
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-06: Software Components

1

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Overview

• Needs of components

• Definition of Component Software

• Components and other programming
concepts

• Example of components: short history

➔ Chapters 1 and 4 of Component Software:
Beyond Object-Oriented Programming. C.
Szyperski, D. Gruntz, S. Murer, Addison-Wesley,
2002.

2

Some historical remarks

• Need of software built from prefabricated components first
stated by Malcolm Douglas McIlroy in a SE conference in
1968.
– He included pipes and filters in Unix, and developed several Unix

tools, such as spell, diff, sort, join, graph, speak, and tr.

• Brad Cox’s Integrated Circuit analogy:
– Software components should

be like integrated circuits (ICs)
(IEEE Software, 1990)

• Other analogies:
– Components of stereo equipments
– Lego blocks, …

• Full maturity of the field
in 1990-2000

3

Why component-based software?

• Cost of software development
– from software products to product families

– need to re-use software to reduce costs

– better to buy off-the-shelf than re-implementing

– constructing systems by composing components is easier

4

Why component-based software?

• Component software: composite systems made
of software components

• More reliable software
– more reliable to reuse software than to create

– system requirements can force use of certified
components (car industry, aviation, . . .)

• Emergence of a component marketplace
– Apple’s App Store, Android Market, . . .

• Emergence of distributed and concurrent systems
– we need to build systems composed of independent

parts, by necessity
5

Desiderata for software components

Bertrand Meyer, in Object Oriented Software Construction
(1997):

1. modular (IC chips, disk drivers, are self-contained: packaged
code)
1. compatible (chips or boards that plug in easily, simple interfaces)

2. reusable (same processor IC can serve various purposes)

3. extendible (IC technology can be improved: inheritance)

2. reliable (an IC works most of the time!)
1. correct (it does what it's supposed to, according to specification)

2. robust (it functions in abnormal conditions)

3. efficient (ICs are getting faster and faster!)

4. portable (ease of transferring to different platforms)

5. timely (released when or before users want it)
6

Software Components: a definition

“A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be
deployed independently and is subject to
composition by third parties.” Clemens Szyperski

Workshop on Component-Oriented Programming,
1996 European Conference on Object-Oriented
Programming

Component Software: Beyond Object-Oriented
Programming. C. Szyperski, D. Gruntz, S. Murer,
Addison-Wesley, 2002.

7

Composition unit
A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by third party.

Components

Glue code
System

• Binary units – black boxes, not source code
• Partial deployment not possible
• System can be built by combining components
• No (externally) observable state
• Indistinguishable from copies 8

What is a contract?
A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third party.

• Interface – component specification

• Contract - A specification attached to an interface that
mutually binds the clients and providers of the components.
– Functional Aspects (API)
– Pre- and post-conditions for the operations specified by API.
– Non functional aspects (different constrains, environment

requirements, etc.)

9

"Contractually specified interfaces"

• Require mechanism for interface definition, such as
Interface Definition Language (IDL)

• Contracts specify more than dependencies and interfaces
– how the component can be deployed
– how can be instantiated
– how the instances behave through the advertised interfaces

• Note: this is more than a set of per-interface specifications
• Example: a queuing component has a stable storage

requires interface and enqueue and dequeue provides
interfaces. The contract states that:
– what is enqueued via one interface can be dequeued via the

other
– instances can only be used by connecting them to a provider

implementing the stable storage interface

10

What is an “explicit context dependency”?
A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is
subject to composition by third party.

• Provided and Required Interface

• Context dependencies - Specification of the deployment
environment and run-time environment
– Example: Which tools, platforms, resources or other components

are required?

13

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by third party.

• Late binding - dependencies are resolved at load or run-time.

What does it mean
“deployed independently”?

Platform (framework)

connector

14

A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third party.

• The component can be plugged into a system or composed
with other components by third parties, not aware of the
internals of the component.

What does it mean
“composition by third party”?

