
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-25: Introduction to Python

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

2

▪ Python Developed by Guido van Rossum in the early 1990s

▪ In July 2018, Van Rossum stepped down as the leader in the language

community after 30 years.

▪ Named after Monty Python

▪ Available for download from http://www.python.org

Slides freely adapted from:

“Full Python Tutorial”

http://www.python.org/

4

Language features

▪ Dynamic typing

▪ Indentation instead of braces

▪ Several sequence types
▪ Strings; List, mutable;Tuples,immutable

▪ Dictionaries (hash maps)

▪ Powerful subscripting (slicing)

▪ Object oriented (simple object system)

▪ Higher-order functions (@decorators)

▪ Flexible signatures

▪ Exceptions as in Java

▪ Iterators and generators

5

Pragmatics: Why Python?

▪ Good example of scripting language

▪ “Pythonic” style is very concise

▪ Powerful but unobtrusive object system

▪ Every value is an object

▪ Powerful collection and iteration abstractions

▪ Dynamic typing makes generics easy

But there are some weaknesses…

6

Dynamic typing – the key difference

▪ Java & others: statically typed
▪ Variables are declared to refer to objects of a given

type

▪ Methods use type signatures to enforce contracts

▪ Python
▪ Variables come into existence when first assigned

to

▪ A variable can refer to an object of any type

▪ All types are (almost) treated the same way

▪ Main drawback: type errors are only caught at
runtime

Recommended Reading

▪ On-line Python tutorials

▪ The Python Tutorial (http://docs.python.org/tutorial/)

▪ Dense but more complete overview of the most important parts

of the language

▪ See course home page for others

▪ PEP 8- Style Guide for Python Code

▪ http://www.python.org/dev/peps/pep-0008/

▪ The official style guide to Python, contains many helpful

programming tips

▪ Many other books and on-line materials

▪ If you have a specific question, try Google first

7

http://docs.python.org/tutorial/
http://www.python.org/dev/peps/pep-0008/

8

Which Python?

▪ Python 2.7
▪ Last stable release before version 3

▪ Python 2.7's end-of-life date was initially set at
2015 then postponed to 2020-01-01.

▪ Python 2.7.18, Release Date: April 20, 2020, the
last release of Python 2.

▪ Python 3
▪ Released in December 2008

▪ Many changes (including incompatible changes)

▪ Much cleaner language in many ways

▪ Strings use Unicode, not ASCII

▪ But: A few important third party libraries are not
yet compatible with Python 3 right now

https://en.wikipedia.org/wiki/End-of-life_(product)

9

The Python Interpreter

▪ Download it from

https://www.python.org/

▪ Current version: 3.9.0

▪ Interactive interface to Python
% python

Python 3.6.3 (v3.6.3:2c5fed86e0, Oct 3 2017, 00:32:08)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

▪ Python interpreter evaluates inputs:

>>> 3*(7+2)

27

Useful commands

▪ help()
▪ Enters Python interactive help utility

▪ help(arg)
▪ Prints documentation about arg

▪ Example: help(1), help(str), help({}), help(print), help(builtins)

▪ type(arg)
▪ Prints the type of arg

▪ Example: type(1), type("Hello"), type(str), type(type)

▪ _ : in the interpreter is the value of the last expression

▪ Since "everything is an object", try "dot-completion" to
see what are the options…
▪ Example: 1. <tab><tab> "hello". <tab><tab>

▪ NB: the latter might not work. Try: "hello" <ret>; _. <tab><tab>
10

The dir() Function

▪ The built-in function dir() returns a sorted list

of strings containing all names defined in a

module, a class, or an object

11

>>> import sys

>>> dir(sys) # Prints names defined in sys
['__displayhook__', '__doc__', '__excepthook__', '__loader__',

'__name__', '__package__', '__stderr__', '__stdin__',

...

>>> dir() # Prints names defined currently

...

