
301AA - Advanced Programming

Lecturer: Andrea Corradini 
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-23: RUST

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/


The RUST programming language

• Brief history 
• Memory safety
• Avoiding Aliases + Mutable
• Ownership and borrowing
• Lifetimes
• Enums, Structs, Generics, Traits…
• Unsafe
• Smart Pointers
• Concurrency 

2



Brief History

• Development started in 2006 by Graydon Hoare at Mozilla.
• Mozilla sponsored RUST since 2009, and announced it in 

2010.
• In 2010 shift from the initial compiler in OCaml to a self-

hosting compiler written in Rust, rustc: it successfully 
compiled itself in 2011.

• rustc uses LLVM as its back end.
• Most loved programming language in the Stack Overflow

annual surveys from  2016 to 2022.
• February 8, 2021: The development of the language passes 

to the Rust Foundation (non-profit independent) funded by 
da Mozilla, Microsoft, Google, AWS e Huawei.

3



On RUST goals and syntax

• Rust is a general purpose, system programming language
with a focus on safety, especially safe concurrency,
supporting both functional and imperative paradigms

• Main goal: ensuring safety without penalizing efficiency
• Concrete syntax similar to C and C++ (blocks, if-else, 
while, for), match for pattern matching

• Despite the superficial resemblance to C and C++, the 
syntax of Rust in a deeper sense is closer to that of the ML 
family of languages as well as the Haskell language.

• Nearly every part of a function body is an expression 
(including if-else).

• No Runtime required (GC, Dynamic typing/binding,…) 
• More control (over memory allocation/destruction…)

4



More than that …

C/C++

more control,
less safety

Haskell/Python

less control,
more safety

more control,
more safety

Rust

5



Rust overview
Performance, as with C

– Rust compilation to object code for bare-metal performance
But, supports memory safety

– Programs dereference only previously allocated pointers that have 
not been freed

– Out-of-bound array accesses not allowed
With low overhead

– Compiler checks to make sure rules for memory safety are followed
– Zero-cost abstraction in managing memory (i.e. no garbage 

collection)
Via

– Advanced type system
– Ownership, borrowing, and lifetime concepts to prevent memory 

corruption issues
But at a cost

– Cognitive cost to programmers who must think more about rules 
for using memory and references as they program

6



Memory safety

• Rust is designed to be memory safe, even in the presence 
of concurrency:
– No null pointers
– No dangling pointers
– No double frees
– No data races
– No iterator invalidation

• These properties are guaranteed statically: if the program 
compiles it will never manifest those problems.

• Memory safety is obtained with a careful combination of 
several techniques: linguistic design choices, memory 
management policies, and powerful static (data-flow) 
analysis

7



Null pointers

• Problem: accessing a variable which does not hold a value
• Two approaches to guarantee that a variable holds a value when 

accessed:
1. Check that it has been assigned, via data flow analysis
2. Use default values

• Pros and cons…
• In Java, solution 1. for local vars of methods, solution 2. for instance 

and static variables.
Why???  

• Sol. 2 is much simpler, sol. 1 hardly applicable to “global variables”
• Numeric variables typically have 0 as default value
• Tony Hoare introduced Null references in ALGOL W. 

– “The billion dollar mistake”… 

• NullPointerException most thrown exception in Java

8



Avoiding null pointers in Rust

• A Null value does not exist in Rust
• Data values can only be initialized through a fixed set of 

forms, requiring their inputs to be already initialized. 
• Compile time error if any branch of code fails to assign a 

value to the variable.
• Static/global variables must be initialized at declaration 

time
• For nullable types, a generic Option<T> type exist, playing 

the role of Haskell’s Maybe or Java’s Optional

9

enum std::option::Option<T> {

None,

Some(T)

}



Digression: Primitive types in Rust
• Numeric types:

– i8 / i16 / i32 / i64 / isize

– u8 / u16 / u32 / u64 / usize

– f32 / f64

• bool

• char (4-byte unicode)
• Type inference for variables declarations with let
• No overloading for literals: type annotations to disambiguate
• Tuples: like in Haskell
• Arrays: with fixed length. Runtime check for out-of-bound!

