
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-14: Lambda Calculus, Haskell, Call by need

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Summary

• Motivation: Laziness in Haskell

• Lambda Calculus

• Parameter passing mechanisms

– Call by sharing

– Call by name

– Call by need

2

On laziness in Haskell
• Haskell is a lazy language
• Functions and data constructors don’t evaluate their

arguments until they need them
• In several languages there are forms of lazy evaluations

(if-then-else, shortcutting && and ||)

if (x != 0) return y/x; else return 0; //ok

if (x !=0 && y/x > 5) return 0; else return 1; //ok

if (x !=0 & y/x > 5) return 0; else return 1; //no

int choose(boolean e1, boolean e2){

if (e1 && e2) return 0; else return 1;

}

choose(x!=0, y/x>5) // ???

• Ok in Haskell, thanks to Normal Order evaluation and
Call by Need parameter passing…

3

λ-calculus: syntax
λ-terms: t ::= x | λx.t | t t | (t)
• x variable, name, symbol,…
• λx.t abstraction, defines an anonymous function
• t t' application of function t to argument t’

4
A simple tutorial on lambda calculus:
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

Syntactic Conventions
• Applications associates to left

t1 t2 t3  (t1 t2) t3

• The body of abstraction extends as far as possible
• x. y. x y x  (x. (y. (x y) x))

Terms can be represented as abstract syntax trees

Free vs. Bound Variables

• An occurrence of x is free in a term t if it is not in the
body of an abstraction x. t
– otherwise it is bound
– x is a binder

• Examples
– z. x. y. x (y z)
– (x. x) x

• Terms without free variables are combinators
– Identity function: id = x. x
– First projection: fst = x. y. x

5

Operational Semantics

[β-reduction] function application

(λx.t) t' = t [t'/x]

( x. x) y →

( x. x ( x. x)) (u r) →

y

u r ( x.x)

( x. (w. x w)) (y z) → w. y z w

redex

( x. x x)(x. x x) → (x. x x) (x. x x)

Other relevant concepts:

• Normal Forms, α-conversion, η-reduction 6

λ-calculus as a functional language

Despite the simplicity, we can encode in λ-
calculus most concepts of functional languages:

• Functions with several arguments

• Booleans and logical connectives

• Integers and operations on them

• Pairs and tuples

• Recursion

• …

7

Functions with several arguments

• A definition of a function with a single argument
associates a name with a λ-abstraction

• A function with several argument is equivalent to a
sequence of λ-abstractions

• “Currying” and “Uncurrying”

f x = <exp> -- is equivalent to

f = λx.<exp>

f(x,y) = <exp> -- is equivalent to

f = λx. λy.<exp>

curry :: ((a, b) -> c) -> a -> b -> c

curry f x y = f(x,y)

uncurry :: (a -> b -> c) -> (a, b) -> c

uncurry f (x,y) = f x y 8

Church Booleans

• T = t.f.t -- first

• F = t.f.f -- second

• and = b.c.bcF

• or = b.c.bTc

• not = x.xFT

• test =l.m.n.lmn

and T F

→ (b.c.bcF) T F

→ (c.TcF) F

→ TFF

→ F

not F

→ (x.xFT) F

→ FFT

→ T

test F u w

→ (l.m.n.lmn) F u w

→ (m.n.Fmn) u w

→ (n.Fun) w

→ Fuw

→ w

9

Pairs

• pair = f.s.b.b f s

• fst = p.p T

• snd = p.p F

fst (pair u w)

→ (p.p T) (pair u w)

→ (pair u w) T

→ (f.s.b.b f s) u w T

→ (s.b.b u s) w T

→ (b.b u w) T

→ T u w

→ u

10

Church Numerals

• 0 = s. z. z

• 1 = s. z. s z

• 2 = s. z. s (s z)

• 3 = s. z. s (s (s z))

A first simple function:
• succ = n. s. z. s (n s z)

succ 2

→ (n. s. z. s (n s z)) 2

→ (s. z. s (2 s z))

→ (s. z. s ((s. z. s (s z)) s z))

→ (s. z. s (s (s z)) = 3

Higher order functions:
n takes a function s as argument
and returns the n-th composition
of s with itself, sn

applies the function one
more time

sn

11

Arithmetics with Church Numerals

Addition:
• plus = m. n. s. z. m s (n s z)

Multiplication:
• times = m. n. s. z. m (n s) z

Exponentiation:
• pow = m. n. s. z. n m s z

Test by zero:
• Z = x. x F not F
• Z 0 = ((0 F) not) F = not F = T

• Z n = ((n F) not) F = (Fn not) F =
F (Fn-1(not)) F = F

sm

sn

mn

(sn)m = sn*m

12

Fix-point combinator and recursion

The following fix-point combinator Y, when applied to a function
R, returns a fix-point of R, i.e. R(YR) = YR

• Y = (y.(x.y(x x))(x.y(x x)))

• YR = (x.R(x x))(x.R(x x))

= R((x.R(x x))(x.R(x x))) = R(YR)

A recursive function definition (like factorial) can be read as a
higher-order transformation having a function as first argument,
and the desired function is its fix-point.

