
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-13: Functional Programming

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Functional Programming - Outline

• Historical origins

• Main concepts

• Languages families: LISP, ML, and Haskell

• Core concepts of Haskell

• Lazy evaluation

2

3

Functional Programming:
Historical Origins

• The imperative and functional models grew out of work
undertaken Alan Turing, Alonzo Church, Stephen
Kleene, Emil Post, etc. ~1930s

– different formalizations of the notion of an algorithm, or
effective procedure, based on automata, symbolic
manipulation, recursive function definitions, and
combinatorics

• These results led Church to conjecture that any
intuitively appealing model of computing would be
equally powerful as well

– this conjecture is known as Church’s thesis

4

Historical Origins

• Church’s model of computing is called the lambda
calculus

– based on the notion of parameterized expressions
(parameters introduced by letter λ)

– allows one to define mathematical functions in a
constructive/effective way

– lambda calculus was the inspiration for functional
programming

– computation proceeds by substituting parameters into
expressions, just as one computes in a high level functional
program by passing arguments to functions

• We shall see later the basics of lambda-calculus

5

Functional Programming Concepts

• Functional languages such as LISP, Scheme,

FP, ML, Miranda, and Haskell are an

attempt to realize Church’s lambda calculus

in practical form as a programming language

• The key idea: do everything by composing

functions

– no mutable state

– no side effects

6

Functional Programming Concepts

• Necessary features, many of which are missing
in some imperative languages:
– 1st class and high-order functions

• Functions can be denoted, passed as arguments to
functions, returned as result of function invocation

• Meaningful because new functions can be defined

– Recursion
• Takes the place of iteration (no "control variables")

– Powerful list facilities
• Recursive functions exploit recursive definition of lists

– Polymorphism (typically universal parametric
implicit)
• Relevance of Containers/Collections

7

Functional Programming Concepts

– Fully general aggregates
• Wide use of tuples and records

• Data structures cannot be modified, have to be re-
created

– Structured function returns
• No side-effects, thus the only way for functions to

pass information to the caller

– Garbage collection
• In case of static scoping, unlimited extent for:

– locally allocated data structures

– locally defined functions

• They cannot be allocated on the stack

8

The LISP family of languages

• LISP (LISt Processor) was designed in 1958 by
John McCarty (Turing award in 1971) and
implemented in 1960 by Steve Russel

• Only FORTRAN is older…

• Main programming language for AI

• It includes some features that are not necessary
present in other functional languages:
– Programs (S-expressions) are data (lists)

• (func arg1 arg2 … argn)

– Self-definition

• A LISP interpreter can be written in few LISP lines

– Read-evaluate-print interactive loop

9

The LISP family of languages

• Variants of LISP
– (Original) LISP

• purely functional

• strong dynamic type checking

• dynamically scoped

– Common Lisp: current standard
• statically scoped

• very rich and complex

– Scheme:
• statically scoped

• essential syntax

• very elegant

• widely used for teaching

Other functional languages: the ML family

• Robin Milner (Turing award in 1991, CCS, Pi-calculus, …)
• Statically typed, general-purpose programming language

– “Meta-Language” of the LCF theorem proving system

• Type safe, with type inference and formal semantics
• Compiled language, but intended for interactive use
• Combination of Lisp and Algol-like features

– Expression-oriented
– Higher-order functions
– Garbage collection
– Abstract data types
– Module system
– Exceptions

• Impure: it allows side-effects
• Members of the family: Standard ML, Caml, OCaml, F#

10

Other functional languages: Haskell

• Designed by committee in 80’s and 90’s to unify research efforts in
lazy languages
– Evolution of Miranda, name from Haskell Curry, logician (1900-82),
– Haskell 1.0 in 1990, Haskell ‘98, Haskell 2010 (→ Haskell 2020)

• Several features in common with ML, but some differ:
• Types and type checking

– Type inference
– Implicit parametric polymorphism
– Ad hoc polymorphism (overloading)

• Control
– Lazy evaluation
– Tail recursion and continuations

• Purely functional
– Precise management of effects

11

Downloading Haskell

12

https://www.haskell.org/platform/

For playing with Haskell now,
use an online interpreter like
repl.it

Core Haskell

• Basic Types

– Unit

– Booleans

– Integers

– Strings

– Reals

– Tuples

– Lists

– Records

• Patterns

• Declarations

• Functions

• Polymorphism

• Type declarations

• Type Classes

• Monads

• Exceptions

13

Overview of Haskell
• Interactive Interpreter (ghci): read-eval-print

– ghci infers type before compiling or executing

– Type system does not allow casts or similar things!

