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Summary

• Motivation: Laziness in Haskell

• Lambda Calculus

• Parameter passing mechanisms

– Call by sharing

– Call by name

– Call by need
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On laziness in Haskell
• Haskell is a lazy language
• Functions and data constructors don’t evaluate their 

arguments until they need them
• In several languages there are forms of lazy evaluations 

(if-then-else, shortcutting && and ||)

if (x != 0) return y/x; else return 0; //ok

if (x !=0 && y/x > 5) return 0; else return 1; //ok

if (x !=0 & y/x > 5) return 0; else return 1; //no

int choose(boolean e1, boolean e2){

if (e1 && e2) return 0; else return 1;

}

choose(x!=0, y/x>5) // ??? 

• Ok in Haskell, thanks to Normal Order evaluation and 
Call by Need parameter passing…
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λ-calculus: syntax
λ-terms: t ::= x | λx.t | t t | (t)
• x variable, name, symbol,…
• λx.t abstraction, defines an anonymous function
• t t' application of function t to argument t’
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A simple tutorial on lambda calculus:
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

Syntactic Conventions
• Applications associates to left    

t1 t2 t3  (t1 t2) t3

• The body of abstraction extends as far as possible
• x. y. x y x  (x. (y. (x y) x))

Terms can be represented as abstract syntax trees



Free vs. Bound Variables

• An occurrence of x is free in a term t if it is not in the 
body of an abstraction x. t 
– otherwise it is bound
– x is a binder

• Examples
– z. x. y. x (y z)
– (x. x) x

• Terms without free variables are combinators
– Identity function: id = x. x
– First projection:  fst = x. y. x
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Operational Semantics

[β-reduction]   function application 

(λx.t) t'   =   t [t'/x]

( x. x) y →

( x. x ( x. x) ) (u r) →

y

u r ( x.x)

( x. (w. x w)) (y z) → w. y z w

redex

( x. x x)(x. x x) → (x. x x) (x. x x)

Other relevant concepts:

• Normal Forms, α-conversion, η-reduction 6



λ-calculus as a functional language

Despite the simplicity, we can encode in λ-
calculus most concepts of functional languages:

• Functions with several arguments

• Booleans and logical connectives

• Integers and operations on them

• Pairs and tuples

• Recursion

• … 
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Functions with several arguments

• A definition of a function with a single argument 
associates a name with a λ-abstraction

• A function with several argument is equivalent to a 
sequence of λ-abstractions

• “Currying” and “Uncurrying”

f x = <exp> -- is equivalent to 

f = λx.<exp>

f(x,y) = <exp>  -- is equivalent to 

f = λx. λy.<exp>

curry :: ((a, b) -> c) -> a -> b -> c

curry f x y = f(x,y)

uncurry :: (a -> b -> c) -> (a, b) -> c

uncurry f (x,y) = f x y 8



Church Booleans

• T = t.f.t -- first  

• F = t.f.f -- second

• and = b.c.bcF

• or = b.c.bTc

• not = x.xFT 

• test =l.m.n.lmn

and T F 

→ (b.c.bcF) T F

→ (c.TcF) F

→ TFF

→ F

not F

→ (x.xFT) F

→ FFT

→ T

test F u w

→ (l.m.n.lmn) F u w

→ (m.n.Fmn) u w

→ (n.Fun) w

→ Fuw

→ w
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Pairs

• pair = f.s.b.b f s

• fst = p.p T

• snd = p.p F

fst (pair u w)

→ (p.p T) (pair u w)

→ (pair u w) T

→ (f.s.b.b f s) u w T

→ (s.b.b u s) w T

→ (b.b u w) T

→ T u w

→ u
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Church Numerals

• 0 = s. z. z

• 1 = s. z. s z

• 2 = s. z. s (s z)

• 3 = s. z. s (s (s z))

A first simple function:
• succ = n. s. z. s (n s z)

succ 2

→ (n. s. z. s (n s z)) 2

→ (s. z. s (2 s z))

→ (s. z. s ((s. z. s (s z)) s z))

→ (s. z. s (s (s z))  = 3

Higher order functions:
n takes a function s as argument 
and returns the n-th composition
of s with itself, sn

applies the function one
more time

sn
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Arithmetics with Church Numerals