10

fn main() {

let k = 3; // 3u8, 3.0, 3.2f32, ... 

let tup = (500, 6.4, 1);

let (x, y, z) = tup;

println!("The value of y is: {}",y);

println!("The value of tup.1 is: {}",tup.1);

let a: [i32;5] = [1,2,3,4,5];

let b: [i32;5] = [3;5];

}



Using Option

11

enum std::option::Option<T> {

None,

Some(T)

}

fn checked_division(dividend: i32, divisor: i32) -> Option<i32> {

if divisor == 0 {

None

} else {

Some(dividend / divisor)

}

}

fn try_division(dividend: i32, divisor: i32) {

// `Option` values can be pattern matched, just like other enums

match checked_division(dividend, divisor) {

None => println!("{} / {} failed!", dividend, divisor),

Some(quotient) => {

println!("{} / {} = {}", dividend, divisor, quotient)

} } }

let opt_float = Some(0f32);

// Unwrapping a `Some` variant will extract the value wrapped.

println!("{:?} unwraps to {:?}", opt_float, opt_float.unwrap());



Dangling pointers: example in C++
• Problem: Pointers to invalid memory location

– Pointers to explicitly deallocated objects;

– Pointers to locations beyond the end of an arrays;

– Pointers to objects allocated on the stack; …

• Unpredictable effects

– Random results

– Segmentation fault

– Corruption of memory 
manager

12

// C++ code

string *s;

{

string s1 = "scope 1";

s = &s1;

}

{

string s2 = "scope 2";

}

cout << *s << endl;

Prints "scope 1" if compiled with x86-64 clang 13.0.1, but it
prints "scope 2" if compiled with x86-64 gcc 11.2 (see
https://godbolt.org/)



Double free: example in C++

• Problem: A memory location in the heap is reclaimed twice

• This can happen in languages with explicit deallocation of 
memory (like C, C++)

• A double-free error could corrupt the state of the memory
manager, causing a program to crash or modification of 
execution flow

• It could be exploited for software attacks

13

// C++ code

auto *s1 = new string("example");

auto *s2 = s1;

// ...

delete s1;

delete s2;



Race Condition: example in C++
• Problem: unpredictable results in concurrent computations
• The following multithreaded code typically prints values 

smaller than 20000, because of race conditions

14

// C++ code

int main() {

int counter = 0;

const auto task = [&] {

for (int i = 0; i < 100000; ++i) {

counter++;

}

};

thread thread1(task);

thread thread2(task);

thread1.join();

thread2.join();

cout << counter << endl;

return 0;

}



Memory management
• As usual, Rust uses a STACK of activation records, and a HEAP for 

dynamically allocated data structures.
• Rust favors stack allocation (default). 
• The user is forced to be aware of where the data are stored:  No 

implicit boxing.  

15

fn main() {

let x = 3;   // ‘let’ allocates a variable on the stack

let y = Box::new(3); // y is a reference to 3 on the heap

println!("x == y is {}", x == *y); // "x == y is true"

}

• Modern languages either use Garbage Collection, or leave the 
programmer the responsibility of managing the heap 

• Pros and cons:
– GC slows down or interrupts the execution; could be unfeasable for 

real-time systems
– Memory management by programmer can introduce subtle errors

• Rust avoids both, providing deterministic management of 
resources, with very low overhead, using RAII



By default, Rust variables are immutable

– Usage checked by the compiler

mut is used to declare a resource as mutable.

Immutability by default

rustc 1.14.0 (e8a012324 2016-12-16) 

error[E0384]: re-assignment of immutable variable `a`

--> <anon>:3:5

|

2 |     let a: i32 = 0; 

|         - first assignment to `a`

3 |     a = a + 1; 

|     ^^^^^^^^^ re-assignment of immutable variable

error: aborting due to previous error

rustc 1.14.0 (e8a012324 2016-12-16)

A = 1

Program ended.

16

fn main() {

let a: i32 = 0; 

a = a + 1;

println!("a == {}", a);

}

fn main() {

let mut a: i32 = 0; 

a = a + 1;

println!("a == {}", a);

}



Resource Acquisition Is Initialization

• The Resource Acquisition Is Initialization (RAII) programming 
idiom states that Resource allocation is done during object 
initialization, by the constructor, while resource deallocation
(release) is done during object destruction (specifically 
finalization), by the destructor.

