
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

Course pages:
http://pages.di.unipi.it/corradini/Didattica/AP-23/

AP-02: Motivations and Introduction

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/
http://pages.di.unipi.it/corradini/Didattica/AP-23/

Software is Everywhere

2

Programming in the 21 century
• Software as complex as ever

• Command line interface not enough

• Data comes from multiple sources:
structured (DB) and unstructured

• Single computer not enough

• Software development is a group activity

• Deployment on Web or mobile devices

3

Complexity Prompts for Innovation

• Object-Oriented Programming allows ever
larger applications to be built

• But limited support for reuse

• OS + libraries not enough

• Reusable components are needed

• Multi-tier applications development increases
the choices on how to build applications

4

Key Ingredients for Complex Software

• Advanced features extending programming
languages

• Component models to ensure reusability

• Frameworks to support efficient development
of (component based) applications

• Execution environments providing runtime
support for ever dynamic software systems

5

The Software Architect

• A new role is needed: Software Architect

• to create, define or choose an application framework

• to create the component design according to a
component model

• to structure a complex application into pieces

• to understand the interactions and dependencies
among components

• to select the execution environment / platform based
on cost/performance criteria

• to organize and supervise the development process

6

Course Objectives

• Understand programming language technology:
– Execution Models
– Run-time systems

• Analyze programming metaphors:
– Objects
– Components
– Patterns

• Learn advanced programming techniques
• Present state-of-the-art frameworks

incorporating these techniques
• Practice with all these concepts through small

projects

7

Course Syllabus

• Programming Language Pragmatics

• Run Time Support and Execution Environments: the Java
Virtual Machine

• Components based programming and Frameworks

• Polymorphism: a classification and examples in several
languages

• Functional languages: Haskell and advanced concepts

• Stream API and lambda-expressions in Java

• Ownership and Borrowing in Rust

• Scripting Languages and Python

8

Programming language pragmatics

• Syntax, Semantics and Pragmatics of PLs

• Programming languages and Abstract
Machines

• Interpretation vs. Compilation vs. Mixed

• Examples of Virtual Machines

• Examples of Compilation Schemes

9

Run-Time Systems and the JVM

• RTSs provide a Virtual Execution Environment
interfacing a program in execution with the OS.

• They support, among others:
– Memory Management, Thread Management
– Exception Handling and Security
– AOT and JIT Compilation
– Dynamic Link/Load
– Debugging Support and Reflection
– Verification

• A concrete example: the Java Virtual Machine

10

Component-based Programming

• Component models and frameworks, an
Introduction

• Examples of component-based frameworks:
– JavaBeans and NetBeans

– Spring and Spring Beans

– COM

– CLR and .NET

– OSGi and Eclipse

– Hadoop Map/Reduce

11

Software Frameworks
and Inversion of Control

Software Framework: A collection of common
code providing generic functionality that can be
selectively overridden or specialized by user
code providing specific functionality
Inversion of control: unlike in libraries, the
overall program's flow of control is not dictated
by the caller, but by the framework
Framework Design is a challenging task. It
requires mastering of design patterns, OO
methods, polymorphism…

12

Polymorphism and Generic
Programming

• A classification of Polymorphism

• Polymorphism in C++: inclusion polymorphism
and templates

• Java Generics

• The Standard Template Library: an overview

• Generics and inheritance: invariance,
covariance and contravariance

13

Functional programming and Haskell

• Introduction to Functional Programming

• Evaluation strategies (lambda-calculus)

• Haskell: main features

• Type Classes and overloading

• Monads

• Functional programming in Java

– Lambdas and Stream API

14

Scripting Languages and Python

• Overview of scripting languages

• Main features of Python

• Imperative, functional and OO programming
in Python

• Higher-order functions and Decorators

• On the implementation of Python: the Global
Interpreter Lock

15

Selected Advanced Concepts in
Programming Languages

• Closures vs Delegates in CLI

• The RUST programming language

–Avoiding Aliases + Mutable: Ownership and
borrowing

– Traits, generics and inheritance

• …

16

Design Patterns

17

Design Patterns in a few slides

• A fundamental concept in Software
Engineering & Programming, useful whenever
one is designing a solution to a problem

• We shall meet several Design Patterns along
the course (e.g., Observer or Publish-
Subscribe, Visitor, Template Method,…)

• Just a brief introduction…

18

Design Patterns: From Architecture to
Software Development

• Invented in the 1970's by architect Christopher Alexander:

"Each pattern describes a problem which occurs over
and over again in our environment, and then describes
the core of the solution to that problem, in such a way

that you can use this solution a million times over,
without ever doing it the same way twice"

Christopher Alexander, A Pattern Language, 1977

• The book includes 253 patterns for architectural design
• Common definition of a pattern:

“A solution to a problem in a context.”
• Patterns can be applied to many different areas of human

endehavour, including software development (where they
are more successful!)

