
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-23: RUST #1

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

The RUST programming language

• Brief history
• Memory safety
• Avoiding Aliases + Mutable
• Ownership and borrowing
• Lifetimes
• Enums, Structs, Generics, Traits…
• Unsafe
• Smart Pointers
• Concurrency

2

Brief History

• Development started in 2006 by Graydon Hoare at Mozilla.
• Mozilla sponsored RUST since 2009, and announced it in

2010.
• In 2010 shift from the initial compiler in OCaml to a self-

hosting compiler written in Rust, rustc: it successfully
compiled itself in 2011.

• rustc uses LLVM as its back end.
• Most loved programming language in the Stack Overflow

annual surveys since 2016.
• February 8, 2021: The development of the language passes

to the Rust Foundation (non-profit, independent) funded
by da Mozilla, Microsoft, Google, AWS e Huawei.

3

On RUST goals and syntax

• Rust is a general purpose, system programming language
with a focus on safety, especially safe concurrency,
supporting both functional and imperative paradigms

• Main goal: ensuring safety without penalizing efficiency
• Concrete syntax similar to C and C++ (blocks, if-else,
while, for), match for pattern matching

• Despite the superficial resemblance to C and C++, the
syntax of Rust in a deeper sense is closer to that of the ML
family of languages as well as the Haskell language.

• Nearly every part of a function body is an expression
(including if-else).

• No Runtime required (GC, Dynamic typing/binding,…)
• More control (over memory allocation/destruction…)

4

More than that …

C/C++

more control,
less safety

Haskell/Python

less control,
more safety

more control,
more safety

Rust

5

Rust overview
Performance, as with C

– Rust compilation to object code for bare-metal performance
But, supports memory safety

– Programs dereference only previously allocated pointers that have
not been freed

– Out-of-bound array accesses not allowed
With low overhead

– Compiler checks to make sure rules for memory safety are followed
– Zero-cost abstraction in managing memory (i.e. no garbage

collection)
Via

– Advanced type system
– Ownership, borrowing, and lifetime concepts to prevent memory

corruption issues
But at a cost

– Cognitive cost to programmers who must think more about rules
for using memory and references as they program

6

Memory safety

• Rust is designed to be memory safe, even in the presence
of concurrency:
– No null pointers
– No dangling pointers
– No double frees
– No data races
– No iterator invalidation

• These properties are guaranteed statically: if the program
compiles it will never manifest those problems.

• Memory safety is obtained with a careful combination of
several techniques: linguistic design choices, memory
management policies, and powerful static (data-flow)
analysis

7

Null pointers

• Problem: accessing a variable which does not hold a value
• Two approaches to guarantee that a variable holds a value when

accessed:
1. Check that it has been assigned, via data flow analysis
2. Use default values

• In Java, solution 1. for local vars of methods, solution 2. for instance
and static variables.

Why???
• Sol. 2 is much simpler, sol. 1 hardly applicable to “global variables”
• Numeric variables typically have 0 as default value
• Tony Hoare introduced Null references in ALGOL W.

– “The billion dollar mistake”…

• NullPointerException most thrown exception in Java

8

Avoiding null pointers in Rust

• A Null value does not exist in Rust
• Data values can only be initialized through a fixed set of

forms, requiring their inputs to be already initialized.
• Compile time error if any branch of code fails to assign a

value to the variable.
• Static/global variables must be initialized at declaration

time
• For nullable types, a generic Option<T> type exist, playing

the role of Haskell’s Maybe or Java’s Optional

9

enum std::option::Option<T> {

None,

Some(T)

}

Digression: Primitive types in Rust
• Numeric types:

– i8 / i16 / i32 / i64 / isize

– u8 / u16 / u32 / u64 / usize

– f32 / f64

• bool

• char (4-byte unicode)
• Type inference for variables declarations with let
• No overloading for literals: type annotations to disambiguate
• Tuples: like in Haskell
• Arrays: with fixed length. Runtime check for out-of-bound!

