301AA - Advanced Programming

Lecturer: Andrea Corradini andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-14: Lambda Calculus, Haskell, Call by need

Summary

- Motivation: Laziness in Haskell
- Lambda Calculus
- Parameter passing mechanisms
- Call by sharing
- Call by name
- Call by need

On laziness in Haskell

- Haskell is a lazy language
- Functions and data constructors don't evaluate their arguments until they need them
- In several languages there are forms of lazy evaluations (if-then-else, shortcutting \&\& and ||)

```
if (x != 0) return y/x; else return 0; //ok
if (x !=0 && y/x > 5) return 0; else return 1; //ok
if (x !=0 & y/x > 5) return 0; else return 1; //no
int choose(boolean e1, boolean e2){
    if (e1 && e2) return 0; else return 1;
}
choose(x!=0, y/x>5) // ???
```

- Ok in Haskell, thanks to Normal Order evaluation and Call by Need parameter passing...

λ-calculus: syntax

λ-terms:

- x
- $\lambda x . t$ abstraction, defines an anonymous function
- $t t^{\prime}$ application of function t to argument t^{\prime}

Terms can be represented as abstract syntax trees
Syntactic Conventions

- Applications associates to left

$$
\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \equiv\left(\mathrm{t}_{1} \mathrm{t}_{2}\right) \mathrm{t}_{3}
$$

- The body of abstraction extends as far as possible
- $\lambda \mathrm{x} . \lambda \mathrm{y} . \mathrm{xyx} \equiv(\lambda \mathrm{x} .(\lambda \mathrm{y} .(\mathrm{xy}) \mathrm{x}))$

A simple tutorial on lambda calculus:

Free vs. Bound Variables

- An occurrence of x is free in a term t if it is not in the body of an abstraction λx. t
- otherwise it is bound
$-\lambda x$ is a binder
- Examples
$-\lambda z . \lambda x . \lambda y . x(y z)$
$-(\lambda x . x) x$
- Terms without free variables are combinators
- Identity function: id $=\lambda x . x$
- First projection: fst $=\lambda x . \lambda y . x$

Operational Semantics

[β-reduction] function application
redex $(\lambda x . t) \mathrm{t}^{\prime}=\mathrm{t}\left[\mathrm{t}^{\prime} / \mathrm{x}\right]$
$(\lambda x . x) y \rightarrow \quad y$

$$
\begin{aligned}
(\lambda x \cdot x(\lambda x \cdot x))(u r) \rightarrow & u r(\lambda x \cdot x) \\
(\lambda x \cdot(\lambda w \cdot x w))(y z) \rightarrow & \lambda w \cdot y z w \\
(\lambda x \cdot x x)(\lambda x \cdot x x) \rightarrow & (\lambda x \cdot x x)(\lambda x \cdot x x)
\end{aligned}
$$

Other relevant concepts:

- Normal Forms, α-conversion, η-reduction

λ-calculus as a functional language

Despite the simplicity, we can encode in λ calculus most concepts of functional languages:

- Functions with several arguments
- Booleans and logical connectives
- Integers and operations on them
- Pairs and tuples
- Recursion

Functions with several arguments

- A definition of a function with a single argument associates a name with a λ-abstraction

```
f x = <exp> -- is equivalent to
f = \lambdax.<exp>
```

- A function with several argument is equivalent to a sequence of λ-abstractions

$$
\begin{aligned}
& f(\mathbf{x}, \mathrm{y})=\langle\exp \rangle \quad-- \text { is equivalent to } \\
& \mathbf{f}=\lambda \mathbf{x} \cdot \lambda \mathbf{y} \cdot\langle\exp \rangle
\end{aligned}
$$

- "Currying" and "Uncurrying"

```
curry :: ((a, b) -> c) -> a -> b -> c
curry f x y = f(x,y)
uncurry :: (a -> b -> c) -> (a, b) -> c
uncurry f (x,y) = f x y
```


