
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-26: Functions, Decorators and OOP

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

2

We have seen:

• Installing Python & main documentation
• Useful commands
• Modules: importing and executing
• Basics of the language
• Sequence datatypes
• Dictionaries
• Boolean expressions
• Control flow
• List Comprehension

Next topics

• Function definition

• Positional and keyword arguments of functions

• Functions as objects

• Higher-order functions

• Namespaces and Scopes

• Object Oriented programming in Python

• Inheritance

• Iterators and generators

3

Functions in Python - Essentials

• Functions are first-class objects

• All functions return some value (possibly None)

• Function call creates a new namespace

• Parameters are passed by object reference

• Functions can have optional keyword arguments

• Functions can take a variable number of args and
kwargs

• Higher-order functions are supported

4

Function definition (1)
• Positional/keyword/default parameters

5

def sum(n,m):
""" adds two values """
return n+m

>>> sum(3,4)
7
>>> sum(m=5,n=3) # keyword parameters
8

#--------------------------------------

def sum(n,m=5): # default parameter
""" adds two values, or increments by 5 """
return n+m

>>> sum(3)
8

Function definition (2)
• Arbitrary number of parameters (varargs)

6

def print_args(*items): # arguments are put in a tuple
print(type(items))
return items

>>> print_args(1,"hello",4.5)
<class 'tuple'>
(1, 'hello', 4.5)

#--------------------------------------

def print_kwargs(**items): # args are put in a dict
print(type(items))
return items

>>> print_kwargs(a=2,b=3,c=3)
<class 'dict'>
{'a': 2, 'b': 3, 'c': 3}

Functions are objects

• As everything in Python, also functions are
object, of class function

7

def echo(arg): return arg

type(echo) # <class 'function'>

hex(id(echo)) # 0x1003c2bf8

print(echo) # <function echo at 0x1003c2bf8>

foo = echo

hex(id(foo)) # '0x1003c2bf8'

print(foo) # <function echo at 0x1003c2bf8>

isinstance(echo, object) # => True

Function documentation

• The comment after the functions header is
bound to the __doc__ special attribute

8

def my_function():
"""Summary line: do nothing, but document it.
Description: No, really, it doesn't do anything.
"""
pass

print(my_function.__doc__)
Summary line: Do nothing, but document it.
#
Description: No, really, it doesn't do anything.

Higher-order functions

• Functions can be passed as argument and
returned as result

• Main combinators (map, filter) predefined: allow
standard functional programming style in Python

• Heavy use of iterators, which support laziness

• Lambdas supported for use with combinators
lambda arguments: expression

– The body can only be a single expression

9

Map

10

>>> print(map.__doc__) % documentation

map(func, *iterables) --> map object

Make an iterator that computes the function using

arguments from each of the iterables. Stops when the

shortest iterable is exhausted.

>>> map(lambda x:x+1, range(4)) % lazyness: returns

<map object at 0x10195b278> % an iterator

>>> list(map(lambda x:x+1, range(4)))

[1, 2, 3, 4]

>>> list(map(lambda x, y : x+y, range(4), range(10)))

[0, 2, 4, 6] % map of a binary function

>>> z = 5 % variable capture

>>> list(map(lambda x : x+z, range(4)))

[5, 6, 7, 8]

Map and List Comprehension
• List comprehension can replace uses of map

11

>>> list(map(lambda x:x+1, range(4)))

[1, 2, 3, 4]

>>> [x+1 for x in range(4)]

[1, 2, 3, 4]

>>> list(map(lambda x, y : x+y, range(4), range(10)))

[0, 2, 4, 6] % map of a binary function

>>> [x+y for x in range(4) for y in range(10)]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5,... % NO!

>>> [x+y for (x,y) in zip(range(4),range(10))] % OK

[0, 2, 4, 6]

>>> print(zip.__doc__)

zip(iter1 [,iter2 [...]]) --> zip object

Return a zip object whose .__next__() method returns a tuple where

the i-th element comes from the i-th iterable argument. The

.__next__() method continues until the shortest iterable in the

argument sequence is exhausted and then it raises StopIteration.

Filter (and list comprehension)

12

>>> print(filter.__doc__) % documentation

filter(function or None, iterable) --> filter object

Return an iterator yielding those items of iterable for

which function(item) is true. If function is None,

return the items that are true.