19

(Software) Design Patterns

• A (software) design pattern is a general,
reusable solution to a commonly occurring
problem within a given context in software
design.

• Different abstraction levels:
– Complex design for an entire application or

subsystem

– Solution to a general design problem in a
particular context

– Simple reusable design class such as linked list,
hash table, etc.

20

Patterns solve software structural problems

like:

• Abstraction

• Encapsulation

• Information hiding

• Separation of concerns

• Coupling and cohesion

• Separation of interface and implementation

• Single point of reference

• Divide and conquer

21

Patterns also solve non-functional problems

like:

• Changeability

• Interoperability

• Efficiency

• Reliability

• Testability

• Reusability

22

Main components of a Design Pattern

• Name: meaningful text that reflects the problem,
e.g. Bridge, Mediator, Flyweight

• Problem addressed: intent of the pattern,
objectives achieved within certain constraints

• Context: circumstances under which it can occur,
used to determine applicability

• Forces: constraints or issues that solution must
address, forces may conflict!

• Solution: the static and dynamic relationships
among the pattern components. Structure,
participants, collaboration. Solution must resolve
all forces!

23

The 23 Design Patterns of the Gang of Four

24
3

Tabella dei pattern GoF

comportamentali

creazionali strutturali

Behavioural

Creational Structural

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides
Design Patterns: Elements of Reusable

Object-Oriented Software [1995]

5.5. Pattern: Singleton (Creational)

Name: Singleton

Problem:

How can we guarantee that one and only one

instance of a class can be created?

Context: In some applications it is important

to have exactly one instance of a class, e.g. sales of

one company.

25

Forces: Can make an object globally accessible as a
global variable, but this violates encapsulation.
Could use class (static) operations and attributes, but
polymorphic redefinition is not always possible.

Solution:
Create a class with a class operation getInstance().
When class is first accessed, this creates relevant
object instance and returns object identity to client.
On subsequent calls of getInstance(), no new
instance is created, but identity of existing object is
returned.

26

Singleton Structure

Singleton

-uniqueInstance

-singletonData

+getInstance()

+getSingletonData()

+singletonOperation()

-Singleton()

Object identifier for singleton
instance, class scope or static

Returns object identifier for
unique instance, class-scope
or static

Private constructor only accessible
via getInstance()

getInstance() {

if (uniqueInstance == null)

{ uniqueInstance = new Singleton() }

return uniqueInstance

}

27

class Singleton {

private static Singleton uniqueInstance = null;

private Singleton() { .. } // private constructor

public static Singleton getInstance() {

if (uniqueInstance == null)

uniqueInstance = new Singleton(); //call constructor

return uniqueInstance;

}

}

Example: Code

28

Comments

• To specify a class has only one instance, we make
it inherit from Singleton.

+ controlled access to single object instance through
Singleton encapsulation

+ Can tailor for any finite number of instances

+ namespace not extended by global variables

- access requires additional message passing

- Pattern limits flexibility, significant redesign if
singleton class later gets many instances

29

	Diapositiva 1: 301AA - Advanced Programming
	Diapositiva 2: Software is Everywhere
	Diapositiva 3: Programming in the 21 century
	Diapositiva 4: Complexity Prompts for Innovation
	Diapositiva 5: Key Ingredients for Complex Software
	Diapositiva 6: The Software Architect
	Diapositiva 7: Course Objectives
	Diapositiva 8: Course Syllabus
	Diapositiva 9: Programming language pragmatics
	Diapositiva 10: Run-Time Systems and the JVM
	Diapositiva 11: Component-based Programming
	Diapositiva 12: Software Frameworks and Inversion of Control
	Diapositiva 13: Polymorphism and Generic Programming
	Diapositiva 14: Functional programming and Haskell
	Diapositiva 15: Scripting Languages and Python
	Diapositiva 16: Selected Advanced Concepts in Programming Languages
	Diapositiva 17: Design Patterns
	Diapositiva 18: Design Patterns in a few slides
	Diapositiva 19: Design Patterns: From Architecture to Software Development
	Diapositiva 20: (Software) Design Patterns
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24: The 23 Design Patterns of the Gang of Four
	Diapositiva 25: 5.5. Pattern: Singleton (Creational)
	Diapositiva 26
	Diapositiva 27: Singleton Structure
	Diapositiva 28
	Diapositiva 29: Comments