10

fn main() {

let k = 3; // 3u8, 3.0, 3.2f32, ...

let tup = (500, 6.4, 1);

let (x, y, z) = tup;

println!("The value of y is: {}",y);

println!("The value of tup.1 is: {}",tup.1);

let a: [i32;5] = [1,2,3,4,5];

let b: [i32;6] = [3;6]; // [3,3,3,3,3,3]

}

Using Option

11

enum std::option::Option<T> {

None,

Some(T)

}

fn checked_division(dividend: i32, divisor: i32) -> Option<i32> {

if divisor == 0 {

None

} else {

Some(dividend / divisor)

}

}

fn try_division(dividend: i32, divisor: i32) {

// `Option` values can be pattern matched, just like other enums

match checked_division(dividend, divisor) {

None => println!("{} / {} failed!", dividend, divisor),

Some(quotient) => {

println!("{} / {} = {}", dividend, divisor, quotient)

} } }

fn main() {

try_division(54,9); try_division(7,0);

let opt_float = Some(0f32);

// Unwrapping a `Some` variant will extract the value wrapped.

println!("{:?} unwraps to {:?}", opt_float, opt_float.unwrap());

}

Dangling pointers: example in C++
• Problem: Pointers to invalid memory location

– Pointers to explicitly deallocated objects;

– Pointers to locations beyond the end of an array;

– Pointers to objects allocated on the stack; …

• Unpredictable effects

– Random results

– Segmentation fault

– Corruption of memory
manager

12

// C++ code

string *s;

{

string s1 = "scope 1";

s = &s1;

}

{

string s2 = "scope 2";

}

cout << *s << endl;

Prints "scope 1" if compiled with x86-64 clang 13.0.1, but it
prints "scope 2" if compiled with x86-64 gcc 11.2 (see
https://godbolt.org/)

Double free: example in C++

• Problem: A memory location in the heap is reclaimed twice

• This can happen in languages with explicit deallocation of
memory (like C, C++)

• A double-free error could corrupt the state of the memory
manager, causing a program to crash or modification of
execution flow

• It could be exploited for software attacks

13

// C++ code

auto *s1 = new string("example");

auto *s2 = s1;

// ...

delete s1;

delete s2;

Race Condition: example in C++
• Problem: unpredictable results in concurrent computations
• The following multithreaded code typically prints values

smaller than 20000, because of race conditions

14

// C++ code

int main() {

int counter = 0;

const auto task = [&] {

for (int i = 0; i < 100000; ++i) {

counter++;

}

};

thread thread1(task);

thread thread2(task);

thread1.join();

thread2.join();

cout << counter << endl;

return 0;

}

Memory management
• As usual, Rust uses a STACK of activation records, and a HEAP for

dynamically allocated data structures.
• Rust favors stack allocation (default).
• The user is forced to be aware of where the data are stored: No

implicit boxing.

15

fn main() {

let x = 3; // ‘let’ allocates a variable on the stack

let y = Box::new(3); // y is a reference to 3 on the heap

println!("x == y is {}", x == *y); // "x == y is true"

}

• Modern languages either use Garbage Collection, or leave the
programmer the responsibility of managing the heap

• Pros and cons:
– GC slows down or interrupts the execution; could be unfeasable for

real-time systems
– Memory management by programmer can introduce subtle errors

• Rust avoids both, providing deterministic management of
resources, with very low overhead, using RAII

By default, Rust variables are immutable

– Usage checked by the compiler

mut is used to declare a resource as mutable.

Immutability by default

rustc 1.14.0 (e8a012324 2016-12-16)

error[E0384]: re-assignment of immutable variable `a`

--> <anon>:3:5

|

2 | let a: i32 = 0;

| - first assignment to `a`

3 | a = a + 1;

| ^^^^^^^^^ re-assignment of immutable variable

error: aborting due to previous error

rustc 1.14.0 (e8a012324 2016-12-16)

a = 1

Program ended.

16

fn main() {

let a: i32 = 0;

a = a + 1;

println!("a == {}", a);

}

fn main() {

let mut a: i32 = 0;

a = a + 1;

println!("a == {}", a);

}

Resource Acquisition Is Initialization

• The Resource Acquisition Is Initialization (RAII) programming
idiom states that Resource allocation is done during object
initialization, by the constructor, while resource deallocation
(release) is done during object destruction (specifically
finalization), by the destructor.