>>> filter(lambda x : x % 2 == 0,[1,2,3,4,5,6])

<filter object at 0x102288a58> % lazyness

>>> list(_) % '_' is the last value

[2, 4, 6]

>>> [x for x in [1,2,3,4,5,6] if x % 2 == 0]

[2, 4, 6] % same using list comprehension

% How to say "false" in Python

>>> list(filter(None,

[1,0,-1,"","Hello",None,[],[1],(),True,False]))

[1, -1, 'Hello', [1], True]

More modules for functional
programming in Python

• functools: Higher-order functions and operations
on callable objects, including:
– reduce(function, iterable[, initializer])

• itertools: Functions creating iterators for efficient
looping. Inspired by constructs from APL, Haskell,
and SML.
– count(10) --> 10 11 12 13 14 ...
– cycle('ABCD') --> A B C D A B C D ...
– repeat(10, 3) --> 10 10 10
– takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
– accumulate([1,2,3,4,5]) --> 1 3 6 10 15

13

Decorators

14

• A decorator is any callable Python object that is used
to modify a function, method or class definition.

• A decorator is passed the original object being defined
and returns a modified object, which is then bound to
the name in the definition.

• (Function) Decorators exploit Python higher-order
features:
– Passing functions as argument

– Nested definition of functions

– Returning function

• Widely used in Python (system) programming

• Support several features of meta-programming

Basic idea: wrapping a function

15

def my_decorator(func): # function as argument

def wrapper(): # defines an inner function

print("Something happens before the function.")

func() # that calls the parameter

print("Something happens after the function.")

return wrapper # returns the inner function

def say_hello(): # a sample function

print("Hello!")

'say_hello' is bound to the result of my_decorator

say_hello = my_decorator(say_hello) # function as arg

>>> say_hello() # the wrapper is called

Something happens before the function.

Hello!

Something happens after the function.

Syntactic sugar: the "pie" syntax

• Alternative, equivalent syntax

16

def my_decorator(func): # function as argument

def wrapper(): # defines an inner function

... # as before

return wrapper # returns the inner function

def say_hello(): ## HEAVY! 'say_hello' typed 3x

print("Hello!")

say_hello = my_decorator(say_hello)

@my_decorator

def say_hello():

print("Hello!")

Another decorator: do_twice

17

def do_twice(func):

def wrapper_do_twice():

func() # the wrapper calls the

func() # argument twice

return wrapper_do_twice

@do_twice # decorate the following

def say_hello(): # a sample function

print("Hello!")

>>> say_hello() # the wrapper is called

Hello!

Hello!

@do_twice # does not work with parameters!!

def echo(str): # a function with one parameter

print(str)

>>> echo("Hi...") # the wrapper is called

TypErr: wrapper_do_twice() takes 0 pos args but 1 was given

>>> echo()

TypErr: echo() missing 1 required positional argument: 'str'

do_twice for functions with parameters

• Decorators for functions with parameters can
be defined exploiting *args and **kwargs

18

def do_twice(func):

def wrapper_do_twice(*args, **kwargs):

func(*args, **kwargs)

func(*args, **kwargs)

return wrapper_do_twice

@do_twice

def say_hello():

print("Hello!")

>>> say_hello()

Hello!

Hello!

@do_twice

def echo(str):

print(str)

>>> echo("Hi... ")

Hi...

Hi...

General structure of a decorator

• Besides passing arguments, the wrapper also
forwards the result of the decorated function

• Supports introspection redefining __name__
and __doc__

19

import functools

def decorator(func):

@functools.wraps(func) #supports introspection

def wrapper_decorator(*args, **kwargs):

Do something before

value = func(*args, **kwargs)

Do something after

return value

return wrapper_decorator

Example: Measuring running time

20

import functools

import time

def timer(func):

"""Print the runtime of the decorated function"""

@functools.wraps(func)

def wrapper_timer(*args, **kwargs):

start_time = time.perf_counter()

value = func(*args, **kwargs)

end_time = time.perf_counter()

run_time = end_time - start_time

print(f"Finished {func.__name__!r} in {run_time:.4f} secs")

return value

return wrapper_timer

@timer

def waste_some_time(num_times):

for _ in range(num_times):

sum([i**2 for i in range(10000)])

Other uses of decorators

• Debugging: prints argument list and result of calls
to decorated function

• Registering plugins: adds a reference to the
decorated function, without changing it

• In a web application, can wrap some code to
check that the user is logged in

• @staticmethod and @classmethod make a
function invocable on the class name or on an
object of the class