15

Basic concepts of a Component Model

• Component interface: describes the operations
(method calls, messages, . . .) that a component
implements and that other components may use

• Composition mechanism: the manner in which
different components can be composed to work
together to accomplish some task.
For example, using message passing.

• Component platform: A platform for the
development and execution of components

• Concepts are language/paradigm agnostic
• Lays the ground for language interoperability

16

Before Components: Modules

• Support for modules in several languages since the
1970’s

• Modules as main feature of programming languages
for supporting developement of large applications
– Support information hiding through encapsulation: explicit import and

export lists
– Reduce risks of name conflicts; support integrity of data abstraction

• Teams of programmers can work on separate modules
in a project
– No language support for modules in C and Pascal
– Modula-2 modules, Ada packages
– Java packages (?), new notion of module in Java 9

17

Scoping Rules for Modules

• Scoping: modules encapsulate variables, data types,
and subroutines in a package
– Objects inside are visible to each other
– Objects inside are not visible outside unless exported
– Objects outside are visible [open scopes], or are not visible

inside unless imported [closed scopes], or are visible with
“qualified name” [selectively open scopes] (eg: B.x)

• A module interface specifies exported variables, data
types and subroutines

• The module implementation is compiled separately
and implementation details are hidden from the user
of the module

18

Module Types, towards Classes

• Modules as abstraction mechanism: collection of
data with operations defined on them (sort of
abstract data type)

• Various mechanism to get module instances:
– Modules as manager: instance as additional

arguments to subroutines (Modula-2)

– Modules as types (Simula, ML)

• Object-Oriented: Modules (classes) + inheritance

• Many OO languages support a notion of Module
(packages) independent from classes

19

20

Components and Programming Concepts

• Component can be anything and can contain
anything
– (Collections of) classes, objects, functions/algorithms,

data structures

• Typically granularity is coarser than classes
• Components support:

– Unification of data and function
– Encapsulation: no visible state
– Identity: each software entity has a unique identity
– Use of interfaces to represent specification

dependencies

OOP vs COP

• Object orientation is not primarily concerned with
reuse, but with appropriate domain/problem
representation using concepts like:
– Objects, classes, inheritance, polymorphism

• Experience has shown that the use of OO does not
necessarily produce reusable software

21

CBSE – Component-Based
Software Engineering

• Provides methods and tools for

– Building systems from components

– Building components as reusable units

– Performing maintenance by replacement of
components and introducing new components
into the system

– System architecture detailed in terms of
components

22

24

Component Forms

1. Component specification

2. Component interface

3. Component implementation

4. Installed component

5. Component object

25

Component Specification

• The specification of a unit of software that
describes the behavior of a set of Component
Objects and defines a unit of implementation.

• Behavior is defined as a set of Interfaces. A
Component Specification is realized as a
Component Implementation.

26

Component Interface

• A definition of a set of behaviors that can be
offered by a Component Object .

27

Component Implementation

• A realization of Component Specification,
which is independently deployable.

• This means it can be installed and replaced
independently of other components.
– It does not mean that it is independent of other

components – it may have many dependencies.

– It does not necessarily mean that it is a single
physical item, such as a single file.

28

Installed Component

• An installed (or deployed) copy of a
Component Implementation.

• A Component Implementation is deployed by
registering it with the runtime environment.
– This enables the runtime environment to identify

the Installed Component to use when creating an
instance of the component, or when running one
of its operations.

29

Component Object

• An instance of an Installed Component.

• A runtime concept.

• An object with its own data and a unique
identity.

• The thing that performs the implemented
behavior. An Installed Component may have
multiple Component Objects (which require
explicit identification) or a single one (which
may be implicit).

Summary CBSE – basic definitions

• The basis is the Component
• Components can be assembled

according to the rules specified by the
component model

• Components are assembled through
their interfaces

• A Component Composition is the
process of assembling components to
form an assembly, a larger component
or an application

• Component are performing in the
context of a component framework

• All parts conform to the component
model

• A component technology is a concrete
implementation of a component model

c 1 c 2

Middleware

Run-time system

framework

Component Model

30

Some successful components: In the past...