• Popular in modern C++. Small objects better allocated on 
stack. Large resources are on the heap (or elsewhere) and are 
owned by an object on the stack. The object is then 
responsible for releasing the resource in its destructor. 

• The object is bound to the scope (function, block) where it is 
declared; when the scope closes it is reclaimed, together with 
any owned resource.

• Each resource has a unique owner. 

17



Ownership System
• Rust has an ownership system, which supports 

RAII in a strict way

• Based on the concepts of ownership and 
borrowing

• Ownership can be summarized by three rules: 

[O1] Every value is owned by a variable, identified
by a name (possiby a path);

[O2] Each value has at most one owner at a time;

[O3] When the owner goes out-of-scope, the 
value is reclaimed / destroyed.

18



Move semantics of assignment
• By default, an assignment between variables has 

a move semantics: the ownership is moved from 
the rhs to the lhs (by [O2])

19

fn main() {

let x = Box::new(3);

let _y = x;  // underscore to avoid ‘unused’ warning

println!("x = {}", x); // error!

}

fn main() {

let x = Option::Some(3);

let _y = x;

println!("x = {:?}", x); // OK

}

• For primitive types and types implementing the Copy 
trait, assignment has a copy semantics

• [O2] is satisfied because a new value is created

fn main() {

let x = 3;

let _y = x;

println!("x = {:?}", x); // OK

}



• Any value passed to the function will be reclaimed 
when it returns, as the formal parameters gets out of 
scope

• Only the returned 
value can survive
(tuples to return more)

Move semantics of parameter passing
• The same with parameter passing and function return

20

fn foo<T>(z: T) -> T { // polymorphic identity function

z

}

fn main(){    

let x = Box::new(3); 

let _y = foo(x);

println!("x == {}", x);  // error

}

fn main(){    

let mut x = Box::new(3); 

x = foo(x);

println!("x == {}", x); // OK

}

fn main(){    

let x = 3; 

let _y = foo(x);

println!("x == {}", x); // OK

}



Ownership: Unique Owner

struct Dummy { a: i32, b: i32 }

fn foo() {
let mut res = Box::new(Dummy {

a: 0, 
b: 0

});
take(res);
println!(“res.a = {}”, res.a);

}

fn take(arg: Box<Dummy>) {
}

Ownership is moved from res to arg

arg is out of scope and the resource is freed automatically

Compiling Error!

21



Double free: not in Rust
• Remember the C++ 

code

• Rust does not allow
for explicit memory deallocation. 

• Because of RAII, memory is freed automatically
when the owner goes out of scope

• By rule [O2], each value has only one owner.

• The move semantics of assignment guarantees
that s2 only owns the string, thus when s1 goes
out of scope nothing is reclaimed. 

22

// Codice C++

auto *s1 = new string("esempio");

auto *s2 = s1;

// ...

delete s1;

delete s2;

// Rust code

let s1 = String::new("esempio");

let s2 = s1;



Borrowing
• Ownership rules are too restrictive. 

• A resource can be borrowed from its owner (via assignment or 
parameter passing). 

• To guarantee memory safety, borrowing rules ensure that ALIASING
and MUTABILITY cannot coexist

• Values can be passed by immutable reference using &T, by mutable 
reference using &mut T (or by value using T)

[B1] At most one mutable reference to a resource can exist at any time

[B2] If there is a mutable reference, no immutable references can exist

[B3] If there is no mutable reference, several immutable references to 
the same resource can exist

• During borrowing, ownership is reduced or suspended:

[B4] Owner cannot free or mutate its resource while it is immutably 
borrowed

[B5] Owner cannot even read its resource while it is mutably borrowed
23



Borrowing: examples
[B1] At most one mutable reference to a resource can exist at any time

[B2] If there is a mutable reference, no immutable references can exist

[B3] If there is no mutable reference, several immutable references to 
the same resource can exist

24

let mut s = String::from("example");

let r1 = &mut s;

let r2 = &mut s;

println!("{} {}", r1, r2); // does not compile by rule B1

let mut s = String::from("example");

let r1 = &s;

let r2 = &mut s;

println!("{} {}", r1, r2);    // does not compile by rule B2

let s = String::from("example"); 

let r1 = &s;

let r2 = &s;

println!("{} {}", r1, r2); // ok by rule B3



Strings in Rust

Two main types for strings:
• String: does not require to know the length at compilation 

time, thus allocated on heap
• &str: size must be known statically, allocated on the stack
Method  String::from() allocates memory on the heap: it takes 
an argument of type &str and returns a String. 
A String object hast three components: a reference to the 
heap location containing the character sequence, a capacity
and a length unsigned integer values.
String does not implement Copy, thus assignment has move
semantics. 
Assignment creates a copy of length, capacity and reference, 
but not of the char sequence in the heap.