Church Booleans

- $T=\lambda t . \lambda f . t--f i r s t$
- $\mathrm{F}=\lambda t . \lambda \mathrm{f} . \mathrm{f}--\mathrm{second}$
- and $=\lambda \mathrm{b} \cdot \lambda \mathrm{c} \cdot \mathrm{bcF}$
- or $=\lambda \mathrm{b} \cdot \lambda \mathrm{c} \cdot \mathrm{bTc}$

```
and T F
->(\lambdab.\lambdac.bcF) T F
->(\lambdac.TcF) F
->TFF
F
```

- not $=\lambda \mathrm{x} . \mathrm{xFT}$
- test $=\lambda 1 . \lambda m . \lambda n .1 m n$

```
test F u w
->(\lambdal.\lambdam.\lambdan.lmn) F u w
->(\lambdam.\lambdan.Fmn) u w
->(\lambdan.Fun) w
Fuw
->W
```


Pairs

- pair $=\lambda f . \lambda s . \lambda b . b \mathrm{f} s$
- fst $=\lambda \mathrm{p} \cdot \mathrm{p} \mathrm{T}$
- $\operatorname{snd}=\lambda \mathrm{p} \cdot \mathrm{p} \mathrm{F}$

```
fst (pair u w)
->(\lambdap.p T) (pair u w)
->(pair u w) T
->(\lambdaf.\lambdas.\lambdab.b f s) u w T
->(\lambdas.\lambdab.b u s) w T
->(\lambdab.b u w) T
T u W
|u
```


Church Numerals

Higher order functions:
\mathbf{n} takes a function \boldsymbol{s} as argument and returns the n-th composition of \boldsymbol{s} with itself, $\boldsymbol{s}^{\boldsymbol{n}}$

- $0=\lambda s . \lambda z . z$
- $1=\lambda s \cdot \lambda z \cdot s z$
- $2=\lambda s \cdot \lambda z . s(s z)$
- $3=\lambda s \cdot \lambda z \cdot s(s \quad(s z))$

A first simple function:

- $\operatorname{succ}=\lambda n . \lambda s . \lambda z . s$ n s)

```
succ 2
->(\lambdan.\lambdas.\lambdaz.s (n s z)) 2
->(\lambdas. \lambdaz. s (2 s z))
    applies the function one
more time
->(\lambdas. \lambdaz.s ((\lambdas. \lambdaz.s (s z)) s z))
->(\lambdas.\lambdaz.s (s (s z)) = 3
```


Arithmetics with Church Numerals

Addition:

- plus $=\lambda m \cdot \lambda n \cdot \lambda s \cdot \lambda z \cdot m \mathrm{~s}$ (n s z)

Multiplication:

Exponentiation:

- pow $=\lambda m . \lambda n \cdot \lambda s . \lambda z . n \mathrm{~m} / \mathrm{z}$

Test by zero:

- $Z=\lambda x . x \mathrm{~F}$ not F
- $Z \mathbf{O}=((0 \mathrm{~F})$ not) $\mathrm{F}=$ not $\mathrm{F}=\mathrm{T}$
- $Z \mathbf{n}=\left(\binom{\mathrm{n}}{\mathrm{F}}\right.$ not) $\mathrm{F}=\mathrm{F}^{\mathrm{n}}$ (not) $\mathrm{F}=\mathrm{F}$

Fix-point combinator and recursion

The following fix-point combinator Y , when applied to a function R, returns a fix-point of R, i.e. $R(Y R)=Y R$

- $Y=(\lambda Y \cdot(\lambda x \cdot y(x \quad x))(\lambda x \cdot y(X X)))$
- $Y R=(\lambda x \cdot R(x \quad x))(\lambda x \cdot R(x \quad x))$

$$
=R((\lambda x \cdot R(x f))(\lambda x \cdot R(x \quad x)))=R(Y R)
$$

A recursive function definition (like factorial) can be read as a higher-order transformation having a function as first argument, and the desired function is its fix-point.