>>> import builtins

>>> dir(builtins) #Prints built-in functions and variables

>>> dir(str) #Prints all members of class str

12

Import and Modules

▪ Programs will often use classes & functions defined in

another file

▪ A Python module is a single file with the same name (plus

the .py extension)

▪ Modules can contain many classes and functions

▪ Access using import

Where does Python look for module files?

▪ The list of directories where Python looks: sys.path

▪ When Python starts up, this variable is initialized from the
PYTHONPATH environment variable

▪ To add a directory of your own to this list, append it to this
list.

sys.path.append('/my/new/path')

▪ Oops! Operating system dependent….

Defining Modules

▪ Modules are files containing definitions and statements. A
module defines a new namespace.

▪ Modules can be organized hierarchically in packages

13

File fibo.py - Fibonacci numbers module

def fib(n): # write Fibonacci series up to n

a, b = 0, 1

while b < n:

print(b, end=' ')

a, b = b, a+b

print()

def fib2(n): # return Fibonacci series up to n

result = []

a, b = 0, 1

while b < n:

result.append(b)

a, b = b, a+b

return result

Importing a module

14

>>> import fibo # imports module from local file

'fibo.py'

>>> fibo.fib(6) # dot notation

[1, 1, 2, 3, 5]

>>> fibo.__name__ # special attribute __name__

'fibo'

>>> fibo.fib.__module__ # special attribute __module__

'fibo'

>>> from fibo import fib, fib2

or from fibo import *

>>> fib(500)

>>> fib.__module__ # special attribute __module__

'fibo'

>>> fibo.__name__ # NameError: name 'fibo' is not defined

Executing a module as a script

▪ A module can be invoked as a script from the shell as

▪ Executed with __name__ set to "__main__".

15

File fibo.py - Fibonacci numbers module

def fib(n): # write Fibonacci series up to n

...

def fib2(n): # return Fibonacci series up to n

...

if __name__ == "__main__": # added code

import sys

fib(int(sys.argv[1]))

> python fibo.py 60

> python fibo.py 60

1 1 2 3 5 8 13 21 34

>

The Basics

17

A Code Sample (in IDLE)

x = 34 - 23 # A comment.

y = "Hello" # Another one.

z = 3.45

if z == 3.45 or y == "Hello":

x = x + 1

y = y + " World" # String concat.

print(x) # [Py2] also print x, no brackets

print(y)

18

Enough to Understand the Code

▪ Indentation matters to the meaning of the code:

▪ Block structure indicated by indentation

▪ The first assignment to a variable creates it.

▪ Variable types don’t need to be declared.

▪ Python figures out the variable types on its own.

▪ Assignment uses = and comparison uses ==.

▪ For numbers + - * / % are as expected.

▪ Special use of + for string concatenation.

▪ Special use of % for string formatting (as with printf in C)

▪ Logical operators are words (and, or, not)
not symbols

▪ Simple printing can be done with print().

19

Basic Datatypes

▪ Integers (default for numbers)

z = 5 // 2 # Answer is 2, integer division.

▪ Floats

x = 3.456

k = 5 / 2 # k = 2.5 in [Py3], k = 2 in [Py2]

▪ Strings

▪ Can use "" or '' to specify.

"abc" 'abc' (Same thing.)

▪ Unmatched can occur within the string.

"matt's"

▪ Use triple double-quotes for multi-line strings or strings than

contain both ' and " inside of them:

"""a'b"c"""

20

Whitespace

Whitespace is meaningful in Python: especially

indentation and placement of newlines.

▪ Use a newline to end a line of code.

▪ Use \ when must go to next line prematurely.

▪ No braces { } to mark blocks of code in Python…

Use consistent indentation instead.

▪ The first line with less indentation is outside of the block.

▪ The first line with more indentation starts a nested block

▪ Often a colon “:” appears at the start of a new

block. (E.g. for function and class definitions.)

21

Comments

▪ Start comments with # – the rest of line is ignored.

▪ Can include a “documentation string” as the first line of any

new function or class that you define.

▪ The development environment, debugger, and other tools

use it: it’s good style to include one.

def my_function(x, y):

"""This is the docstring. This

function does blah blah blah. """

The code would go here...

