
1

AP-23 – Programming Assignment #2- v1.0

December 6, 2023

This assignment is made of two parts, consisting of exercises on the Java Stream API and

Frameworks, and on Decorators in Python, respectively. It is distributed with an archive

aux_files.zip containing some auxiliary files.

This document is subject to changes. Check on the course web page if there is a newer version.

Premise: the “ciao” of a string

This definition will be used below. Given a string str, we define its ciao (characters in

alphabetical order) as the string having the same length of str and containing all the characters of

str in lower case and alphabetical order. As an example, the ciao of “Hello” is “ehllo”. A ciao

string is a string that is equal to its ciao. Clearly, two strings have the same ciao if and only if each

one is an anagram of the other.

Part 1 (Java Stream API and Frameworks) A job scheduler

In this assignment, students are required to implement a simple software framework providing the

functionalities of a job scheduler, but ignoring the aspects of parallelism and distribution. More

precisely, the framework includes an emitter of jobs, a compute phase executing the jobs, a collect

stage grouping them, and an output action printing the results in a suitable format. As a proof of

concept, a simple working instance of the framework should be implemented as well.

Exercise 1: The framework

Following the guidelines presented in the lesson of November 21st, 2023, On Designing Software

Frameworks, (see http://pages.di.unipi.it/corradini/Didattica/AP-23/index.html#framework), and

more specifically the Strategy design pattern, implement in Java a JobScheduler software

framework, respecting the following specifications:

1. The framework must be generic, using type variables K and V for the types of keys and

values respectively.

2. For key/value pairs, the framework must use the class Pair.java from

aux_files.zip (you can change its package, but nothing else).

3. Jobs will be instances of (subclasses) of the abstract class AJob.java, also enclosed,

containing the abstract method execute with no parameter and returning a stream of

key/value pairs.

4. The framework must include the following methods, conceptually composed as in the

picture:

◦ emit, which generates a stream of jobs;

◦ compute, which executes the jobs received from emit by invoking execute on

them, and returns a single stream of key/value pairs obtained by concatenating the

output of the jobs;

emit compute collect output

Stream<AJob<K,V>> Stream<Pair<K,List<V>>>

Stream<Pair<K,V>>

http://pages.di.unipi.it/corradini/Didattica/AP-23/index.html#framework

2

◦ collect, which takes as input the output of compute and groups all the pairs with

the same keys in a single pair, having the same key and the list of all values;

◦ output, which prints the result of collect in a convenient way.

5. Methods compute, collect and main must be frozen spots of the framework, while

emit and output must be hot spots.

Solution format: An archive JobScheduler.zip containing the Java files implementing

Exercises 3 and 4, suitably commented. If you use NetBeans, please send in the archive the entire

project.

Exercise 2: Counting anagrams

Write a program that given the absolute path of a directory prints the number of anagrams of all the

words contained in a set of documents in that directory, by developing an instance of the framework

of the previous point. You should ignore all words of less than four characters, and those containing

non-alphabetic characters. Also, uppercase and lowercase letters should not be distinguished.

Here are some guidelines:

1. Create a subclass of AJob having a constructor that accepts the name of a file as parameter;

the execute method must read the file, and it must return a stream containing all pairs of

the form (ciao(w), w) where w is a word of the file satisfying the above properties.

2. Emit asks the user for the absolute path of a directory where documents are stored. It visits

the directory and creates a new job for each file ending with .txt in that directory.

3. Output should write the list of ciao keys and the number of words associated with each key,

one per line, in file count_anagrams.txt (or count_anagrams.csv, in CSV

format).

For testing the program you can use the files in the enclosed archive Books.zip which contains

parts of some famous books as downloaded from the pages of the Gutenberg Project. (before the

site became inaccessible from Italy, see Raffaele Angius, Perché il Progetto Gutenberg sarà sotto

sequestro per sempre).

Part 2: (Decorators in Python) Benchmarking functions in Python,
with Multithreading

In the last lesson on Python and the GIL I reported a claim from the literature: “Two threads calling

a function may take twice as much time as a single thread calling the function twice”.

This assignment requires to write a parametric decorator that can be used to check if this claim is

true, at least on your machine. The decorator should measure the execution time of invoking several

times a function in parallel on a given number of threads.

Solution format: A single Python file called twoThreadsClaim.py containing the solutions to

the following two exercises.

https://www.gutenberg.org/
https://www.wired.it/internet/web/2020/06/30/progetto-gutenberg-sequestro/
https://www.wired.it/internet/web/2020/06/30/progetto-gutenberg-sequestro/

3

Exercise 3: A decorator for multi-threaded benchmarking

Define in Python a parametric decorator called bench (see the section “Decorators with

Arguments” of the “Primer on Decorators”, https://realpython.com/primer-on-python-

decorators/#decorators-with-arguments). When invoking a function fun decorated by bench, fun

is executed several times in parallel on several threads (discarding the results), and the whole is

repeated a few times returning the average time of execution and the variance.

The exact behaviour of the bench decorator is ruled by the following optional parameters:

• n_threads: The number of threads (default: 1)

• seq_iter: The number of times fun must be invoked in each thread (default: 1)

• iter: The number of times the whole execution of the n_threads threads, each invoking

seq_iter times fun, is repeated. For each execution, the execution time has to be

computed (default: 1)

The decorated function must return a dictionary of the following shape, containing the function

name and the tuple of arguments, the values of the three parameters just described, as well as the

mean value and the variance of the execution times of the iter iterations:

{'fun': 'fib_run', 'args': (28,), 'n_threads': 2, 'seq_iter': 8,

‘iter’:5, 'mean': 3.382881900004577, 'variance': 0.0032192657625461194}

Use the threading module to exploit Python mutithreding, perf_counter()from module

time for computing the execution time, and module statistics for computing mean value and

variance.

Exercise 4: Exploiting the decorator

Exploit the bench decorator to evaluate the effectiveness of multhitreading in Python. Write a

function test that has three parameters: an integer iter, a function fun, and a tuple of

arguments args. Function test must execute fun on args with varying numbers of iterations

and degrees of parallelism. More precisely, test must invoke bench a first time to execute 16

times fun on args on a single thread (passing iter as further parameter), then, similarly, to run

fun 8 times on two threads, then 4 times on 4 threads, and finally 2 times on 8 threads. The

program must write the information returned by the four invocations of bench in a file named

<fun>_<args>_<n_threads>_<seq_iter>, or something similar.

Run the test on simple functions with different degrees of usage of the CPU, for example here are

two extreme cases you can use:

def just_wait(n): # NOOP for n/10 seconds

 time.sleep(n * 0.1)

def grezzo(n): # CPU intensive

 for i in range(2**n):

 pass

Discuss the results of the experimentation in a brief comment at the end of the Python file.

https://realpython.com/primer-on-python-decorators/#decorators-with-argument
https://realpython.com/primer-on-python-decorators/#decorators-with-argument
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/statistics.html