25



Dangling pointers: not in Rust
Translation of C++ code does not compile by rule [B4]

27

string *s; // C++ code

{

string s1 = "scope 1";

s = &s1;

}

{

string s2 = "scope 2";

}

cout << *s << endl;

Prints "scope 1" if compiled with x86-64 clang 13.0.1, but it
prints "scope 2" if compiled with x86-64 gcc 11.2 (see
https://godbolt.org/)

fn main() { // Rust code

let  s;

{

let s1 = String::from("scope 1");

s = &s1;

}

{

let _s2 = String::from("scope 2");

}

println!("s == {}", s);

}

error[E0597]: `s1` does not live long enough

--> src\main.rs:7:13

|

7  |         s = &s1;

|             ^^^ borrowed value does not live long enough

8  |     }

|     - `s1` dropped here while still borrowed

...

12 |     println!("s == {}", s);

|                         - borrow later used here



Lifetimes
• A lifetime is a construct that the borrow checker uses to 

ensure the validity of the above rules
• Lifetimes are associated with each individual ownership 

and borrowing
• A lifetime begins when the ownership starts, and ends

when it is moved / destroyed. 
• For borrowings, it ends where the borrowed value is 

accessed the last time
• Lifetimes are mostly inferred. Sometimes must be made 

explicit using the same syntax of generics
• The compiler checks the validity of the rules of 

ownership and borrowing in the expected way 
• In particular, it ensures that (the owner of) every 

borrowed variable/reference has a lifetime that is longer 
than the borrower [B4,B5]

28



Lifetime and borrowing:  example

29

fn main() {

let  mut s= String::from("ex-1");

println!("s-0 == {}", s);

let t = &mut s;

*t = String::from("ex-2"); 

//    println!("s-1 == {}", s); // what happens if uncommented?

println!("t == {}", t);

println!("s-2 == {}", s);

let z = &s; 

println!("s-3 == {}", s);

let w = z;

println!("{},{},{}",z,w,s);

}

s-0 == ex-1

t == ex-2  

s-2 == ex-2

s-3 == ex-2

ex-2,ex-2,ex-2



Lifetimes and function calls
• Borrowed (reference) formal parameters of a function have a 

lifetime. 
• If borrowed values are returned, each must have a lifetime. The 

compiled tries to infer lifetimes according to some rules:
[R1] The lifetimes of the borrowed paramers are, by default, all distinct
[R2]  If there is exactly one input lifetime, it will be assigned to each
output lifetime
[R3] If a method has more than one input lifetime, but one of them is
&self or &mut self, then this lifetime is assigned to all output lifetimes
• Otherwise explicit lifetimes are necessary

30

fn longest(s1: &str, s2: &str) -> &str { //does not compile

if s1.len() > s2.len() { s1 }

else { s2 }

}

fn longest<'a>(s1: &'a str, s2: &'a str) -> &'a str {

if s1.len() > s2.len() { s1 }

else { s2 }



Explicit Lifetimes in function calls

31

// `print_refs` takes two references to `i32` which have different

// lifetimes `'a` and `'b` (passed as generic parameters). 

fn print_refs<'a, 'b>(x: &'a i32, y: &'b i32) {  

println!("x is {} and y is {}", x, y);

}

// A function whith no arguments but with a lifetime parameter `'a`.

fn failed_borrow<'a>() {

let _x = 12;

// ERROR: `_x` does not live long enough

// let y: &'a i32 = &_x;  // uncomment this!

// The lifetime of `&_x` is shorter than that of `y`. 

// A short lifetime cannot be coerced into a longer one.

