

1

AP-23 – Programming Assignment #1- v1

November 15, 2023

This programming assignment consists of three exercises, on Java Beans,

Java Reflection and Annotations, and on Haskell, respectively.

Exercise 1 (Java Beans) – The 8 puzzle

The 8 puzzle (picture on top left) is a reduced version of the more famous 15 puzzle (on the top right).

Starting from a random configuration of the tiles, the puzzle consists of reaching the final

configuration (the one shown above) with a sequence of moves. Each move consists of sliding one

tile on the hole, thus exchanging the positions of that tile and the hole.

We want to implement the 8 puzzle using Java Beans. The project will only provide a usable board

to try to solve the puzzle, it will not address its automatic resolution.

The system is made of a graphical dashboard, EightBoard,

containing the board, an EightController label, and two

buttons: RESTART and FLIP, as shown in the figure to the right. The

board is made of 9 buttons, which must be instances of a Java bean

called EightTile, and that we will call tiles in the following. Each

tile implements therefore the same logic. Conceptually, the

EightBoard dashboard displays the board, while the

EightController label monitors that only legal moves are

triggered by clicking the tiles.

Requirements for the EightTile bean

Tiles must inherit from JButton. A tile has (at least) two private properties: Position and

Label, which hold integer values in the range [1, 9]. Position is a constant: it is set at startup

by the constructor, and it identifies a specific position on the board in the order shown in the top left

picture (where the hole is in position 9). Label is, as property, both bound and constrained (in the

JavaBean’s sense).

The background color of a tile must be grey if the Label is 9 (we call this tile the current hole),

green if Position = Label (and they are different from 9), and yellow otherwise. The text of the

tile must be equal to the value of Label, with the exception of the current hole, whose text is empty.

Background color and text of each tile must change if Label is changed, in order to preserve these

constraints. Note that the in this way the final configuration is the only one where all tiles except the

hole are green.

When the player clicks on a tile (“I want to slide that tile to the hole”), the Label property is changed

to 9 (i.e., the cell becomes itself the current hole), if this change is not vetoed (1). Only if the change

is not vetoed, the tile must pass, in some way, its previous label value to the current hole, which must

change its label to that value(2). If instead the change is vetoed, the tile “flashes”, for example by

changing the color to red for half a second.

Tiles must also provide support for a “restart” action, with a method that takes as argument a

permutation of [0,9] and sets the label to an initial value. This action will be triggered by the

Restart event of the board, thus tiles have to register as listeners for this event.

1 3 5

7 2 2

4 8 6

OK RESTART FLIP

2

(1) By the logic of the game, the change of the Label property to 9 should be vetoed if the tile is the

current hole, or if the tile is not adjacent to the current hole.
(2) You should decide how to pass the label value from the clicked tile to the old hole. This can be

implemented in any way: public methods are accepted, but event-based communication is more

appreciated.

Requirements for the EightController bean.

The EightController is a bean that has the graphical appearance of a label (e.g., it can extend

JLabel). It has to check that only legal moves are performed. To this aim, it must be registered as

VetoableChangeListener to all the tiles.

At the beginning the controller displays “START”. Every time a tile is clicked, it must veto the change

if the tile is the hole or it is not adjacent to the hole, displaying “KO”. Otherwise, it must display “OK”.

The controller must also provide support for a “restart” action that restores its internal information

about the configuration when the game is restarted.

Warning: The controller cannot read the labels of the tiles using methods. You should decide which

kind of information the controller has to keep about the configuration of the board to implement

correctly the above veto policy. Several choices are possible: the simpler the better.

Requirements for the EightBoard dashboard

The main class of the application is the EightBoard dashboard, that must be defined as extending

JFrame. It dispays a grid of 3x3 tiles, an EightController label, a RESTART button, and a

FLIP button, as shown in the figure above.

When the RESTART button is clicked, a random configuration (i.e., a random permutation of [0, 9])

is passed to all beans registered as listener to the Restart event.

At startup the board initializes the grid with the nine EightBoard beans, passing to them their

position as initial value of Position. All tiles and the controller are registered as listeners to the

Restart event, and such an event is fired to complete the initialization of the board with a random

configuration. Also, the controller is registered as VetoableChangeListener to all the tiles.

The Flip button

In the 8 (or 15) puzzle, from half of the initial configurations the final one cannot be reached with

any sequence of moves (see the Wikipedia page for more infos). This can be frustrating for the player.