22

Assignment

▪ Binding a variable in Python means setting a
name to hold a reference to some object.

▪ Assignment creates references, not copies (like Java)

▪ A variable is created the first time it appears on
the left side of an assignment expression:

x = 3

▪ An object is deleted (by the garbage collector)
once it becomes unreachable.

▪ Names in Python do not have an intrinsic type.
Objects have types.

▪ Python determines the type of the reference automatically
based on what data is assigned to it.

23

Multiple Assignment

▪ You can also assign to multiple names at the same time.

>>> x, y = 2, 3

>>> x

2

>>> y

3

Sequence types:

Tuples, Lists, and Strings

25

Sequence Types

1. Tulpes

• A simple immutable ordered sequence of items

• Immutable: a tuple cannot be modified once created....

• Items can be of mixed types, including collection types

2. Strings

▪ Immutable

▪ Conceptually very much like a tuple

▪ [Py3] UTF-8 Unicode (type str)

▪ [Py2] 8-bit chars (type str)
UTF-16 Unicode (type unicode)

3. Lists

• Mutable ordered sequence of items of mixed types

26

Sequence Types 2

▪ The three sequence types (tuples, strings, and lists) share

much of the same syntax and functionality.

▪ Tuples are defined using parentheses (and commas).

>>> tu = (23, 'abc', 4.56, (2,3), 'def')

▪ Lists are defined using square brackets (and commas).

>>> li = ["abc", 34, 4.34, 23]

▪ Strings are defined using quotes (", ', or """).

>>> st = "Hello World"

>>> st = 'Hello World'

>>> st = """This is a multi-line

string that uses triple quotes. """

27

Sequence Types 3

▪ We can access individual members of a tuple, list, or string
using square bracket “array” notation.

▪ Note that all are 0 based…

>>> tu = (23, 'abc', 4.56, (2,3), 'def')

>>> tu[1] # Second item in the tuple.

'abc'

>>> li = ["abc", 34, 4.34, 23]

>>> li[1] # Second item in the list.

34

>>> st = "Hello World"

>>> st[1] # Second character in string.

'e'

28

Negative indices

>>> t = (23, 'abc', 4.56, (2,3), 'def')

Positive index: count from the left, starting with 0.

>>> t[1]

'abc'

Negative lookup: count from right, starting with –1.

>>> t[-3]

4.56

29

Slicing: Return Copy of a Subset (1)

>>> t = (23, 'abc', 4.56, (2,3), 'def')

Return a copy of the container with a subset of the original
members. Start copying at the first index, and stop copying
before the second index.

>>> t[1:4]

('abc', 4.56, (2,3))

You can also use negative indices when slicing.
>>> t[1:-1]

('abc', 4.56, (2,3))

Optional argument allows selection of every nth item.
>>> t[1:-1:2]

('abc', (2,3))

30

Slicing: Return Copy of a Subset (2)

>>> t = (23, 'abc', 4.56, (2,3), 'def')

Omit the first index to make a copy starting from the beginning
of the container.

>>> t[:2]

(23, 'abc')

Omit the second index to make a copy starting at the first
index and going to the end of the container.

>>> t[2:]

(4.56, (2,3), 'def')

31

Copying the Whole Sequence

To make a copy of an entire sequence, you can use [:].

>>> t[:]

(23, 'abc', 4.56, (2,3), 'def')

Note the difference between these two lines for mutable

sequences:

>>> list2 = list1 # 2 names refer to 1 ref

Changing one affects both

>>> list2 = list1[:] # Two independent copies, two refs

32

The ‘in’ Operator

▪ Boolean test whether a value is inside a collection (often
called a container in Python):

>>> t = [1, 2, 4, 5]

>>> 3 in t

False

>>> 4 in t

True

>>> 4 not in t

False

▪ For strings, tests for substrings
>>> a = 'abcde'
>>> 'c' in a

True

>>> 'cd' in a

True

>>> 'ac' in a

False

▪ Be careful: the in keyword is also used in the syntax of
for loops and list comprehensions.