}

fn main() {

let (four, nine) = (4, 9);  // Create variables to be borrowed     

print_refs(&four, &nine); //Borrows of both variables are passed

// The lifetime of `four` and `nine` must 

// be longer than that of `print_refs`.   

failed_borrow();

}



Enums: algebraic data types
• Like in Haskell

• Replace unions in C/C++

33

enum RetInt {

Fail(u32),

Succ(u32)

}

fn foo_may_fail(arg: u32) -> RetInt {

let fail = false;

let errno: u32;

let result: u32;

...

if fail {

RetInt::Fail(errno)

} else {

RetInt::Succ(result)

}

}

enum std::option::Option<T> {

None,

Some(T)

}



Enums: Trees as ADT, generic

34

#[derive(Debug)] // needed to print

enum Tree<T> {

Empty,

Node(T, Box<Tree<T>>, Box<Tree<T>>)

}

fn main() {

let tree = Tree::Node(

42,

Box::new(Tree::Node(

0,

Box::new(Tree::Empty),

Box::new(Tree::Empty)

)),

Box::new(Tree::Empty));

println!("{:?}", tree); 

// prints Node(42, Node(0, Empty, Empty), Empty)

}



Pattern matching

• Compiler enforces that matching is complete

• Useful for Enums, but also for integral types 

35

fn main() {

let x = 5; // try others…

match x {

1             => println!("one"),

2             => println!("two"),

3|4           => println!("three or four"),

5..=10        => println!("five to ten"),

e @ 11..=20   => println!("{}", e),

i32::MIN..=0  => println!("less than zero"),

21..          => println!("large"),

_             => println!("???"),

}

}



Classes: Struct + Impl

36

#[derive(Debug)]  

struct Rectangle {  // class

width: u32, // instance variable

height: u32,

}

impl Rectangle {       // methods

fn area(&self) -> u32 {     // first argument is this

self.width * self.height // try to change width...

}

}

fn main() {

let rect1 = Rectangle {

width: 30,

height: 50,

};

println!(

"The area of the rectangle is {} square pixels.", rect1.area()

);

}

No inheritance in RUST!  ➔ Pushing 
composition over inheritance



Traits

• Equivalent to Type Classes in Haskell and to Concepts in 
C++20, similar to Interfaces in Java

• A trait can include abstract and concrete (default) 
methods. It cannot contain fields / variables.

• A struct can implement a trait providing an 
implementation for at least its abstract methods

impl <TraitName> for <StructName>{ … }

• The #[derive] clause can be used to derive 
automatically an implementation of a trait, if possible 

• Support for bounded universal explicit polymorphism 
with generics, as in Java, where bounds are one or 
more traits.

37



Trait example: Stack of Slots of <T>

38

trait Stack<T> {

fn new() -> Self;

fn is_empty(&self) -> bool;

fn push(&mut self, data: Box<T>);

fn pop(&mut self) -> Option<Box<T>>;

}

impl<T> Stack<T> for SLStack<T> {

fn new() -> SLStack<T> {

SLStack{ top: None }

}

...

fn is_empty(&self) -> bool {

match self.top {

None     => true,

Some(..) => false,

}

}

}

struct SLStack<T> {

top: Option<Box<Slot<T>>>

}

struct Slot<T> {

data: Box<T>,

prev: Option<Box<Slot<T>>>

}



Generic functions: Bounded 
polymorphism

• Generic functions may have the generic type of parameter 
bound by one or more traits. Within such a function, the 
generic value can only be used through those traits.

• Therefore a generic function can be type-checked when 
defined (as in Java, unlike C++ templates). 

• However, implementation of Rust generics similar to typical 
implementation of C++ templates: a separate copy of the 
code is generated for each instantiation. 

• Thus Rust uses monomorphization and contrasts with the 
type erasure scheme of Java. 
– Pros: optimized code for each specific use case
– Cons: increased compile time and size of the resulting binaries. 

39



Using Traits for Bounded 
Polymorphism

40

trait Stack<T> {

fn new() -> Self;

fn is_empty(&self) -> bool;

fn push(&mut self, data: Box<T>);

fn pop(&mut self) -> Option<Box<T>>;

}

fn generic_push<T, S: Stack<T>>(stk: &mut S, 

data: Box<T>) {

stk.push(data);

}

fn main() {

let mut stk = SLStack::<u32>::new();

let data = Box::new(2048);

generic_push(&mut stk, data);

}



Multiple Traits as bounds

41

trait Clone {

fn clone(&self) -> Self;

}

impl<T> Clone for SLStack<T> {

...