• More: decorators can be nested, can have
arguments, can be defined as classes…

21

Example: Caching Return Values

22

import functools

from decorators import count_calls

def cache(func):

"""Keep a cache of previous function calls"""

@functools.wraps(func)

def wrapper_cache(*args, **kwargs):

cache_key = args + tuple(kwargs.items())

if cache_key not in wrapper_cache.cache:

wrapper_cache.cache[cache_key] = func(*args, **kwargs)

return wrapper_cache.cache[cache_key]

wrapper_cache.cache = dict()

return wrapper_cache

@cache

@count_calls # decorator that counts the invocations

def fibonacci(num):

if num < 2:

return num

return fibonacci(num - 1) + fibonacci(num - 2)

Namespaces and Scopes

• A namespace is a mapping from names to objects: typically
implemented as a dictionary. Examples:
– builtins: pre-defined functions, exception names,…

• Created at intepreter's start-up

– global names of a module
• Created when the module definition is read
• Note: names created in interpreter are in module __main__

– local names of a function invocation
• Created when function is called, deleted when it completes

– and also names of a class, names of an object… see later

• Name x of a module m is an attribute of m
– accessible (read/write) with “qualified name” m.x
– if writable, it can be deleted with del

23

Namespaces and Scopes (2)
• A scope is a textual region of a Python program where a

namespace is directly accessible, i.e. reference to a name
attempts to find the name in the namespace.

• Scopes are determined statically, but are used dynamically.
• During execution at least three namespaces are directly

accessible, searched in the following order:
– the scope containing the local names
– the scopes of any enclosing functions, containing non-local, but

also non-global names
– the next-to-last scope containing the current module’s global

names
– the outermost scope is the namespace containing built-in

names

• Assignments to names go in the local scope
• Non-local variables can be accessed using nonlocal or

global 24

Scoping rules

25

def scope_test():

def do_local():
spam = "local spam"

def do_nonlocal():
nonlocal spam
spam = "nonlocal spam"

def do_global():
global spam
spam = "global spam"

spam = "test spam”

do_local()
print("After local assignment:", spam) # not affected
do_nonlocal()
print("After nonlocal assignment:", spam) # affected
do_global()
print("After global assignment:", spam) # not affected

scope_test()
print("In global scope:", spam)

After local assignment: test spam
After nonlocal assignment: nonlocal spam
After global assignment: nonlocal spam
In global scope: global spam

global

spam

scope_test

spam

do_local()

spam

do_nonlocal()

do_global()

Criticisms to Python: scopes

• Control structures don’t introduce a new
scope

26

def test():

for a in range(5):

b = a % 3

print(b)

print(b)

>>> test()

def test(x):

print(x)

for x in range(5):

print(x)

print(x)

>>> test("Hello!")

Closures in Python
• Python supports closures: Even if the scope of the

outer function is reclaimed on return, the non-local
variables referred to by the nested function are saved
in its attribute __closure__

27

def counter_factory():

counter = 0

def counter_increaser():

nonlocal counter

counter = counter + 1

return counter

return counter_increaser

>>> f = counter_factory()

>>> f()

1

>>> f()

2

>>> f.__closure__

(<cell at 0x1033ace88: int object at 0x10096dce0>,)

OOP in Python
 Typical ingredients of the Object Oriented Paradigm:

 Encapsulation: dividing the code into a public interface, and a private
implementation of that interface;

 Inheritance: the ability to create subclasses that contain
specializations of their parent classes.

 Polymorphism: The ability to override methods of a Class by extending
it with a subclass (inheritance) with a more specific implementation
(inclusion polymorphism)

From https://docs.python.org/3/tutorial/classes.html:

 "Python classes provide all the standard features of Object Oriented
Programming: the class inheritance mechanism allows multiple base
classes, a derived class can override any methods of its base class or
classes, and a method can call the method of a base class with the same
name. Objects can contain arbitrary amounts and kinds of data. As is true
for modules, classes partake of the dynamic nature of Python: they are
created at runtime, and can be modified further after creation." 28

https://docs.python.org/3/tutorial/classes.html

Defining a class (object)
 A class is a blueprint for a new data type with specific internal attributes

(like a struct in C) and internal functions (methods).

 To declare a class in Python the syntax is the following:

 statements are assignments or function definitions

 A new namespace is created, where all names introduced in the
statements will go.

 When the class definition is left, a class object is created, bound to
className, on which two operations are defined: attribute reference and
class instantiation.