13

Fix-point combinator and recursion
A recursive definition:
• sums(n) = (n==0 ? 0 : n + sums(n-1))

• sums = \n -> (n == 0 ? 0 : n + sums(n-1))

sums is the fix-point of the following higher-order function:
• R = \F -> \n -> (n == 0? 0 : n + F(n-1))

• R=(r.n.Z n 0 (n S (r (P n)))) // in -calculus
Example of application

(Y R) 3 = R (Y R) 3 =
(3 == 0? 0 : 3 + (Y R) (3-1)) =
3 + (Y R) 2 =
3 + R (Y R) 2 =
3 + (2 == 0? 0 : 2 + (Y R) (2-1)) =
3 + 2 + (Y R) 1 =
... 3 + 2 + 1 + 0 = 6

14

Applicative and Normal Order evaluation
• Applicative Order evaluation

– Arguments are evaluated before applying the function –
aka Eager evaluation, parameter passing by value

• Normal Order evaluation

– Function evaluated first, arguments if and when needed

– Sort of parameter passing by name

– Some evaluation can be repeated

• Church-Rosser

– If evaluation terminates, the result (normal form) is
unique

– If some evaluation terminates, normal order evaluation
terminates

15

Applicative order
(λx.(+ x x)) (+ 3 2)
→ (λx.(+ x x)) 5
→ (+ 5 5)
→10

Normal order
(λx.(+ x x)) (+ 3 2)
→ (+ (+ 3 2) (+ 3 2))
→ (+ 5 (+ 3 2))
→ (+ 5 5)
→10

Define Ω = (λx.x x)
Then
ΩΩ = (λx.x x) (λx.x x)
→ x x [(λx.x x)/x]
→ (λx.x x) (λx.x x) = ΩΩ
→ … non-terminating
(λx. 0) (ΩΩ)
→ { Applicative order}
… non-terminating
(λx. 0) (ΩΩ)
→ { Normal order}
0

β-conversion
(λx.t) t’ = t [t’/x]

Parameter passing mechanism in Haskell:
Call by need

• Haskell realizes lazy evaluation by using call by need
parameter passing: an expression passed as
argument is bound to the formal parameter, but it is
evaluated only if its value is needed.

• The argument is evaluated only the first time, using
the memoization technique: the result is saved and
further uses of the argument do not need to re-
evaluate it

16

Call by need (cont.)

• Combined with lazy data constructors, this allows to
construct potentially infinite data structures and to call
infinitely recursive functions without necessarily causing
non-termination

• Note: lazy evaluation works fine with purely functional
languages

• Side effects require that the programmer reasons about
the order that things happen, not predictable in lazy
languages.

• We will address this fact when introducing Hakell's IO-
Monad

17

Parameter Passing Mechanisms

• Parameter passing modes
– In

– In/out

– Out

• Parameter passing mechanisms
– Call by value (in)

– Call by reference (in+out)

– Call by result (out)

– Call by value/result (in+out)

– Call by need (in)

– Call by sharing (in/out)

– Call by name (in+out)

19

L-Values vs. R-Values and
Value Model vs. Reference Model

• Consider the assignment of the form: a = b
– a is an l-value, an expression denoting a location, e.g.

• an array element a[2]

• a variable foo

• a dereferenced pointer *p

• a more complex expression like (f(a)+3)->b[c]

– b is an r-value: any syntactically valid expression with a type
compatible to that of a

• Languages that adopt the value model of variables copy the
value of b into the location of a

• Languages that adopt the reference model of variables copy
references, resulting in shared data values via multiple
references

20

Value Model vs. Reference Model
in some programming languages

• Lisp/Scheme, ML, Haskell, Smalltalk adopt the reference

model. They copy the reference of b into a so that a and b

refer to the same object

• Most imperative programming languages use the value model

• Java uses the value model for built-in types and the reference

model for class instances

• C# uses value model for value types, reference model for

reference types

21

Assignment in
Value Model vs. Reference Model

22

b := 2;
c := b;
a := b + c

Value model

Reference model

References and pointers

• Most implementations of PLs have as target architecture a Von
Neumann one, where memory is made of cells with addresses

• Thus implementations use the value model of the target
architecture

• Assumption: every data structure is stored in memory cells

• We “define”:
– A reference to X is the address of the (base) cell where X is stored

– A pointer to X is a location containing the address of X

• Value model based implementations can mimic the reference
model using pointers and standard assignment
– Each variable is associated with a location

– To let variable y refer to data X, the address of (reference to) X is written in
the location of y, which becomes a pointer.