Addition:
• plus = m. n. s. z. m s (n s z)

Multiplication:
• times =  m. n. s. z. m (n s) z

Exponentiation:
• pow =  m. n. s. z. n m s z

Test by zero:
• Z = x. x F not F
• Z 0 = ((0 F) not) F = not F = T

• Z n = ((n F) not) F = (Fn not) F = 
F (Fn-1(not)) F = F

sm

sn

mn

(sn)m = sn*m
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Fix-point combinator and recursion

The following fix-point combinator Y, when applied to a function 
R, returns a fix-point of R, i.e. R(YR) = YR

• Y = (y.(x.y(x x))(x.y(x x)))

• YR = (x.R(x x))(x.R(x x)) 

= R((x.R(x x))(x.R(x x))) = R(YR)

A recursive function definition (like factorial) can be read as a 
higher-order transformation having a function as first argument, 
and the desired function is its fix-point.

13



Fix-point combinator and recursion
A recursive definition:
• sums(n) = (n==0 ? 0 : n + sums(n-1))

• sums = \n -> (n == 0 ? 0 : n + sums(n-1))

sums is the fix-point of the following higher-order function:
• R = \F -> \n -> (n == 0? 0 : n + F(n-1))

• R=(r.n.Z n 0 (n S (r (P n)))) // in -calculus
Example of application

(Y R) 3 = R (Y R) 3 =
(3 == 0? 0 : 3 + (Y R) (3-1)) =
3 + (Y R) 2 = 
3 + R (Y R) 2 = 
3 + (2 == 0? 0 : 2 + (Y R) (2-1)) =
3 + 2 + (Y R) 1 = 
... 3 + 2 + 1 + 0 = 6
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Applicative and Normal Order evaluation
• Applicative Order evaluation

– Arguments are evaluated before applying the function –
aka Eager evaluation, parameter passing by value

• Normal Order evaluation

– Function evaluated first, arguments if and when needed

– Sort of parameter passing by name

– Some evaluation can be repeated

• Church-Rosser

– If evaluation terminates, the result (normal form) is 
unique

– If some evaluation terminates, normal order evaluation 
terminates
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Applicative order
(λx.(+ x x)) (+ 3 2) 
→ (λx.(+ x x)) 5
→ (+ 5 5)
→10

Normal order
(λx.(+ x x)) (+ 3 2) 
→ (+  (+ 3 2) (+ 3 2))
→ (+ 5  (+ 3 2))
→ (+ 5 5)
→10

Define Ω = (λx.x x)
Then
ΩΩ  = (λx.x x) (λx.x x) 
→ x x [(λx.x x)/x]
→ (λx.x x) (λx.x x) = ΩΩ
→ …  non-terminating
(λx. 0) (ΩΩ)
→ { Applicative order}
… non-terminating
(λx. 0) (ΩΩ)
→ { Normal order}
0

β-conversion
(λx.t) t’ = t [t’/x]



Parameter passing mechanism in Haskell: 
Call by need

• Haskell realizes lazy evaluation by using call by need
parameter passing: an expression passed as 
argument is bound to the formal parameter, but it is 
evaluated only if its value is needed.

• The argument is evaluated only the first time, using 
the  memoization technique: the result is saved and 
further uses of the argument do not need to re-
evaluate it
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Call by need (cont.)

• Combined with lazy data constructors, this allows to 
construct potentially infinite data structures and to call 
infinitely recursive functions without necessarily causing 
non-termination

• Note: lazy evaluation works fine with purely functional
languages 

• Side effects require that the programmer reasons about 
the order that things happen, not predictable in lazy 
languages.

• We will address this fact when introducing Hakell's IO-
Monad
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Parameter Passing Mechanisms

• Parameter passing modes
– In

– In/out

– Out

• Parameter passing mechanisms
– Call by value (in)

– Call by reference (in+out)

– Call by result (out)

– Call by value/result (in+out)

– Call by need (in)

– Call by sharing (in/out)

– Call by name (in+out)
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L-Values vs. R-Values and 
Value Model vs. Reference Model

• Consider the assignment of the form: a = b
– a is an l-value, an expression denoting a location, e.g. 