 Attribute reference allows to access the names in the namespace in the
usual way

29

class className:

<statement-1>
…
<statement-n>

Example: Attribute reference on a class object

30

class Point:

x = 0

y = 0

def str(): # no closure: needs qualified names to refer to x and y

return "x = " + (str) (Point.x) + ", y = " + (str) (Point.y)

#--------

import ...

>>> Point.x

0

>>> Point.y = 3

>>> Point.z = 5 # adding new name

>>> Point.z

5

>>> def add(m,n):

return m+n

>>> Point.sum = add # adding new function

>>> Point.sum(3,4)

7

Point

x = 0

y = 0

str()

y = 3

z = 5

sum = add(m,n)

Creating a class instance
 A class instance introduces a new namespace nested in the class

namespace: by visibility rules all names of the class are visible

 If no constructor is present, the syntax of class instantiation is
className(): the new namespace is empty

31

class Point:

x = 0

y = 0

def str():

return "x = " + str(Point.x) + ", y = " + str(Point.y)

#--------

>>> p1 = Point()

>>> p2 = Point()

>>> p1.x

0

>>> Point.y = 3

>>> p2.y

3

>>> p1.y = 5

>>> p2.y

3

Point

x = 0

y = 0

str()

y = 3

p1

y = 5

p2

Instance methods

 A class can define a set of instance methods, which are just functions:

 The first argument, usually called self, represents the implicit parameter
(this in Java)

 A method must access the object's attributes through the self reference
(eg. self.x) and the class attributes using className.<attrName> (or
self.__class__.<attrName>)

 The first parameter must not be passed when the method is called. It is
bound to the target object. Syntax:

 But it can be passed explicitly. Alternative syntax:

32

def methodname(self, parameter1, ..., parametern):
statements

obj.methodname(arg1, ..., argn):

className.methodname(obj, arg1, ..., argn):

"Instance methods"

 Any function with at least one parameter defined in a class can be
invoked on an instance of the class with the dot notation.

 Since the instance obj is bound to the first parameter, par-0 is usually
called self.

 A name x defined in the (namespace of the) instance is accessed as
par-0.x (i.e., usually self.x)

 A name x defined in the class is accessed as className.x (or
self.__class__.x)

33

class Foo
def fun(par-0, par-1, ..., par-n):

statements
#----
>>>obj = Foo()
>>>obj.fun(arg-1,...,arg-n)
is syntactic sugar for
>>>obj.__class__.fun(obj,arg-1,...,arg-n)

Constructors
 A constructor is a special instance method with name __init__.
Syntax:

 Invocation: obj = className(arg1, …, argn)

 The first parameter self is bound to the new object.

 statements typically initialize (thus create) "instance variables", i.e.
names in the new object namespace.

 Note: at most ONE constructor (no overloading in Python!)

34

def __init__(self, parameter1, ..., parametern):
statements

class Point:
instances = []
def __init__(self, x, y):

self.x = x
self.y = y
Point.instances.append(self)

#--------
>>> p1 = Point(3,4)

Point

instances = [<Point
object at ...>]

p1

x = 3

y = 4

What about "methods in instances?"
 Instances are themselves namespaces: we can add functions to them.

 Applying the usual rules, they can hide "instance methods"

35

class Point:
def __init__(self, x, y):

self.x = x
self.y = y
def move(z,t):

self.x -= z
self.y -= t

self.move = move
def move(self,dx,dy):

self.x += dx
self.y += dy

>>> p = Point(1,1)
>>> p.x
1
>>> p.move(1,1)
>>> p.x
0
>>> p.__class__.move(p,2,2)
>>> p.x
2

Point

__init__(...)

move(...)

p

x = 1

y = 1

move(...)

__class__

String representation

 It is often useful to have a textual representation of an object
with the values of its attributes. This is possible with the
following instance method:

 This is equivalent to Java's toString (converts object to a
string) and it is invoked automatically when str or print is
called.

36

def __str__(self) :
return <string>

Special methods

 Method overloading: you can define special instance methods so that
Python's built-in operators can be used with your class.