The Flip button of the dashboard, when clicked, switches the labels of tiles in position 1 and 2, but

only if the hole is in position 9, otherwise it has no effect. Switching the position of two non-hole

tiles guarantees that if the previous configuration was not solvable, the new one is.

You must implement the effect of clicking the Flip button as described. Any correct solution is

accepted. Solutions which follow the JavaBean patterns are more appreciated (e.g., letting the

Controller to check if the flipping is permitted, or using event-based communications between beans).

Solution format

Adequately commented source files for the beans and three jar archives, one for each bean, plus a

brief document of at most two pages (in PDF) reporting the main design decisions. In particular,

describe how did you implement the effect of clicking the Flip button.

3

Exercise 2 (Java Reflection and Annotations) – XML serialization

XML is a meta-language which can be used to describe structured documents in a machine-readable

way. Information is packaged in elements. For a simple introduction to XML elements look at the

following page:

 [https://www.w3schools.com/xml/xml_elements.asp]

An XML document contains one or more (possibly nested) elements. For instance, the following is a

valid XML document (the first line is not mandatory, but it is better to include it at the beginning of

the file):

 <?xml version="1.0" encoding="UTF-8"?>

<Student>

 <firstName type="String">Jane</firstName>

 <surname type="String">Doe</surname>

 <age type="int">42</age>

 </Student>

 As XML is widely used to export data, you must implement a Java serializer to export an array of

objects in XML format. (Note that there are several Java APIs for XML serialization. Here we ask

something different and much simpler).

Write a Java class XMLSerializer which offers a static method with signature

void serialize(Object [] arr, String fileName)

For each object in the array arr, the method should introspect its class searching for information

(provided using annotations) to serialize the object. The output must be an XML file called

fileName.xml containing one element for each object in arr. Each element must have as main

tag the name of the class of the corresponding object.

Annotations are as follows:

• @XMLable provides information about the class. The presence of this annotation says that

the objects of this class should be serialized. In this case the corresponding element will

contain other elements for the instance variables, if any. If instead the annotation is absent,

the element corresponding to the object must contain only the empty element

<notXMLable />.

• @XMLfield identifies serializable fields (i.e., instance variables, only of primitive types or

strings). The presence of this annotation states that the field must be serialized. The annotation

has a mandatory argument type, which is the type of the field (a String, for example

"int", "String",…), and an optional argument name, also of type String, which is the

XML tag to be used for the field. If the argument is not provided, the variable’s name is used

as a tag.

Once all the information about the class is collected and analyzed, the method serializes the object

producing the corresponding XML element, and then proceeds with the next element of the array.

Note: If the array contains several objects of the same class the introspection of that class has to be

made only once.

https://www.w3schools.com/xml/xml_elements.asp

4

As an example, consider the XML element above: it should be the result of serializing an object of

the following Java class, created by calling the constructor with parameters "Jane", "Doe", and

42:

 @XMLable

 public class Student {

 @XMLfield(type = "String")

 public String firstName;

 @XMLfield(type = "String", name = "surname")

 public String lastName;

 @XMLfield(type = "int")

 private int age;

 public Student(){}

 public Student(String fn, String ln, int age) {

 this.firstName = fn;

 this.lastName = ln;

 this.age = age;

 }

 }

Solution format

• The Java files defining the annotations @XMLable and @XMLfield

• The class XMLSerializer.java

Additionally, for testing:

• The class Student above, and at least one additional class annotated as described above.

The @XMLfield annotation must be used, with fields of at least two different data types,

and both using the optional argument and not using it.

• A main class building an array of objects and invoking XMLSerializer.serialize()

on it. The array must contain at least: (1) one object of the above class Student generating

the element in the previous page; (2) one object of a non-XMLable class; (3) one or more

objects of the class of the previous point.

5

Exercise 3 (Haskell) – Multisets in Haskell

This assignment requires you to implement a type constructor providing the functionalities of

multisets (also known as bags), that is, collections of elements where the order does not count, but

each element can occur several times. Your implementation must be based on the following concrete

Haskell definition of the MSet type constructor:

 data MSet a = MS [(a, Int)]

 deriving (Show)

Therefore, an MSet contains a list of pairs whose first component is an element of the multiset, and

the second component is its multiplicity, that is the number of occurrences of such element in the

multiset. An MSet is well-formed if for each of its pairs (v,n) it holds n > 0, and if it does not

contain two pairs (v,n) and (v',n') such that v = v'.

