301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-24: RUST #2

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

The RUST programming language

Avoiding Aliases + Mutable

and borrowing
Lifetimes
Enums, Structs, Generics, Traits...
Unsafe
Smart Pointers
Concurrency

|RECAP |

Ownership System
* Rust has an ownership system, which supports
RAIl in a strict way

* Based on the concepts of ownership and
borrowing

* Ownership can be summarized by three rules:

O1] Every value is owned by a variable, identified
Oy @ hame (possiby a path);

'02] Each value has at most one owner at a time;

‘03] When the owner goes out-of-scope, the
value is reclaimed / destroyed.

Borrowing

Ownership rules are too restrictive.

A resource can be borrowed from its owner (via
assignment or parameter passing).

To guarantee memory safety, borrowing rules ensure
that ALIASING and MUTABILITY cannot coexist

Values can be passed

— by immutable reference (with x = &y)

— by mutable reference (with x = &mut vy)
— or by value (with x = y)

Borrowing Rules

[B1] At most one mutable reference to a resource can
exist at any time

[B2] If there is a mutable reference, no immutable
references can exist

[B3] If there is no mutable reference, several
immutable references to the same resource can exist

* During borrowing, ownership is reduced or
suspended:

[B4] Owner cannot free or mutate its resource while it
is immutably borrowed

[B5] Owner cannot even read its resource while it is
mutably borrowed

Borrowing: examples

[B1] At most one mutable reference to a resource can exist at any time
B2] If there is a mutable reference, no immutable references can exist

B3] If there is no mutable reference, several immutable references to
the same resource can exist

let mut s = String::from("example") ;

let rl = &mut s;

let r2 = &mut s;
println! ("{} {}", rl, r2); // does not compile by rule Bl

let mut s = String::from("example") ;

let rl = &s;

let r2 = &mut s;
println! ("{} {}", rl, r2); // does not compile by rule B2

let s = String::from("example") ;

let rl = &s;

let r2 = &s;
println! ("{} {}", rl, r2); // ok by rule B3

Strings in Rust

Two main types for strings:

e String: does not require to know the length at compilation
time, thus allocated on heap

e &str: size must be known statically, allocated on the stack

Method String::from() allocates memory on the heap: it takes
an argument of type &str and returns a String.

A String object has three components: a reference to the heap
location containing the character sequence, a capacity and a
length unsigned integer values.

String does not implement Copy, thus assignment has move
semantics.

Assignment creates a copy of length, capacity and reference,
but not of the char sequence in the heap.

Dangling pointers: not in Rust
Translation of C++ code does not compile by rule [B4]

fn main() { // Rust code string *s; // C++ code
let s; {
{ string sl = "scope 1";
let sl = String::from("scope 1"); s = &sl;
s = &sl; }
} {
string s2 = "scope 2";
let s2 = String::from("scope 2"); }
} a cout << *s << endl;
println! ("s == {}", s); - } i
} iled with x86-64 clang 13.0.1, but it
primts—scope Zz 1rcompiled with x86-64 gec 11.2 (see

| N 11/ 11 la /\

error[E0597]: "sl° does not live long enough
--> src\main.rs:7:13

7 | s = &sl;

| AM~ borrowed value does not live long enough
8 | }

| - sl dropped here while still borrowed
12 | println! ("s == {}", s);

| - borrow later used here

Lifetimes

A lifetime is a construct that the borrow checker uses to
ensure the validity of the above rules

Lifetimes are associated with each individual ownership
and borrowing

A lifetime begins when the ownership starts, and ends
when it is moved / destroyed.

For borrowings, it ends where the borrowed value is
accessed the last time

Lifetimes are mostly inferred. Sometimes must be made
explicit using the same syntax of generics

Using lifetimes, the compiler checks the validity of the
rules of ownership and borrowing in the expected way

In particular, it ensures that (the owner of) every
borrowed variable/reference has a lifetime that is longer
than the borrower [B4,B5]

Lifetime and borrowing: example

fn main() {

let mut s= String::from("ex-1");
println! ("s-0 == {}", s);

let t = &mut s;

*t = String::from("ex-2");

// println! ("s-1 == {}", s); // what happens if uncommented?
println! ("t == {}", t);
println! ("s-2 == {}", s);
let z = &s;
println! ("s-3 == {}", s);
let w = z;
println! ("{},{},{}",z,w,s);

}

s-0 == ex-1

t == ex-2

s-2 == ex-2

s-3 == ex-2

ex-2,ex-2,ex-2

Lifetimes and function calls

 Borrowed (reference) formal parameters of a function have a
lifetime.