23

Parameter Passing by Sharing

• Call by sharing: parameter passing of data in the
reference model

• The value of the variable is passed as actual
argument, which in fact is a reference to the
(shared) data

– Essentially this is call by value of the variable!

• Java uses both pass by value and pass by sharing

– Variables of primitive built-in types are passed by
value

– Class instances are passed by sharing

– The implementation is identical

24

Parameter Passing in Algol 60

• Algol 60 uses call by name by default, but also call by value

• Effect of call by name is like β-reduction in λ-calculus: the
actual parameter is copied wherever the formal parameter
appears in the body, then the resulting code is executed

• Thus the actual parameter is evaluated a number of times (0,
1, …) that depends on the logic of the program

• Since the actual parameter can contain names, it is passed in
a closure with the environment at invocation time (called a
thunk)

• Call by name is powerful but makes programs difficult to read
and to debug (think to λ-calculus…): dismissed in subsequent
versions of Algol

25

An example of Call by Name:
Jensen’s device

• What does the following Algol 60 procedure compute?

• Apparently, (high-low+1) * expr

26

real procedure sum(expr, i, low, high);

value low, high; low and high are passed by value
real expr; expr and i are passed by name
integer i, low, high;

begin

real rtn;

rtn := 0;

for i := low step 1 until high do

rtn := rtn + expr;

sum := rtn return value by assigning to function name
end sum

An example of Call by Name:
Jensen’s device

• But: y := sum(3*x*x-5*x+2,x,1,10)

• It computes

27

real procedure sum(expr, i, low, high);

value low, high; low and high are passed by value
real expr; expr and i are passed by name
integer i, low, high;

begin

real rtn;

rtn := 0;

for x := low step 1 until high do

rtn := rtn + 3*x*x-5*x+2;

sum := rtn return value by assigning to function name
end sum

y =  3x2-5x+2
x=1

10

Call by name & Lazy evaluation (call by need)

• In call by name parameter passing (default in Algol 60)
arguments (like expressions) are passed as a closure
(“thunk”) to the subroutine

• The argument is (re)evaluated each time it is used in the
body

• Haskell realizes lazy evaluation by using call by need
parameter passing, which is similar: an expression passed
as argument is evaluated only if its value is needed.

• Unlike call by name, the argument is evaluated only the
first time, using memoization: the result is saved and
further uses of the argument do not need to re-evaluate
it

28

Call by name & Lazy evaluation (call by need)

• Combined with lazy data constructors, this allows to
construct potentially infinite data structures and to call
infinitely recursive functions without necessarily causing
non-termination

• Note: lazy evaluation works fine with purely functional
languages

• Side effects require that the programmer reasons about
the order that things happen, not predictable in lazy
languages.

• We will address this fact when introducing Hakell's IO-
Monad

29

Summary of Parameter Passing Modes

30

	Diapositiva 1: 301AA - Advanced Programming
	Diapositiva 2: Summary
	Diapositiva 3: On laziness in Haskell
	Diapositiva 4: λ-calculus: syntax
	Diapositiva 5: Free vs. Bound Variables
	Diapositiva 6: Operational Semantics
	Diapositiva 7: λ-calculus as a functional language
	Diapositiva 8: Functions with several arguments
	Diapositiva 9: Church Booleans
	Diapositiva 10: Pairs
	Diapositiva 11: Church Numerals
	Diapositiva 12: Arithmetics with Church Numerals
	Diapositiva 13: Fix-point combinator and recursion
	Diapositiva 14: Fix-point combinator and recursion
	Diapositiva 15: Applicative and Normal Order evaluation
	Diapositiva 16: Parameter passing mechanism in Haskell: Call by need
	Diapositiva 17: Call by need (cont.)
	Diapositiva 19: Parameter Passing Mechanisms
	Diapositiva 20: L-Values vs. R-Values and Value Model vs. Reference Model
	Diapositiva 21: Value Model vs. Reference Model in some programming languages
	Diapositiva 22: Assignment in Value Model vs. Reference Model
	Diapositiva 23: References and pointers
	Diapositiva 24: Parameter Passing by Sharing
	Diapositiva 25: Parameter Passing in Algol 60
	Diapositiva 26: An example of Call by Name: Jensen’s device
	Diapositiva 27: An example of Call by Name: Jensen’s device
	Diapositiva 28: Call by name & Lazy evaluation (call by need)
	Diapositiva 29: Call by name & Lazy evaluation (call by need)
	Diapositiva 30: Summary of Parameter Passing Modes

