{},{}",z,w,s);

}

s-0 == ex-1

t == ex-2

s-2 == ex-2

s-3 == ex-2

ex-2,ex-2,ex-2

Lifetimes and function calls
• Borrowed (reference) formal parameters of a function have a

lifetime.
• If borrowed values are returned, each must have a lifetime. The

compiled tries to infer lifetimes according to some rules:
[R1] The lifetimes of the borrowed paramers are, by default, all distinct
[R2] If there is exactly one input lifetime, it will be assigned to each
output lifetime
[R3] If a method has more than one input lifetime, but one of them is
&self or &mut self, then this lifetime is assigned to all output lifetimes
• Otherwise explicit lifetimes are necessary

13

fn longest(s1: &str, s2: &str) -> &str { //does not compile

if s1.len() > s2.len() { s1 }

else { s2 }

}

fn longest<'a>(s1: &'a str, s2: &'a str) -> &'a str {

if s1.len() > s2.len() { s1 }

else { s2 }

Explicit Lifetimes in function calls

14

// `print_refs` takes two references to `i32` which have different

// lifetimes `'a` and `'b` (passed as generic parameters).

fn print_refs<'a, 'b>(x: &'a i32, y: &'b i32) {

println!("x is {} and y is {}", x, y);

}

// A function whith no arguments but with a lifetime parameter `'a`.

fn failed_borrow<'a>() {

let _x = 12;

// ERROR: `_x` does not live long enough

// let y: &'a i32 = &_x; // uncomment this!

// The lifetime of `&_x` is shorter than that of `y`.

// A short lifetime cannot be coerced into a longer one.

}

fn main() {

let (four, nine) = (4, 9); // Create variables to be borrowed

print_refs(&four, &nine); //Borrows of both variables are passed

// The lifetime of `four` and `nine` must

// be longer than that of `print_refs`.

failed_borrow();

}

Enums: algebraic data types
• Like in Haskell

• Replace unions in C/C++

16

enum RetInt {

Fail(u32),

Succ(u32)

}

fn foo_may_fail(arg: u32) -> RetInt {

let fail = false;

let errno: u32;

let result: u32;

...

if fail {

RetInt::Fail(errno)

} else {

RetInt::Succ(result)

}

}

enum std::option::Option<T> {

None,

Some(T)

}

Enums: Trees as ADT, generic

17

#[derive(Debug)] // needed to print

enum Tree<T> {

Empty,

Node(T, Box<Tree<T>>, Box<Tree<T>>)

}

fn main() {

let tree = Tree::Node(

42,

Box::new(Tree::Node(

0,

Box::new(Tree::Empty),

Box::new(Tree::Empty)

)),

Box::new(Tree::Empty));

println!("{:?}", tree);

// prints Node(42, Node(0, Empty, Empty), Empty)

}

Pattern matching

• Compiler enforces that matching is complete

• Useful for Enums, but also for integral types

18

fn main() {

let x = 5; // try others…

match x {

1 => println!("one"),

2 => println!("two"),

3|4 => println!("three or four"),

5..=10 => println!("five to ten"),

e @ 11..=20 => println!("{}", e),

i32::MIN..=0 => println!("less than zero"),

21.. => println!("large"),

_ => println!("???"),

}

}

Classes: Struct + Impl

19

#[derive(Debug)]

struct Rectangle { // class

width: u32, // instance variable

height: u32,

}

impl Rectangle { // methods

fn area(&self) -> u32 { // first argument is this

self.width * self.height // try to change width...

}

}

fn main() {

let rect1 = Rectangle {

width: 30,

height: 50,

};

println!(

"The area of the rectangle is {} square pixels.", rect1.area()

);

}

No inheritance in RUST! ➔ Pushing
composition over inheritance

Traits

• Equivalent to Type Classes in Haskell and to Concepts in
C++20, similar to Interfaces in Java

• A trait can include abstract and concrete (default)
methods. It cannot contain fields / variables.

• A struct can implement a trait providing an
implementation for at least its abstract methods

impl <TraitName> for <StructName>{ … }

• The #[derive] clause can be used to derive
automatically an implementation of a trait, if possible

• Support for bounded universal explicit polymorphism
with generics, as in Java, where bounds are one or
more traits.

20

Trait example: Stack of Slots of <T>

21

trait Stack<T> {

fn new() -> Self;

fn is_empty(&self) -> bool;

fn push(&mut self, data: Box<T>);

fn pop(&mut self) -> Option<Box<T>>;

}

impl<T> Stack<T> for SLStack<T> {

fn new() -> SLStack<T> {

SLStack{ top: None }

}

...

fn is_empty(&self) -> bool {

match self.top {

None => true,

Some(..) => false,

}

}

}

struct Slot<T> {

data: Box<T>,

prev: Option<Box<Slot<T>>>

}

struct SLStack<T> {

top: Option<Box<Slot<T>>>

}

Generic functions: Bounded
polymorphism

• Generic functions may have the generic type of parameter
bound by one or more traits. Within such a function, the
generic value can only be used through those traits.