Fix-point combinator and recursion

A recursive definition:

- $\operatorname{sums}(n)=(n==0$? $0 \quad n+\operatorname{sums}(n-1))$
- sums $=\backslash n->(n=0$? $0: n+\operatorname{sums}(n-1))$
sums is the fix-point of the following higher-order function:
- $R=\backslash F->\backslash n->(n=0$? $0: n+F(n-1))$
- $R=(\lambda r . \lambda n . Z n 0(n S(r n))) / /$ in λ-calculus Example of application

$$
\begin{aligned}
& (Y R) 3=R(Y R) 3= \\
& (3=00 ? 0: 3+(Y R)(3-1))= \\
& 3+(Y R) 2= \\
& 3+R(Y R) 2= \\
& 3+(2=0 ? 0: 2+(Y R)(2-1))= \\
& 3+2+(Y R) 1= \\
& \cdots+3+2+1+0=6
\end{aligned}
$$

Applicative and Normal Order evaluation

- Applicative Order evaluation
- Arguments are evaluated before applying the function aka Eager evaluation, parameter passing by value
- Normal Order evaluation
- Function evaluated first, arguments if and when needed
- Sort of parameter passing by name
- Some evaluation can be repeated
- Church-Rosser
- If evaluation terminates, the result (normal form) is unique
- If some evaluation terminates, normal order evaluation terminates

$$
\begin{aligned}
& \beta \text {-conversion } \\
& (\lambda x . t) \mathrm{t}^{\prime}=\mathrm{t}\left[\mathrm{t}^{\prime} / \mathrm{x}\right]
\end{aligned}
$$

Define $\boldsymbol{\Omega}=(\boldsymbol{\lambda x}$.x $\mathbf{x})$
Then$\Omega \Omega=(\lambda x . x x)(\lambda x . x x)$
$\rightarrow(\lambda x . x x)(\lambda x . x x)=\Omega \Omega$
\rightarrow... non-terminating
($\lambda \times$. 0) ($\Omega \Omega$)
\rightarrow \{ Applicative order\} ... non-terminating
($\lambda \mathrm{x} .0$) ($\Omega \Omega$)
\rightarrow \{ Normal order\}
0

Normal order
$(\lambda x .(+x x))(+32)$
$\rightarrow(+(+32)(+32))$
$\rightarrow(+5(+32))$
\rightarrow (+55)
$\rightarrow 10$

Parameter passing mechanism in Haskell:

Call by need

- Haskell realizes lazy evaluation by using call by need parameter passing: an expression passed as argument is bound to the formal parameter, but it is evaluated only if its value is needed.
- The argument is evaluated only the first time, using the memoization technique: the result is saved and further uses of the argument do not need to reevaluate it

Call by need (cont.)

- Combined with lazy data constructors, this allows to construct potentially infinite data structures and to call infinitely recursive functions without necessarily causing non-termination
- Note: lazy evaluation works fine with purely functional languages
- Side effects require that the programmer reasons about the order that things happen, not predictable in lazy languages.
- We will address this fact when introducing Hakell's IOMonad

Parameter Passing Mechanisms

- Parameter passing modes
- In
- In/out
- Out
- Parameter passing mechanisms
- Call by value (in)
- Call by reference (in+out)
- Call by result (out)
- Call by value/result (in+out)
- Call by need (in)
- Call by sharing (in/out)
- Call by name (in+out)

L-Values vs. R-Values and Value Model vs. Reference Model

- Consider the assignment of the form: $\boldsymbol{a}=\boldsymbol{b}$
- a is an l-value, an expression denoting a location, e.g.
- an array element a[2]
- a variable foo
- a dereferenced pointer *p
- a more complex expression like (f(a)+3)->b[c]
- b is an r-value: any syntactically valid expression with a type compatible to that of a
- Languages that adopt the value model of variables copy the value of b into the location of a
- Languages that adopt the reference model of variables copy references, resulting in shared data values via multiple references

Value Model vs. Reference Model in some programming languages

- Lisp/Scheme, ML, Haskell, Smalltalk adopt the reference model. They copy the reference of b into a so that a and b refer to the same object
- Most imperative programming languages use the value model
- Java uses the value model for built-in types and the reference model for class instances
- C\# uses value model for value types, reference model for reference types