}

fn immut_push<T, S: Stack<T>+Clone>(stk: &S, data: Box<T>) -> S {

let mut dup = stk.clone();

dup.push(data);

dup

}

fn main() {

let stk = SLStack::<u32>::new();

let data = Box::new(2048);

let stk = immut_push(&stk, data);

}



System Traits

• Traits are widely used as predicates/annotations on data types, 
useful for the compiler

• Clone: allows to create a deep copy of a value using the method 
clone(). The duplication process might involve running arbitrary 
code

• Copy: allows to duplicate a value by only copying bits stored on the 
stack; no arbitrary code is necessary. Marker trait

• Debug: support default conversion to text, for printing (marker)

• Display: programmable conversion to text, fmt()

• Deref and Drop: implemented by Smart Pointers

• Synch and Send: declare if a data type can be moved to another 
thread  (marker) 

42



Smart Pointers

• Originate in C++. Generalize references 
(borrowing in Rust, &s)

• Smart pointers: act as a pointer but with 
additional metadata and capabilities

• Examples: String (encapsulate &str), 
Vect<T>,…

• Typically structs, implementing Deref (*) and 
Drop (reclaiming when out of scope)

• “Deref Coercion”… 

43



Box<T>

• Allow to store a data of type T on the heap

• No performance overhead

• Deref (*)  returns the value. Optional by coercion.

• Useful when
– Size of data not known statically (eg recursive types)

– Big data, and you want to transfer ownership without 
copying it

44

enum Tree<T> { //OK

Empty,

Node(T, Box<Tree<T>>, Box<Tree<T>>)

}

fn main() {

let b = Box::new(5);

println!("b = {}", b);

}

enum Tree<T> { // error

Empty,

Node(T, Tree<T>, Tree<T>)

} // type has infinite size



Rc<T>: reference counting
• Rc<T>: supports immutable access to resource with 

reference counting
• Method Rc::clone() doesn’t clone! It returns a new 

reference, incrementing the counter
• Rc::strong_count returns the value of the counter
• When the counter is 0 the resource is reclaimed

45

use crate::List::{Cons, Nil};

use std::rc::Rc;

enum List {

Cons(i32, Rc<List>),

Nil,

}

fn main() {

let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)))));

let b = Cons(3, Rc::clone(&a));

let c = Cons(4, Rc::clone(&a));

}



RefCell<T>: interior mutability
• RefCell<T>: supports shared access to a mutable 

resource through the interior mutability pattern
• It has methods borrow() and borrow_mut() which 

return a smart pointer (Ref<T> or RefMut<T>) 
• RefCell<T> keeps track of how many Ref<T> and 

RefMut<T> are active, and panics if the 
ownership/borrowing rules are invalidated.

• Single-threaded, typically used with Rc<T> to allow 
multiple accesses.

46

enum List {

Cons(Rc<RefCell<i32>>, Rc<List>),

Nil,

}

...

fn main() {

let value = Rc::new(RefCell::new(5));

let a = Rc::new(Cons(Rc::clone(&value), Rc::new(Nil)));

let b = Cons(Rc::new(RefCell::new(3)), Rc::clone(&a));

let c = Cons(Rc::new(RefCell::new(4)), Rc::clone(&a));

*value.borrow_mut() += 10;

println!(...);

}



Comparing smart pointers

Type Sharable? Mutable? Thread Safe?

& yes * no no

&mut no * yes no

Box no yes no

Rc yes no no

Arc yes no yes

RefCell yes ** yes no

Mutex yes, in Arc yes yes

* but doesn't own contents, so lifetime restrictions.

** while there is no mutable borrow
47

http://creativecommons.org/licenses/by-sa/4.0/


Closures, iterators, functional

• Closures can capture non-local variables in three ways, 
corresponding to ownership, mutable and immutable 
borrowing. 

• This is reflected in the trait they implement: FnOnce, 
FnMut and Fn. 

• This is inferred. With move before || FnOnce is 
enforced.