Part 1: Constructors and operations

The goal of this exercise is to write an implementation of multisets represented concretely as elements

of the type constructor MSet.

• Implement the following constructors:

o empty, that returns an empty MSet

• Implement the following operations:

o add mset v, returning a multiset obtained by adding the element v to mset.

Clearly, if v is already present its multiplicity has to be increased by one, otherwise it

has to be inserted with multiplicity 1.

o occs mset v, returning the number of occurrences of v in mset (an Int).

o elems mset, returning a list containing all the elements of mset.

o subeq mset1 mset2, returning True if each element of mset1 is also an element

of mset2 with the same multiplicity at least.

o union mset1 mset2, returning an MSet having all the elements of mset1 and

of mset2, each with the sum of the corresponding multiplicites.

• Class Constructor Instances

o Define MSet to be an instance of the class constructor Eq, implementing equality as

follows: two multisets are equal if they contain the same elements with the same

multiplicity, regardless of the order.

o Define MSet to be an instance of the constructor class Foldable. To this aim,

choose a minimal set of functions to be implemented, as described in the

documentation of Foldable. Intuitively, folding a multiset with a binary function

should apply the function to the elements of the multiset, ignoring the multiplicities.

o Define a function mapMSet that takes a function f :: a -> b and an MSet of

type a as arguments, and returns the MSet of type b obtained by applying f to all the

elements of its second argument. Explain (in a comment in the same file) why it is not

https://hackage.haskell.org/package/base-4.17.0.0/docs/Prelude.html#t:Foldable

6

possible to define an instance of Functor for MSet by providing mapMSet as the

implementation of fmap.

Important: All the operations of the present exercise that return an MSet must ensure that the result

is well-formed, as defined above. Your code should not use the Haskell module Data.MultiSet or other

similar modules, but it can use the functions of the Prelude.

Solution format: A Haskell source file called MultiSet.hs containing a Module (see Section

"Making our own modules") called MultiSet, defining the data type MSet (copy it from above)

and at least all the functions described above. The module can include other functions as well, if

convenient.

Note: The file has to be adequately commented, and each function definition must be preceded by its

type, as inferred by the Haskell compiler.

Part 2: Testing multisets

[For this exercise you have to download and unzip the archive aux_files.zip]

The goal of the exercise is testing the implemented functionalities. In a file named TestMSet.hs,

import MultiSet.hs and

1. Define a function readMSet that reads a text file whose name is passed as argument (as a

string), and returns a new MSet containing the ciao of all the words of the file, each with the

corresponding mutiplicity. [Given a string str, we define its ciao (characters in alphabetical

order) as the string having the same length of str and containing all the characters of str

in lower case and alphabetical order. As an example, the ciao of “Hello” is “ehllo”. A ciao

string is a string that is equal to its ciao. Clearly, two strings have the same ciao if and only

if each one is an anagram of the other.]

2. Define a function writeMSet that given a multiset and a file name, writes in the file, one

per line, each element of the multiset with its multiplicity in the format “<elem> -

<multiplicity>”.

3. Define a function main :: IO() which does the following:

a. Using readMSet, from directory aux_files it loads files anagram.txt,

anagram_s1.txt, anagram_s2.txt and margana2.txt in corresponding

multisets, that we call m1, m2, m3 and m4, respectively;

b. Exploiting also the functions imported from MultiSet.hs, it checks the

following facts and prints a corresponding comment:

i. Multisets m1 and m4 are not equal, but they have the same elements;

ii. Multiset m1 is equal to the union of multisets m2 and m3;

c. Finally, using writeMSet it writes multisets m1 and m4 to files anag-out.txt

and gana-out.txt, respectively.

For reading and writing files you can use the functions readFile and writeFile of the Haskell

Prelude (https://hackage.haskell.org/package/base-4.16.0.0/docs/Prelude.html).

Solution format: A Haskell source file TestMSet.hs with the functions described above, which

can be executed using runghc

(see https://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/runghc.html) Note: The file

has to be adequately commented, and each function definition has to be preceded by its type, as

inferred by the Haskell compiler.

https://hackage.haskell.org/package/Prelude-0.1.0.1/docs/Prelude.html
http://learnyouahaskell.com/modules
http://learnyouahaskell.com/modules
https://hackage.haskell.org/package/base-4.16.0.0/docs/Prelude.html)
https://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/runghc.html