 Analogous to C++ overloading mechanism:

 Pros: very compact syntax

 Cons: may be more difficult to read if not used with care
37

Operator Class Method

- __sub__(self, other)

+ __add__(self, other)

* __mul__(self, other)

/ __truediv__(self,
other)

Unary Operators

- __neg__(self)

+ __pos__(self)

Operator Class Method

== __eq__(self, other)

!= __ne__(self, other)

< __lt__(self, other)

> __gt__(self, other)

<= __le__(self, other)

>= __ge__(self, other)

Binary Operators

(Multiple) Inheritance, in one slide
• A class can be defined as a derived class

• No need of additional mechanisms: the namespace of derived is
nested in the namespace of baseClass, and uses it as the next non-
local scope to resolve names

• All instance methods are automatically virtual: lookup starts from
the instance (namespace) where they are invoked

• Python supports multiple inheritance

• Diamond problem solved by an algorithm that linearizes the set of
all (directly or indirectly) inherited classes: the Method resolution
order (MRO) ➔ ClassName.mro()

• https://www.python.org/download/releases/2.3/mro/
38

class derived(baseClass):
statements
statements

class derived(base1,..., basen):
statements
statements

Encapsulation (and "name mangling")

 Private instance variables (not accessible except from inside an object)
don’t exist in Python.

 Convention: a name prefixed with underscore (e.g. _spam) is treated as
non-public part of the API (function, method or data member).
It should be considered an implementation detail and subject to change
without notice.

Name mangling ("storpiatura")

 Sometimes class-private members are needed to avoid clashes with
names defined by subclasses. Limited support for such a mechanism,
called name mangling.

 Any name with at least two leading underscores and at most one trailing
underscore like e.g. __spam is textually replaced with _class__spam,
where class is the current class name.

39

Example for name mangling
• Name mangling is helpful for letting subclasses override

methods without breaking intraclass method calls.

40

class Mapping:
def __init__(self, iterable):

self.items_list = []
self.__update(iterable)

def update(self, iterable):
for item in iterable:

self.items_list.append(item)

__update = update # private copy of update() method

class MappingSubclass(Mapping):

def update(self, keys, values):
provides new signature for update()
but does not break __init__()
for item in zip(keys, values):

self.items_list.append(item)

Static methods and class methods

 Static methods are simple functions defined in a class with no self

argument, preceded by the @staticmethod decorator

 They are defined inside a class but they cannot access instance attributes
and methods

 They can be called through both the class and any instance of that class!

 Benefits of static methods: they allow subclasses to customize the static
methods with inheritance. Classes can inherit static methods without
redefining them.

 Class methods are similar to static methods but they have a
first parameter which is the class name.

 Definition must be preceded by the @classmethod decorator

 Can be invoked on the class or on an instance.
41

Iterators
 An iterator is an object which allows a programmer to traverse through all the

elements of a collection (iterable object), regardless of its specific implementation.
In Python they are used implicitly by the FOR loop construct.

 Python iterator objects required to support two methods:

 __iter__ returns the iterator object itself. This is used in FOR and IN
statements.

 The next method returns the next value from the iterator. If there is no more
items to return then it should raise a StopIteration exception.

 Remember that an iterator object can be used only once. It means after it raises
StopIteration once, it will keep raising the same exception.

 Example:

42

for element in [1, 2, 3]:

print(element)

>>> list = [1,2,3]

>>> it = iter(list)

>>> it

<listiterator object at 0x00A1DB50>

>>> it.next()

1

>>> it.next()

2

>>> it.next()

3

>>> it.next() -> raises StopIteration

Generators and coroutines

 Generators are a simple and powerful tool for creating iterators.

 They are written like regular functions but use the yield statement
whenever they want to return data.

 Each time the next() is called, the generator resumes where it left-off (it
remembers all the data values and which statement was last executed).

 Anything that can be done with generators can also be done with class
based iterators (not vice-versa).

 What makes generators so compact is that the __iter__() and
next() methods are created automatically.

 Another key feature is that the local variables and execution state are
automatically saved between calls.

43

Generators (2)

 In addition to automatic method creation and saving program state, when
generators terminate, they automatically raise StopIteration.

 In combination, these features make it easy to create iterators with no
more effort than writing a regular function.

44

def reverse(data):
for index in range(len(data)-1, -1, -1):

yield data[index]

#-----------------

>>> for char in reverse('golf'):
... print(char)
...
f
l
o
g

Typing in Python

• Dynamic, strong duck typing

• Code can be annotated with types

• Module typing provides runtime support for
type hints

• Type hints can be checked statically by
external tools, like mypy

• They are ignored by CPython

45

def greetings(name: str) -> str:
return ‘Hello ‘ + name.