48

fn main(){

let x = 5;

let greater_than_x = |y| y > x; // Parameters within ||

println!("{}",greater_than_x(3));  // prints “false”

}

let vector = vec![1, 2, 3, 4, 5]; // stream-like 

vector.iter()

.map(|x| x + 1)

.filter(|x| x % 2 == 0)

.for_each(|x| println!("{}", x));



Race Conditions: How Rust avoids them 

49

// C++ code

int main() {

int counter = 0;

const auto task = [&] {

for (int i = 0; i < 100000; ++i) {

counter++;  

}

};

thread thread1(task);

thread thread2(task);

thread1.join();

thread2.join();

cout << counter << endl;

return 0;

}

// Rust: does not compile

fn main() {

let mut counter = 0;

let task = || { // closure

for _ in 0..100000 {

counter += 1;

}

};

let thread1 = thread::spawn(task);

let thread2 = thread::spawn(task);

thread1.join().unwrap();

thread2.join().unwrap();

println!("{}", counter);

}

error[E0373]: closure may outlive the current function, but it borrows

`counter`, which is owned by the current function

--> src\main.rs:57:16

let task = || {

^^ may outlive borrowed value `counter`

for _ in 0..100000 {

counter += 1;

------- `counter` is borrowed here

help: to force the closure to take ownership of `counter` (and any other

referenced variables), use the `move` keyword 

let task = move || {    // would it work?

++++



50

// Rust code: Doesn’t compile

fn main() {

let mut counter = 0;    

let task = || {

for _ in 0..100000 {

counter += 1;

}

};

let thread1 = thread::spawn(task);

let thread2 = thread::spawn(task);

thread1.join().unwrap();

thread2.join().unwrap();

println!("{}", counter);

}

error[E0594]: cannot assign to data in an `Arc`

--> src\main.rs:52:13

*c1 += 1;

^^^^^^^^ cannot assign

help: trait `DerefMut` is required to modify 

through a dereference, but it is not 

implemented for `Arc<i32>`

// Rust code with Arc<T>: Doesn’t compile

fn main() {

let mut counter = Arc::new(0);

let c1 = Arc::clone(&counter);

let c2 = Arc::clone(&counter);

let thread1 = thread::spawn(move || {

for _ in 0..100000 {

*c1 += 1; // Increment c1

}

});

let thread2 = thread::spawn(move || {

for _ in 0..100000 {

*c2 += 1; // Increment c2

}

});

thread1.join().unwrap();

thread2.join().unwrap();

println!("{}", counter);

}

Race Conditions: How Rust avoids them

The only solution is to use a 
Mutex wrapped into an Arc, but 
with Mutex race conditions 
cannot happen



Traits Sync and Send (markers)

• Send : an error is signaled by the compiler if the ownership of 
a value not implementing Send is passed to another thread.

• For a value to be referenced by more threads,it has to
implement Sync

• A type T implements Send if and only if &T implements Sync

• Examples: Rc<T> is neither Send nor Sync: operations on the 
internal counter are not thread safe

• Arc<T> is the thread-safe version of Rc<T>: it is Send and Sync

• Mutex<T> supports mutual exclusive access to a value via a 
lock. It is both Send and Sync, and typically wrapped in Arc

51



And if Mutably Sharing is necessary?

•Mutably sharing is inevitable in the real world.

•Example: mutable doubly linked list

prev

next

prev

next

prev

next

struct Node {
prev: option<Box<Node>>,
next: option<Box<Node>>

}

52



Rust’s Solution: Raw Pointers

•Compiler does NOT check the memory safety of 
most operations wrt. raw pointers.

•Most operations wrt. raw pointers should be 
encapsulated in a unsafe {} syntactic structure.

prev

next

prev

next

prev

next

struct Node {
prev: option<Box<Node>>,
next: *mut Node

}
Raw pointer

53



Rust’s Solution: Raw Pointers

let a = 3;

unsafe {
let b = &a as *const i32 as *mut i32;
*b = 4;

} 

println!(“a = {}”, a);

I know what I’m doing

Print “a = 4”

54



Foreign Function Interface (FFI)

•All foreign functions are unsafe.

extern {
fn write(fd: i32, data: *const u8, len: u32) -> i32;

}

fn main() {
let msg = ”Hello, world!\n”;
unsafe {

write(1, &msg[0], msg.len());
}

}

55



Unsafe superpowers

•Dereference a raw pointer

•Call an unsafe function or method

•Access or modify a mutable static variable

• Implement an unsafe trait

•Access fields of unions

Note: unsafe{} does not switch off the borrow 
checker

56