• Mathematical libraries

– NAGLIB - Fortran Library

– Mathematical and physical functions

• Characteristics

– Well defined theory behind the functions - very well
standardized

– Simple Interface - procedural type of communication
between client (application) and server (component)

– Well defined input and output

– Relative good error handling

– Difficult for adaptation (not flexible)

31

Some successful components: The big ones…

Client - server type

• Database Servers

– Relational databases, (Object-oriented
databases, hierarchical databases)

– Standard API – SQL
• Different dialects of the standard

• X-windows

– Standard API, callback type of communication

– High level of adaptation

– Too general - difficult to use it

32

Even bigger components:
Operating systems

• Example - Unix
– A general purpose OS, used as a platform for dedicated

purposes

– Standard API – POSIX

– Commands used as components in a shell-process

– Low-level but well-defined interfaces (file sharing, pipes and
filter)

– Different variants, POSIX is not sufficient

– Not a real component behavior (difficult to replace or update)

• MS Windows ...

33

More recent components…

• Plugin architectures (finer-grained components)
– Netscape’s Navigator web browsers
– Active Server Pages (ASP) and Java Server Pages (JSP)

architectures for web servers

• Microsoft’s Visual Basic
• Java Beans, Enterprise JavaBeans (EJB)
• Microsoft’s COM+
• Android’s component based apps
• Modern application and integration servers

around J2EE and COM+ / .NET

34

What do all the above examples have
in common?

• In all cases there is an infrastructure providing
rich foundational functionality for the addressed
domain.

• Components can be purchased from
independent providers and deployed by clients.

• The components provide services that are
substantial enough to make duplication of their
development too difficult or not cost- effective.

• Multiple components from different sources can
coexist in the same installation.

35

• Components exist on a level of abstraction where
they directly mean something to the deploying
client

• With Visual Basic, this is obvious – a control has a
direct visual representation, displayable and
editable properties, and has meaning that is
closely attached to its appearance.

• With plugins, the client gains some explicable,
high-level feature and the plugin itself is a user-
installed and configured component

36

Modules vs. Components

• Several component-related concepts already
present in modules

• Modules as part of a program, component as part
of a system

• Components can include static resources

• Modules may expose observable state

• Modules encompassed by classes in OO
languages in the 1990’s

• Now present in most modern languages

37

	Diapositiva 1: 301AA - Advanced Programming
	Diapositiva 2: Overview
	Diapositiva 3: Some historical remarks
	Diapositiva 4: Why component-based software?
	Diapositiva 5: Why component-based software?
	Diapositiva 6: Desiderata for software components
	Diapositiva 7: Software Components: a definition
	Diapositiva 8: Composition unit
	Diapositiva 9: What is a contract?
	Diapositiva 10: "Contractually specified interfaces"
	Diapositiva 13: What is an “explicit context dependency”?
	Diapositiva 14: What does it mean “deployed independently”?
	Diapositiva 15: What does it mean “composition by third party”?
	Diapositiva 16: Basic concepts of a Component Model
	Diapositiva 17: Before Components: Modules
	Diapositiva 18: Scoping Rules for Modules
	Diapositiva 19: Module Types, towards Classes
	Diapositiva 20: Components and Programming Concepts
	Diapositiva 21: OOP vs COP
	Diapositiva 22: CBSE – Component-Based Software Engineering
	Diapositiva 24: Component Forms
	Diapositiva 25: Component Specification
	Diapositiva 26: Component Interface
	Diapositiva 27: Component Implementation
	Diapositiva 28: Installed Component
	Diapositiva 29: Component Object
	Diapositiva 30: Summary CBSE – basic definitions
	Diapositiva 31: Some successful components: In the past...
	Diapositiva 32: Some successful components: The big ones…
	Diapositiva 33: Even bigger components: Operating systems
	Diapositiva 34: More recent components…
	Diapositiva 35: What do all the above examples have in common?
	Diapositiva 36
	Diapositiva 37: Modules vs. Components