33

The + Operator

▪ The + operator produces a new tuple, list, or string whose
value is the concatenation of its arguments.

▪ Extends concatenation from strings to other types

>>> (1, 2, 3) + (4, 5, 6)

(1, 2, 3, 4, 5, 6)

>>> [1, 2, 3] + [4, 5, 6]

[1, 2, 3, 4, 5, 6]

>>> "Hello" + " " + "World"

'Hello World'

Mutability:

Tuples vs. Lists

35

Lists: Mutable

>>> li = ['abc', 23, 4.34, 23]

>>> li[1] = 45

>>> li

['abc', 45, 4.34, 23]

▪ We can change lists in place.

▪ Name li still points to the same memory reference when

we’re done.

36

Tuples: Immutable

>>> t = (23, 'abc', 4.56, (2,3), 'def')

>>> t[2] = 3.14

Traceback (most recent call last):

File "<pyshell#75>", line 1, in -toplevel-

tu[2] = 3.14

TypeError: object doesn't support item assignment

You can’t change a tuple.

You can make a fresh tuple and assign its reference to a previously
used name.
>>> t = (23, 'abc', 3.14, (2,3), 'def')

▪ The immutability of tuples means they’re faster than lists.

37

Operations on Lists Only - 1

>>> li = [1, 11, 3, 4, 5]

>>> li.append('a') # Note the method syntax

>>> li

[1, 11, 3, 4, 5, 'a']

>>> li.insert(2, 'i')

>>>li

[1, 11, 'i', 3, 4, 5, 'a']

38

The extend method vs the + operator
▪ + creates a fresh list (with a new memory reference)

▪ extend is just like add in Java; it operates on list li in place.

>>>li

[1, 11, 'i', 3, 4, 5, 'a']

>>> li.extend([9, 8, 7])

>>>li

[1, 2, 'i', 3, 4, 5, 'a', 9, 8, 7]

Confusing:

▪ extend takes a list as an argument

▪ append t akes a singleton as an argument, unlike Java

>>> li.append([10, 11, 12])

>>> li

[1, 2, 'i', 3, 4, 5, 'a', 9, 8, 7, [10, 11, 12]]

39

Operations on Lists Only - 3
>>> li = ['a', 'b', 'c', 'b']

>>> li.index('b') # index of first occurrence*

1

*more complex forms exist

>>> li.count('b') # number of occurrences

2

>>> li.remove('b') # remove first occurrence

>>> li

['a', 'c', 'b']

40

Operations on Lists Only - 4
>>> li = [5, 2, 6, 8]

>>> li.reverse() # reverse the list *in place*

>>> li

[8, 6, 2, 5]

>>> li.sort() # sort the list *in place*

>>> li

[2, 5, 6, 8]

>>> li.sort(some_function)

sort in place using user-defined comparison

41

Tuples vs. Lists

▪ Lists slower but more powerful than tuples.

▪ Lists can be modified, and they have lots of handy operations we

can perform on them.

▪ Tuples are immutable and have fewer features.

▪ To convert between tuples and lists use the list() and tuple()

functions:

li = list(tu)

tu = tuple(li)

Sets, by examples

42

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange',

'banana'}

>>> print(basket) # show that duplicates have been

removed

{'orange', 'banana', 'pear', 'apple'}

>>> 'orange' in basket # fast membership testing

True

>>> 'crabgrass' in basket

False

>>> # Demonstrate set operations on unique letters from two words

>>> a = set('abracadabra')

>>> b = set('alacazam')

>>> a # unique letters in a

{'a', 'r', 'b', 'c', 'd'}

>>> a - b # letters in a but not in b

{'r', 'd', 'b'}

>>> a | b # letters in a or b or both

{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}

>>> a & b # letters in both a and b

{'a', 'c'}

>>> a ^ b # letters in a or b but not both

{'r', 'd', 'b', 'm', 'z', 'l'}

• Empty set: set()

• Indexing not supported

• Mixed types

Dictionaries: a mapping collection type

Dictionaries: Like maps in Java

▪ Dictionaries store a mapping between a set of keys

and a set of values.