• Examples

Prelude> 5==4

False

Prelude> :set +t -- enables printing of types

Prelude> 'x'

'x'

it :: Char

Prelude> (5+3)-2

6

it :: Num a => a -- generic constrained type

-- "type class"

Prelude> :t (+) -- type of a function

(+) :: Num a => a -> a -> a 14

Overview by Type

• Booleans

• Characters & Strings

True, False :: Bool

not :: Bool -> Bool

and, or :: Foldable t => t Bool -> Bool

if … then … else …

--conditional expression: types must match

15

'a','b',';','\t', '2', 'X' :: Char

"Ron Weasley" :: [Char] --strings are lists of chars

Overview by Type

• Numbers

0,1,2,…:: Num p => p --type classes, to disambiguate

1.0, 3.1415 :: Fractional a => a

(45 :: Integer) :: Integer -- explicit typing

+, * , -, … :: Num a => a -> a -> a

-- infix + becomes prefix (+)

-- prefix binary op becomes infix `op`

/ :: Fractional a => a -> a -> a

div, mod :: Integral a => a -> a -> a

^ :: (Num a, Integral b) => a -> b -> a

16

Simple Compound Types
• Tuples

• Lists

• Records

("AP",2017) :: Num b => ([Char], b) -- pair

fst :: (a, b) -> a -- selector: only for pairs

snd :: (a, b) -> b -- selector: only for pairs

('4', True, "AP") :: (Char, Bool, [Char]) -- tuple

[] :: [a] -- NIL, polymorphic type

1 : [2, 3, 4] :: Num a => [a]-- infix cons notation

[1,2]++[3,4] :: Num a => [a] -- concatenation

head :: [a] -> a -- first element

tail :: [a] -> [a] -- rest of the list

data Person = Person {firstName :: String,

lastName :: String}

hg = Person { firstName = "Hermione",

lastName = "Granger"} 17

More on list constructors

18

ghci> [1..20] -- range

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

ghci> ['a'..'z']

"abcdefghijklmnopqrstuvwxyz"

ghci> [3,6..20] -- range with step

[3,6,9,12,15,18]

ghci> [7,6..1]

[7,6,5,4,3,2,1]

ghci> [1..] -- an infinite list: runs forever

ghci> take 10 [1..] -- prefix of an infinite lists

[1,2,3,4,5,6,7,8,9,10] -- returns!

ghci> take 10 (cycle [1,2])

[1,2,1,2,1,2,1,2,1,2]

ghci> take 10 (repeat 5)

[5,5,5,5,5,5,5,5,5,5]

How does it work??? Later…

Binding variables
• Variables (names) are bound to expressions,

without evaluating them (because of lazy
evaluation)

• The scope of the binding is the rest of the session

• Comparing OCaml and Haskell

HASKELL

Prelude> let a = 6 –- no output

Prelude> b = a + 2 –-'let' optional

Prelude> b -- now b is evaluated

8

Prelude> a = a + 1 –- no output

Prelude> a -- what does it print?

^CInterrupted. – loop broken
19

OCaml

let a = 6 ;;

val a : int = 6

let b = a + 2 ;;

val b : int = 8

b ;;

- : int = 8

let a = a + 1 ;;

val a : int = 7

Patterns and Declarations

• Patterns can be used in place of variables
<pat> ::= <var> | <tuple> | <cons> | <record> …

• Value declarations
– General form: <pat> = <exp>

– Examples

– Local declarations

myTuple = ("Foo", "Bar")

(x,y) = myTuple -- x = "Foo”, y = "Bar"

myList = [1, 2, 3, 4]

z:zs = myList -- z = 1, zs = [2,3,4]

let (x,y) = (2, "FooBar") in x * 4

20

Anonymous Functions (lambda abstraction)

• Anonymous functions

• Anonymous functions using patterns

\x -> x+1 --like LISP lambda, function (…) in JS

Prelude> (\x -> x+1)5 => 6

Prelude> f = \x -> x+1

Prelude> :t f

f :: Num a => a -> a

Prelude> f 7 => 8

21

Prelude> h = \(x,y) -> x+y

h :: Num a => (a, a) -> a

Prelude> h (3, 4) => 7

Prelude> h 3 4 => error

Prelude> k = \(z:zs) -> length zs

k :: [a] -> Int

Prelude> k "hello" => 4

Function declarations
• Function declaration form

• Examples

<name> <pat1> = <exp1>

<name> <pat2> = <exp2> …

f (x,y) = x+y --argument must match pattern (x,y)

length [] = 0

length (x:s) = 1 + length(s)

Prelude> len (z:zs) = length zs

len :: [a] -> Int

Prelude> len [1,2,3] => 2

Prelude> len []

*** Exception: <interactive>:143:5-24: Non-

exhaustive patterns in function len 22

More Functions on Lists

• Reverse a list

• Other (higher-order) functions later

reverse [] = [] -- quadratic

reverse (x:xs) = (reverse xs) ++ [x]

23

reverse xs = -- linear, tail recursive

let rev ([], accum) = accum

rev (y:ys, accum) = rev (ys, y:accum)

in rev (xs, [])