Miscellaneous

• Overloading: forbidden, but not necessary

• Overriding: ok, thanks to namespaces

• Generics: type hints support generics

46

Garbage collection in Python

CPython manages memory with a reference counting + a
mark&sweep cycle collector scheme

• Reference counting: each object has a counter storing the
number of references to it. When it becomes 0, memory can
be reclaimed.

• Pros: simple implementation, memory is reclaimed as soon as
possible, no need to freeze execution passing control to a
garbage collector

• Cons: additional memory needed for each object; cyclic
structures in garbage cannot be identified (thus the need of
mark&sweep)

47

Handling reference counters

• Updating the refcount of an object has to be done atomically

• In case of multi-threading you need to synchronize all the
times you modify refcounts, or else you can have wrong
values

• Synchronization primitives are quite expensive on
contemporary hardware

• Since almost every operation in CPython can cause a refcount
to change somewhere, handling refcounts with some kind of
synchronization would cause spending almost all the time on
synchronization

• As a consequence…

48

Concurrency in Python…

49

The Global Interpreter Lock (GIL)

• The CPython interpreter assures that only one thread
executes Python bytecode at a time, thanks to the Global
Interpreter Lock

• The current thread must hold the GIL before it can safely
access Python objects

• This simplifies the CPython implementation by making the
object model (including critical built-in types such as dict)
implicitly safe against concurrent access

• Locking the entire interpreter makes it easier for the
interpreter to be multi-threaded, at the expense of much of
the parallelism afforded by multi-processor machines.

50

More on the GIL
• However the GIL can degrade performance even when it is

not a bottleneck. The system call overhead is significant,
especially on multicore hardware.

• Two threads calling a function may take twice as much time as
a single thread calling the function twice.

• The GIL can cause I/O-bound threads to be scheduled ahead
of CPU-bound threads. And it prevents signals from being
delivered.

• Some extension modules, either standard or third-party, are
designed so as to release the GIL when doing
computationally-intensive tasks such as compression or
hashing.

• Also, the GIL is always released when doing I/O.

51

Alternatives to the GIL?

• Past efforts to create a “free-threaded” interpreter (one which locks
shared data at a much finer granularity) have not been successful because
performance suffered in the common single-processor case.

• It is believed that overcoming this performance issue would make the
implementation much more complicated and therefore costlier to
maintain.

• Guido van Rossum has said he will reject any proposal in this direction that
slows down single-threaded programs.

• Jython (on JVM, -> 2017, Python 2.7) and IronPython (on .NET) have no
GIL and can fully exploit multiprocessor systems

• PyPy (Python in Python, supporting JIT) currently has a GIL like CPython

• in Cython (compiled, for CPython extension modules) the GIL exists, but
can be released temporarily using a "with" statement

52

Criticisms to Python: syntax of tuples

• Tuples are made by the commas, not by ()

• With the exception of the empty tuple…

53

>>> type((1,2,3))

<class 'tuple'>

>>> type(())

<class 'tuple'>

>>> type((1))

<class 'int'>

>>> type((1,))

<class 'tuple'>

Criticisms to Python: indentation

• Lack of brackets makes the syntax "weaker" than
in other languages: accidental changes of
indentation may change the semantics, leaving
the program syntactically correct.

• Mixed use of tabs and blanks may cause bugs
almost impossible to detect 54

def foo(x):

if x == 0:

bar()

baz()

else:

qux(x)

foo(x - 1)

def foo(x):

if x == 0:

bar()

baz()

else:

qux(x)

foo(x – 1)

Criticisms to Python: indentation

• Lack of brackets makes it harder to refactor the code or
insert new one

• "When I want to refactor a bulk of code in Python, I need to
be very careful. Because if lost, I’m not sure what I’m
editing belongs to which part of the code. Python depends
on indentation, so if I have mistakenly removed some
indentation, I totally have no idea whether the correct code
should belong to that if clause or this while clause."

• Will Python change in the future?

55

>>> from __future__ import braces

File "<stdin>", line 1

SyntaxError: not a chance

>>>

Builtins & Libraries

• The Python ecosystem is extremely rich and in fast
evolution

• For available functions, classes and modules browse:

– Builtin Functions
• https://docs.python.org/3.8/library/functions.html

– Standard library
• https://docs.python.org/3.8/tutorial/stdlib.html

• There are dozens of other libraries, mainly for scientific
computing, machine learning, computational biology, data
manipulation and analysis, natural language processing,
statistics, symbolic computation, etc.

56

https://docs.python.org/3.8/library/functions.html
https://docs.python.org/3.8/tutorial/stdlib.html