▪ Keys can be of any immutable hashable type

▪ cannot contain mutable components

▪ Values can be any type

▪ Values and keys can be of different types in a single dictionary

▪ You can

▪ define

▪ modify

▪ view

▪ lookup

▪ delete

the key-value pairs in the dictionary.
44

Creating and accessing

dictionaries
>>> d = {'user':'bozo', 'pswd':1234}

>>> d['user']

'bozo'

>>> d['pswd']

1234

>>> d['bozo']

Traceback (innermost last):

File ‘<interactive input>’ line 1, in ?

KeyError: bozo

▪ Keys must be unique.

>>> d1 = {1:7,1:5}

>>> d1

{1: 5}
45

▪ Assigning to an existing key changes the value.

>>> d = {'user':'bozo', 'pswd':1234}

>>> d['user'] = 'clown'

>>> d

{'user':'clown', 'pswd':1234}

▪ Assigning to a non-existing key adds a new pair.

>>> d['id'] = 45

>>> d

{'user':'clown’, 'id':45, 'pswd':1234}

▪ Dictionaries are unordered

▪ New entry might appear anywhere in the output.

▪ (Dictionaries work by hashing)

Updating Dictionaries

46

Removing dictionary entries
>>> d = {'user':'bozo', 'p':1234, 'i':34}

>>> del d['user'] # Remove one. Note that del is

a function.

>>> d

{'p':1234, 'i':34}

>>> d.clear() # Remove all.

>>> d

{}

>>> a=[1,2]

>>> del a[1] # (del also works on lists)

>>> a

[1]

47

Useful Accessor Methods
>>> d = {'user':'bozo', 'p':1234, 'i':34}

>>> list(d.keys()) # List of current keys

['user', 'p', 'i']

>>> list(d.values()) # List of current values.

['bozo', 1234, 34]

>>> list(d.items()) # List of item tuples.

[('user','bozo'), ('p',1234), ('i',34)]

>>> list(d) # When accessing a dictionary as

a list, the keys are returned

['user', 'p', 'i’]

48

Using dictionaries

49

Write a program to compute the frequency of the words

of a string read from the input. The output should print

the words in increasing alphanumerical order.

freq = {} # frequency of words in text [Python3]

line = input()

for word in line.split():

freq[word] = freq.get(word,0)+1

words = list(freq.keys())

words.sort()

for w in words:

print ("%s:%d" % (w,freq[w]))

Boolean Expressions

True and False

▪ True and False are constants

▪ Other values are treated as equivalent to either
True or False when used in conditionals:
▪ False: zero, None, empty containers

▪ True: non-zero numbers, non-empty objects

▪ See PEP 8 for the most Pythonic ways to compare

▪ Comparison operators: ==, !=, <, <=, etc.
▪ X == Y

▪ X and Y have same value (like Java equals method)

▪ X is Y :

▪ X and Y refer to the exact same object (like Java ==)

51

Logical Operators

▪ You can also combine Boolean expressions.

▪ True if a is True and b is True: a and b

▪ True if a is True or b is True: a or b

▪ True if a is False: not a

52

Conditional Expressions

▪ x = true_value if condition else false_value

▪ lazy evaluation:

▪ First, condition is evaluated

▪ If True, true_value is evaluated and returned

▪ If False, false_value is evaluated and returned

53

Control Flow

if Statements (as expected)
if x == 3:

print("X equals 3.")

elif x == 2:

print("X equals 2.")

else:

print("X equals something else.")

print ("This is outside the 'if'.")

Note:

▪ Use of indentation for blocks

▪ Colon (:) after boolean expression

55

while Loops (as expected)
>>> x = 3

>>> while x < 5:

print (x, "still in the loop")

x = x + 1

3 still in the loop

4 still in the loop

>>> x = 6

>>> while x < 5:

print (x, "still in the loop")

>>>

56

break and continue

▪ You can use the keyword break inside a loop to

leave the while loop entirely.