• Therefore a generic function can be type-checked when
defined (as in Java, unlike C++ templates).

• However, implementation of Rust generics similar to typical
implementation of C++ templates: a separate copy of the
code is generated for each instantiation.

• Thus Rust uses monomorphization and contrasts with the
type erasure scheme of Java.
– Pros: optimized code for each specific use case
– Cons: increased compile time and size of the resulting binaries.

22

Using Traits for Bounded
Polymorphism

23

trait Stack<T> {

fn new() -> Self;

fn is_empty(&self) -> bool;

fn push(&mut self, data: Box<T>);

fn pop(&mut self) -> Option<Box<T>>;

}

fn generic_push<T, S: Stack<T>>(stk: &mut S,

data: Box<T>) {

stk.push(data);

}

fn main() {

let mut stk = SLStack::<u32>::new();

let data = Box::new(2048);

generic_push(&mut stk, data);

}

Multiple Traits as bounds

24

trait Clone {

fn clone(&self) -> Self;

}

impl<T> Clone for SLStack<T> {

...

}

fn immut_push<T, S: Stack<T>+Clone>(stk: &S, data: Box<T>) -> S {

let mut dup = stk.clone();

dup.push(data);

dup

}

fn main() {

let stk = SLStack::<u32>::new();

let data = Box::new(2048);

let stk = immut_push(&stk, data);

}

System Traits

• Traits are widely used as predicates/annotations on data types,
useful for the compiler

• Clone: allows to create a deep copy of a value using the method
clone(). The duplication process might involve running arbitrary
code

• Copy: allows to duplicate a value by only copying bits stored on the
stack; no arbitrary code is necessary. Marker trait

• Debug: support default conversion to text, for printing (marker)

• Display: programmable conversion to text, fmt()

• Deref and Drop: implemented by Smart Pointers

• Synch and Send: declare if a data type can be moved to another
thread (marker)

25

Smart Pointers

• Originate in C++. Generalize references
(borrowing in Rust, &s)

• Smart pointers: act as a pointer but with
additional metadata and capabilities

• Examples: String (encapsulate &str),
Vect<T>,…

• Typically structs, implementing Deref (*) and
Drop (reclaiming when out of scope)

• “Deref Coercion”…

26

Box<T>

• Allow to store a data of type T on the heap

• No performance overhead

• Deref (*) returns the value. Optional by coercion.

• Useful when
– Size of data not known statically (eg recursive types)

– Big data, and you want to transfer ownership without
copying it

27

enum Tree<T> { //OK

Empty,

Node(T, Box<Tree<T>>, Box<Tree<T>>)

}

fn main() {

let b = Box::new(5);

println!("b = {}", b);

}

enum Tree<T> { // error

Empty,

Node(T, Tree<T>, Tree<T>)

} // type has infinite size

Rc<T>: reference counting
• Rc<T>: supports immutable access to resource with

reference counting
• Method Rc::clone() doesn’t clone! It returns a new

reference, incrementing the counter
• Rc::strong_count returns the value of the counter
• When the counter is 0 the resource is reclaimed

28

use crate::List::{Cons, Nil};

use std::rc::Rc;

enum List {

Cons(i32, Rc<List>),

Nil,

}

fn main() {

let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)))));

let b = Cons(3, Rc::clone(&a));

let c = Cons(4, Rc::clone(&a));

}

	Diapositiva 1: 301AA - Advanced Programming
	Diapositiva 2: The RUST programming language
	Diapositiva 3: Ownership System
	Diapositiva 5: Borrowing
	Diapositiva 6: Borrowing Rules
	Diapositiva 7: Borrowing: examples
	Diapositiva 8: Strings in Rust
	Diapositiva 10: Dangling pointers: not in Rust
	Diapositiva 11: Lifetimes
	Diapositiva 12: Lifetime and borrowing: example
	Diapositiva 13: Lifetimes and function calls
	Diapositiva 14: Explicit Lifetimes in function calls
	Diapositiva 16: Enums: algebraic data types
	Diapositiva 17: Enums: Trees as ADT, generic
	Diapositiva 18: Pattern matching
	Diapositiva 19: Classes: Struct + Impl
	Diapositiva 20: Traits
	Diapositiva 21: Trait example: Stack of Slots of <T>
	Diapositiva 22: Generic functions: Bounded polymorphism
	Diapositiva 23: Using Traits for Bounded Polymorphism
	Diapositiva 24: Multiple Traits as bounds
	Diapositiva 25: System Traits
	Diapositiva 26: Smart Pointers
	Diapositiva 27: Box<T>
	Diapositiva 28: Rc<T>: reference counting