• Popular in modern C++. Small objects better allocated on
stack. Large resources are on the heap (or elsewhere) and are
owned by an object on the stack. The object is then
responsible for releasing the resource in its destructor.

• The object is bound to the scope (function, block) where it is
declared; when the scope closes it is reclaimed, together with
any owned resource.

• Each resource has a unique owner. 17

Ownership System
• Rust has an ownership system, which supports

RAII in a strict way

• Based on the concepts of ownership and
borrowing

• Ownership can be summarized by three rules:

[O1] Every value is owned by a variable, identified
by a name (possiby a path);

[O2] Each value has at most one owner at a time;

[O3] When the owner goes out-of-scope, the
value is reclaimed / destroyed.

18

Move semantics of assignment
• By default, an assignment between variables has

a move semantics: the ownership is moved from
the RHS to the LHS (by [O2])

19

fn main() {

let x = Box::new(3);

let _y = x; // underscore to avoid ‘unused’ warning

println!("x = {}", x); // error!

}

fn main() {

let x = Option::Some(3);

let _y = x;

println!("x = {:?}", x); // OK

}

• For primitive types and types implementing the Copy
trait, assignment has a copy semantics

• [O2] is satisfied because a new value is created

fn main() {

let x = 3;

let _y = x;

println!("x = {:?}", x); // OK

}

• Any value passed to the function will be reclaimed
when it returns, as the formal parameters gets out of
scope

• Only the returned
value can survive
(tuples to return more)

Move semantics of parameter passing
• The same with parameter passing and function return

20

fn foo<T>(z: T) -> T { // polymorphic identity function

z

}

fn main(){

let x = Box::new(3);

let _y = foo(x);

println!("x == {}", x); // error

}

fn main(){

let mut x = Box::new(3);

x = foo(x);

println!("x == {}", x); // OK

}

fn main(){

let x = 3;

let _y = foo(x);

println!("x == {}", x); // OK

}

Ownership: Unique Owner

struct Dummy { a: i32, b: i32 }

fn foo() {
let mut res = Box::new(Dummy {

a: 0,
b: 0

});
take(res);
println!(“res.a = {}”, res.a);

}

fn take(arg: Box<Dummy>) {
}

Ownership is moved from res to arg

arg is out of scope and the resource is freed automatically

Compiling Error!

21

Double free: not in Rust
• Remember the C++

code

• Rust does not allow
for explicit memory deallocation.

• Because of RAII, memory is freed automatically
when the owner goes out of scope

• By rule [O2], each value has only one owner.

• The move semantics of assignment guarantees
that s2 only owns the string, thus when s1 goes
out of scope nothing is reclaimed.

22

// Codice C++

auto *s1 = new string("esempio");

auto *s2 = s1;

// ...

delete s1;

delete s2;

// Rust code

let s1 = String::new("esempio");

let s2 = s1;

	Diapositiva 1: 301AA - Advanced Programming
	Diapositiva 2: The RUST programming language
	Diapositiva 3: Brief History
	Diapositiva 4: On RUST goals and syntax
	Diapositiva 5: More than that …
	Diapositiva 6: Rust overview
	Diapositiva 7: Memory safety
	Diapositiva 8: Null pointers
	Diapositiva 9: Avoiding null pointers in Rust
	Diapositiva 10: Digression: Primitive types in Rust
	Diapositiva 11: Using Option
	Diapositiva 12: Dangling pointers: example in C++
	Diapositiva 13: Double free: example in C++
	Diapositiva 14: Race Condition: example in C++
	Diapositiva 15: Memory management
	Diapositiva 16: Immutability by default
	Diapositiva 17: Resource Acquisition Is Initialization
	Diapositiva 18: Ownership System
	Diapositiva 19: Move semantics of assignment
	Diapositiva 20: Move semantics of parameter passing
	Diapositiva 21: Ownership: Unique Owner
	Diapositiva 22: Double free: not in Rust