▪ You can use the keyword continue inside a loop

to stop processing the current iteration of the

loop and immediately go on to the next one.

57

assert

▪ An assert statement will check to make sure that

something is true during the course of a program.

▪ If the condition if false, the program throws an exception

(AssertionError)

assert(number_of_players < 5)

58

For Loops

For Loops 1

▪ For-each is Python’s only form of for loop

▪ A for loop steps through each of the items in a collection
type, or any other type of object which is “iterable”

for <item> in <collection>:

<statements>

▪ If <collection> is a list or a tuple, then the loop steps
through each element of the sequence.

▪ If <collection> is a string, then the loop steps through each
character of the string.

for someChar in "Hello World":

print(someChar)

60

For Loops 2

for <item> in <collection>:

<statements>

▪ <item> can be more complex than a single

variable name.

▪ If the elements of <collection> are themselves collections,

then <item> can match the structure of the elements. (We

saw something similar with list comprehensions and with

ordinary assignments.)

for (x, y) in [('a',1), ('b',2), ('c',3), ('d',4)]:

print(x)

61

For loops and the range() function

▪ We often want to write a loop where the variables ranges

over some sequence of numbers. The range() function

returns a list of n numbers from 0 up to but not including

the number we pass to it.

▪ range(5) returns [0,1,2,3,4]

▪ So we can say:

for x in range(5):

print(x)

▪ Variant: range(start, stop[,step])

▪ [Py2]: range() returns a list, xrange() returns an iterator that

provides the same functionality, more efficiently

▪ [Py3]: range() returns an iterator, xrange() illegal
62

Abuse of the range() function

▪ Don't use range() to iterate over a sequence solely to have

the index and elements available at the same time

▪ Avoid:

for i in range(len(mylist)):

print(i, mylist[i])

▪ Instead:

for (i, item) in enumerate(mylist):

print(i, item)

▪ This is an example of an anti-pattern in Python

▪ For more, see: http://lignos.org/py_antipatterns/

63

http://lignos.org/py_antipatterns/

Generating Lists using

“List Comprehensions”

List Comprehensions 1

▪ A powerful feature of the Python language.
▪ Generate a new list by applying a function to every member

of an original list.

▪ Python programmers use list comprehensions extensively.
You’ll see many of them in real code.

[expression for name in list]

65

List Comprehensions 2

>>> li = [3, 6, 2, 7]

>>> [elem*2 for elem in li]

[6, 12, 4, 14]

[expression for name in list]

▪ Where expression is some calculation or operation
acting upon the variable name.

▪ For each member of the list, the list comprehension

1. sets name equal to that member, and

2. calculates a new value using expression,

▪ It then collects these new values into a list which is the
return value of the list comprehension.

[expression for name in list]

66

List Comprehensions 3

▪ If the elements of list are other collections, then
name can be replaced by a collection of names
that match the “shape” of the list members.

>>> li = [('a', 1), ('b', 2), ('c', 7)]

>>> [n * 3 for (x, n) in li]

[3, 6, 21]

[expression for name in list]

67

Filtered List Comprehension 1

▪ Filter determines whether expression is performed

on each member of the list.

▪ When processing each element of list, first check if

it satisfies the filter condition.

▪ If the filter condition returns False, that element is

omitted from the list before the list comprehension

is evaluated.

[expression for name in list if filter]

68

>>> li = [3, 6, 2, 7, 1, 9]

>>> [elem * 2 for elem in li if elem > 4]

[12, 14, 18]

▪ Only 6, 7, and 9 satisfy the filter condition.

▪ So, only 12, 14, and 18 are produced.

Filtered List Comprehension 2
[expression for name in list if filter]

69

▪ Since list comprehensions take a list as input and

produce a list as output, they are easily nested:

>>> li = [3, 2, 4, 1]

>>> [elem*2 for elem in

[item+1 for item in li]]

[8, 6, 10, 4]

▪ The inner comprehension produces: [4, 3, 5, 2].

▪ So, the outer one produces: [8, 6, 10, 4].

Nested List Comprehensions

70