* If borrowed values are returned, each must have a lifetime. The
compiled tries to infer lifetimes according to some rules:

R1]
R2]

R3]

The lifetimes of the borrowed paramers are, by default, all distinct
If there is exactly one input lifetime, it will be assigned to each

output lifetime

If a method has more than one input lifetime, but one of them is

&self or &mut self, then this lifetime is assigned to all output lifetimes

* Otherwise explicit lifetimes are necessary

fn longest(sl: &str, s2: &str) -> &str { //does not compile

if sl.len() > s2.1len() { sl }
else { s2 }

}

fn longest<'a>(sl: &'a str, s2: &'a str) -> &'a str {

if sl

.len() > s2.l1len() { sl }

else { s2 }

Explicit Lifetimes in function calls

//

//
fn

"print refs takes two references to i32" which have different
lifetimes "'a and 'b' (passed as generic parameters).

print refs<'a, 'b>(x: &'a i32, y: &'b i32) {

println! ("x is {} and y is {}", x, y)~

//

A function whith no arguments but with a lifetime parameter "'a’

fn failed borrow<'a>() {

let x = 12;

// ERROR: ' x' does not live long enough

// let y: &'a i32 = & x; // uncomment this!

// The lifetime of & x° is shorter than that of 'y’ .

// A short lifetime cannot be coerced into a longer one.
}
fn main() {

let (four, nine) = (4, 9); // Create variables to be borrowed
print refs(&four, &nine); //Borrows of both variables are passed
// The lifetime of “four ' and ‘nine’ must

// be longer than that of “print refs'.

failed borrow() ;

Enums: algebraic data types

e Like in Haskell

* Replace unions in C/C++

enum RetInt ({
Fail (u32),
Succ (u32)
}

fn foo may fail (arg: u32) -> RetInt ({
let fail = false;
let errno: u32;
let result: u32;

if fail {

RetInt::Fail (errno)
} else {

RetInt: :Succ(result)
}

enum std::option: :Option<T> ({
None,
Some (T)

Enums: Trees as ADT, generic

#[derive (Debug)] // needed to print
enum Tree<T> {

Empty,

Node (T, Box<Tree<T>>, Box<Tree<T>>)
}

fn main() {
let tree = Tree: :Node (

42,

Box: :new (Tree: :Node (
0/
Box: :new (Tree: :Empty) ,
Box: :new (Tree: :Empty)

)) .,

Box: :new (Tree: :Empty)) ;

println! ("{:?}", tree);
// prints Node (42, Node (0, Empty, Empty), Empty)

Pattern matching

 Compiler enforces that matching is complete
e Useful for Enums, but also for integral types

fn main() {
let x = 5; // try others..

match x {

1 => println! ("one"),

2 => println! ("two"),

3|4 => println! ("three or four"),
5..=10 => println! ("five to ten"),

e @ 11..=20 => println! ("{}", e),
i32::MIN..=0 => println! ("less than zero"),
21.. => println! ("large"),

=> println! ("?°??"),

Classes: Struct + Impl

[derive (Debug)]

struct Rectangle ({ // class
width: u32, // instance variable
height: u32,

}

impl Rectangle { // methods
fn area(&self) -> u32 { // first argument is this
self .width * self.height // try to change width. ..
}
}

fn main() { No inheritance in RUST! =» Pushing
let rectl = Rectangle ({ composition over inheritance
width: 30,
height: 50,
};
println! (

"The area of the rectangle is {} square pixels.", rectl.area()

) ;

Traits

Equivalent to Type Classes in Haskell and to Concepts in
C++20, similar to Interfaces in Java

A trait can include abstract and concrete (default)
methods. It cannot contain fields / variables.

A struct can implement a trait providing an
implementation for at least its abstract methods
impl <TraitName> for <StructName>{ .. }

The #[derive] clause can be used to derive
automatically an implementation of a trait, if possible

Support for bounded universal explicit polymorphism
with generics, as in Java, where bounds are one or
more traits.

Trait example: Stack of Slots of <T>

struct Slot<T> {
data: Box<T>,
prev: Option<Box<Slot<T>>>

trait Stack<T> {
fn new() -> Self;
fn is _empty (&self) -> bool;
fn push(&mut self, data: Box<T>); }

struct SLStack<T> {
top: Option<Box<Slot<T>>>

fn pop(&mut self) -> Option<Box<T>>;

impl<T> Stack<T> for SLStack<T> {
fn new() -> SLStack<T> {
SLStack{ top: None }
}

fn is _empty(&self) -> bool ({
match self.top {
None => true,
Some(..) => false,

Generic functions: Bounded
polymorphism

Generic functions may have the generic type of parameter
bound by one or more traits. Within such a function, the
generic value can only be used through those traits.