• an array element a[2]

• a variable foo

• a dereferenced pointer *p 

• a more complex expression like  (f(a)+3)->b[c]

– b is an r-value:  any syntactically valid expression with a type 
compatible to that of a

• Languages that adopt the value model of variables copy the 
value of b into the location of a

• Languages that adopt the reference model of variables copy 
references, resulting in shared data values via multiple 
references
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Value Model vs. Reference Model
in some programming languages

• Lisp/Scheme, ML, Haskell, Smalltalk adopt the reference 

model. They  copy the reference of b into a so that a and b

refer to the same object

• Most imperative programming languages use the value model

• Java uses the value model for built-in types and the reference 

model for class instances 

• C# uses value model for value types, reference model for 

reference types
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Assignment in 
Value Model vs. Reference Model

22

b := 2;
c := b;
a := b + c

Value model

Reference model



References and pointers

• Most implementations of PLs have as target architecture a Von 
Neumann one, where memory is made of cells with addresses

• Thus implementations use the value model of the target 
architecture

• Assumption: every data structure is stored in memory cells

• We “define”:
– A reference to X is the address of the (base) cell where X is stored

– A pointer to X is a location containing the address of X

• Value model based implementations can mimic the reference 
model using pointers and standard assignment
– Each variable is associated with a location

– To let variable y refer to data X, the address of (reference to) X is written in 
the location of y, which becomes a pointer. 
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Parameter Passing by Sharing

• Call by sharing: parameter passing of data in the 
reference model

• The value of the variable is passed as actual 
argument, which in fact is a reference to the 
(shared) data

– Essentially this is call by value of the variable!

• Java uses both pass by value and pass by sharing

– Variables of primitive built-in types are passed by 
value

– Class instances are passed by sharing

– The implementation is identical
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Parameter Passing in Algol 60

• Algol 60 uses call by name by default, but also call by value

• Effect of call by name is like β-reduction in λ-calculus: the 
actual parameter is copied wherever the formal parameter 
appears in the body, then the resulting code is executed

• Thus the actual parameter is evaluated a number of times (0, 
1, …) that depends on the logic of the program

• Since the actual parameter can contain names, it is passed in 
a closure with the environment at invocation time (called a 
thunk)

• Call by name is powerful but makes programs difficult to read 
and to debug (think to λ-calculus…): dismissed in subsequent 
versions of Algol
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An example of Call by Name: 
Jensen’s device

• What does the following Algol 60 procedure compute?

• Apparently,  (high-low+1) * expr
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real procedure sum(expr, i, low, high); 

value low, high; low and high are passed by value
real expr; expr and i are passed by name
integer i, low, high; 

begin 

real rtn; 

rtn := 0; 

for i := low step 1 until high do 

rtn := rtn + expr; 

sum := rtn return value by assigning to function name
end sum 



An example of Call by Name: 
Jensen’s device

• But: y := sum(3*x*x-5*x+2,x,1,10)

• It computes
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real procedure sum(expr, i, low, high); 

value low, high; low and high are passed by value
real expr; expr and i are passed by name
integer i, low, high; 

begin 

real rtn; 

rtn := 0; 

for x := low step 1 until high do 

rtn := rtn + 3*x*x-5*x+2; 

sum := rtn return value by assigning to function name
end sum 

y =  3x2-5x+2
x=1

10



Call by name & Lazy evaluation (call by need)

• In call by name parameter passing (default in Algol 60) 
arguments (like expressions) are passed as a closure
(“thunk”) to the subroutine

• The argument is (re)evaluated each time it is used in the 
body

• Haskell realizes lazy evaluation by using call by need
parameter passing, which is similar: an expression passed 
as argument is evaluated only if its value is needed.

• Unlike call by name, the argument is evaluated only the 
first time, using memoization: the result is saved and 
further uses of the argument do not need to re-evaluate 
it
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Call by name & Lazy evaluation (call by need)

• Combined with lazy data constructors, this allows to 
construct potentially infinite data structures and to call 
infinitely recursive functions without necessarily causing 
non-termination

• Note: lazy evaluation works fine with purely functional
languages 

• Side effects require that the programmer reasons about 
the order that things happen, not predictable in lazy 
languages.

• We will address this fact when introducing Hakell's IO-
Monad
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Summary of Parameter Passing Modes

30
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