Assignment in

Value Model vs. Reference Model

Reference model

References and pointers

- Most implementations of PLs have as target architecture a Von Neumann one, where memory is made of cells with addresses
- Thus implementations use the value model of the target architecture
- Assumption: every data structure is stored in memory cells
- We "define":
- A reference to X is the address of the (base) cell where X is stored
- A pointer to X is a location containing the address of X
- Value model based implementations can mimic the reference model using pointers and standard assignment
- Each variable is associated with a location
- To let variable \mathbf{y} refer to data \mathbf{X}, the address of (reference to) \mathbf{X} is written in the location of \mathbf{y}, which becomes a pointer.

Parameter Passing by Sharing

- Call by sharing: parameter passing of data in the reference model
- The value of the variable is passed as actual argument, which in fact is a reference to the (shared) data
- Essentially this is call by value of the variable!
- Java uses both pass by value and pass by sharing
- Variables of primitive built-in types are passed by value
- Class instances are passed by sharing
- The implementation is identical

Parameter Passing in Algol 60

- Algol 60 uses call by name by default, but also call by value
- Effect of call by name is like β-reduction in λ-calculus: the actual parameter is copied wherever the formal parameter appears in the body, then the resulting code is executed
- Thus the actual parameter is evaluated a number of times (0 , 1, ...) that depends on the logic of the program
- Since the actual parameter can contain names, it is passed in a closure with the environment at invocation time (called a thunk)
- Call by name is powerful but makes programs difficult to read and to debug (think to λ-calculus...): dismissed in subsequent versions of Algol

An example of Call by Name: Jensen's device

- What does the following Algol 60 procedure compute?

```
real procedure sum(expr, i, low, high);
    value low, high; low and high are passed by value
    real expr; expr and i are passed by name
    integer i, low, high;
begin
    real rtn;
    rtn := 0;
    for i := low step 1 until high do
        rtn := rtn + expr;
    sum := rtn return value by assigning to function name
end sum
```

- Apparently, (high-low+1) * expr

An example of Call by Name: Jensen's device

- But: $y:=\operatorname{sum}(3 * x * x-5 * x+2, x, 1,10)$

```
real procedure sum(expr, i, low, high);
    value low, high; low and high are passed by value
    real expr;
    integer i, low, high;
begin
    real rtn;
    rtn := 0;
    for x := low step 1 until high do
        rtn := rtn + 3*x*x-5*x+2;
    sum := rtn return value by assigning to function name
end sum
```

- It computes $y=\sum_{x=1}^{10} 3 x^{2}-5 x+2$

Call by name \& Lazy evaluation (call by need)

- In call by name parameter passing (default in Algol 60) arguments (like expressions) are passed as a closure ("thunk") to the subroutine
- The argument is (re)evaluated each time it is used in the body
- Haskell realizes lazy evaluation by using call by need parameter passing, which is similar: an expression passed as argument is evaluated only if its value is needed.
- Unlike call by name, the argument is evaluated only the first time, using memoization: the result is saved and further uses of the argument do not need to re-evaluate it

Call by name \& Lazy evaluation (call by need)

- Combined with lazy data constructors, this allows to construct potentially infinite data structures and to call infinitely recursive functions without necessarily causing non-termination
- Note: lazy evaluation works fine with purely functional languages
- Side effects require that the programmer reasons about the order that things happen, not predictable in lazy languages.
- We will address this fact when introducing Hakell's IOMonad

Summary of Parameter Passing Modes

parameter mode	representative languages	implementation mechanism	permissible operations	change to actual?	alias?
value	C/C++, Pascal, Java/C\# (value types)	value	read, write	no	no
in, const	Ada, C/C++, Modula-3	value or reference	read only	no	maybe
value/result	Ada	value or reference	write only	yes	maybe
var, ref	Fortran, Pascal, C++	value	reference	read, write	yes