Therefore a generic function can be type-checked when
defined (as in Java, unlike C++ templates).

However, implementation of Rust generics similar to typical
implementation of C++ templates: a separate copy of the
code is generated for each instantiation.

Thus Rust uses monomorphization and contrasts with the
type erasure scheme of Java.

— Pros: optimized code for each specific use case

— Cons: increased compile time and size of the resulting binaries.

Using Traits for Bounded
Polymorphism

trait Stack<T> {

fn new() -> Self;

fn is _empty (&self) -> bool;

fn push(&mut self, data: Box<T>);

fn pop(&mut self) -> Option<Box<T>>;
}

fn generic push<T, S: Stack<T>>(stk: &mut S,
data: Box<T>) {
stk.push (data) ;

}

fn main() {
let mut stk = SLStack: :<u32>::new()
let data = Box: :new(2048) ;
generic push (&mut stk, data);

Multiple Traits as bounds

trait Clone {
fn clone(&self) -> Self;
}

impl<T> Clone for SLStack<T> ({

}

fn immut push<T, S: Stack<T>+Clone>(stk: &S, data: Box<T>) -> S {
let mut dup = stk.clone();
dup.push (data) ;
dup

}

fn main() {
let stk = SLStack: :<u32>::new()
let data = Box::new(2048) ;
let stk = immut push(&stk, data);

System Traits

Traits are widely used as predicates/annotations on data types,
useful for the compiler

Clone: allows to create a deep copy of a value using the method
clone(). The duplication process might involve running arbitrary
code

Copy: allows to duplicate a value by only copying bits stored on the
stack; no arbitrary code is necessary. Marker trait

Debug: support default conversion to text, for printing (marker)
Display: programmable conversion to text, fmt()
Deref and Drop: implemented by Smart Pointers

Synch and Send: declare if a data type can be moved to another
thread (marker)

Smart Pointers

Originate in C++. Generalize references
(borrowing in Rust, &s)

Smart pointers: act as a pointer but with
additional metadata and capabilities

Examples: String (encapsulate &str),
Vect<T>,...

Typically structs, implementing Deref (*) and
Drop (reclaiming when out of scope)

“Deref Coercion”...

fn main() {

BOX<T> let b = Box::new(5);

println! ("b = {}", b);
}

* Allow to store a data of type T on the heap
* No performance overhead

* Deref (*) returns the value. Optional by coercion.

e Useful when
— Size of data not known statically (eg recursive types)

enum Tree<T> { // error enum Tree<T> { //OK

Empty, Empty,

Node (T, Tree<T>, Tree<T>) Node (T, Box<Tree<T>>, Box<Tree<T>>)
} // type has infinite size }

— Big data, and you want to transfer ownership without
copying it

Rc<T>: reference counting

* Rc<T>: supports immutable access to resource with
reference counting

 Method Rc::clone() doesn’t clone! It returns a new
reference, incrementing the counter

* Rc::strong_count returns the value of the counter
e When the counter is O the resource is reclaimed

use crate::List::{Cons, Nil};

use std::rc::Rc; b ————»3] \

enum List { a 5| +——»1 10| +——INil
Cons (i32, Rc<List>),
Nil,

} c ——p4|/

fn main() {

let a = Rc::new(Cons (5, Rc::new(Cons (10, Rc::new(Nil)))));
let b = Cons (3, Rc::clone(&a));
let ¢ = Cons (4, Rc::clone(&a));

	Diapositiva 1: 301AA - Advanced Programming
	Diapositiva 2: The RUST programming language
	Diapositiva 3: Ownership System
	Diapositiva 5: Borrowing
	Diapositiva 6: Borrowing Rules
	Diapositiva 7: Borrowing: examples
	Diapositiva 8: Strings in Rust
	Diapositiva 10: Dangling pointers: not in Rust
	Diapositiva 11: Lifetimes
	Diapositiva 12: Lifetime and borrowing: example
	Diapositiva 13: Lifetimes and function calls
	Diapositiva 14: Explicit Lifetimes in function calls
	Diapositiva 16: Enums: algebraic data types
	Diapositiva 17: Enums: Trees as ADT, generic
	Diapositiva 18: Pattern matching
	Diapositiva 19: Classes: Struct + Impl
	Diapositiva 20: Traits
	Diapositiva 21: Trait example: Stack of Slots of <T>
	Diapositiva 22: Generic functions: Bounded polymorphism
	Diapositiva 23: Using Traits for Bounded Polymorphism
	Diapositiva 24: Multiple Traits as bounds
	Diapositiva 25: System Traits
	Diapositiva 26: Smart Pointers
	Diapositiva 27: Box<T>
	Diapositiva 28: Rc<T>: reference counting

