301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-13: Functional Programming

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Functional Programming - Outline

Historical origins

Main concepts

Languages families: LISP, ML, and Haskell
Core concepts of Haskell

Lazy evaluation

Functional Programming:
Historical Origins

 The imperative and functional models grew out of work
undertaken Alan Turing, Alonzo Church, Stephen
Kleene, Emil Post, etc. ~1930s
— different formalizations of the notion of an algorithm, or
effective procedure, based on automata, symbolic
manipulation, recursive function definitions, and
combinatorics
* These results led Church to conjecture that any

intuitively appealing model of computing would be
equally powerful as well

— this conjecture is known as Church’s thesis

Historical Origins

e Church’s model of computing is called the lambda
calculus

— based on the notion of parameterized expressions
(parameters introduced by letter A)

— allows one to define mathematical functions in a
constructive/effective way

— lambda calculus was the inspiration for functional
programming

— computation proceeds by substituting parameters into
expressions, just as one computes in a high level functional
program by passing arguments to functions

e We shall see later the basics of lambda-calculus

Functional Programming Concepts

* Functional languages such as LISP, Scheme,

FP, ML, Miranda, and Haskell are an
attempt to realize Church’s lambda calculus

in practical form as a programming language
* The key idea: do everything by composing
functions

— no mutable state

— no side effects

Functional Programming Concepts

* Necessary features, many of which are missing
in some imperative languages:

— 1st class and high-order functions

* Functions can be denoted, passed as arguments to
functions, returned as result of function invocation

* Meaningful because new functions can be defined
— Recursion

* Takes the place of iteration (no "control variables")
— Powerful list facilities

e Recursive functions exploit recursive definition of lists
— Polymorphism (typically universal parametric

implicit)
* Relevance of Containers/Collections

Functional Programming Concepts

— Fully general aggregates
* Wide use of tuples and records

e Data structures cannot be modified, have to be re-
created

— Structured function returns

* No side-effects, thus the only way for functions to
pass information to the caller

— Garbage collection

* |n case of static scoping, unlimited extent for:
— locally allocated data structures
— locally defined functions

* They cannot be allocated on the stack

The LISP family of languages

LISP (LISt Processor) was designed in 1958 by
John McCarty (Turing award in 1971) and
implemented in 1960 by Steve Russel

Only FORTRAN is older...
Main programming language for Al
It includes some features that are not necessary

present in other functional languages:

— Programs (S-expressions) are data (lists)
* (func argl arg2 .. argn)

— Self-definition
* A LISP interpreter can be written in few LISP lines
— Read-evaluate-print interactive loop

The LISP family of languages

e Variants of LISP
— (Original) LISP

e purely functional
* strong dynamic type checking
e dynamically scoped
— Common Lisp: current standard

e statically scoped
» very rich and complex

— Scheme:
* statically scoped
e essential syntax
* very elegant
e widely used for teaching

Other functional languages: the ML family

Robin Milner (Turing award in 1991, CCS, Pi-calculus, ...)
Statically typed, general-purpose programming language

— “Meta-Language” of the LCF theorem proving system
Type safe, with type inference and formal semantics
Compiled language, but intended for interactive use
Combination of Lisp and Algol-like features

— Expression-oriented

— Higher-order functions

— Garbage collection

— Abstract data types

— Module system

— Exceptions

Impure: it allows side-effects

Members of the family: Standard ML, Caml, OCaml, F*

Other functional languages: Haskell

Designed by committee in 80’s and 90’s to unify research efforts in
lazy languages

— Evolution of Miranda, name from Haskell Curry, logician (1900-82),

— Haskell 1.0 in 1990, Haskell ‘98, Haskell 2010 (= Haskell 2020)
Several features in common with ML, but some differ:
Types and type checking

— Type inference

— Implicit parametric polymorphism

— Ad hoc polymorphism (overloading)
Control

— Lazy evaluation

— Tail recursion and continuations

Purely functional

— Precise management of effects

Downloading Haskell

https://www.haskell.org/platform/

»WHaskell Downloads ~ Community Documentation News

H aSke“ A multi-OS distribution
P I a tfo r m designed to get you up and running quickly, making it easy to focus
on using Haskell. You get:

the Glasgow Haskell Compiler

the Cabal build system

the Stack tool for developing projects

support for profiling and code coverage analysis
35 core & widely-used packages

For playing With HaskeII Now Prior releases of the Platform are also available.
4

use an online interpreter like

repl.it

Haskell with batteries included

12

Core Haskell

* Basic Types
— Unit
— Booleans
— Integers
— Strings
— Reals
— Tuples
— Lists

— Records

Patterns
Declarations
Functions
Polymorphism
Type declarations
Type Classes
Monads
Exceptions

Overview of Haskell

* Interactive Interpreter (ghci): read-eval-print
— ghci infers type before compiling or executing
— Type system does not allow casts or similar things!

e Examples

Prelude> 5==

False

Prelude> :set +t -- enables printing of types
Prelude> 'x'

lxl

it :: Char

Prelude> (5+3)-2

6

it :: Num a => a -- generic constrained type
-- "type class"

Prelude> :t (+) -- type of a function

(+) :: Num a => a -> a -> a

Overview by Type

e Booleans

if .. then ..

True, False ::

not :: Bool -

Bool

> Bool

and, or :: Foldable t => t Bool -> Bool

else ..

--conditional expression: types must match

* Characters & Strings

Tal TR/R'T T .1 0
aIbI’I

"Ron Weasley" ::

\t', '2', 'X' :: Char

[Char] --strings are lists of chars

15

Overview by Type

e Numbers

/

A

0,1,2,..::

div, mod ::

(Num a,

Num p => p --type classes, to disambiguate

Integer -- explicit typing

1.0, 3.1415 Fractional a => a

(45 Integer)

+, ; — :: Num a => a -> a -> a
-- infix + becomes prefix (+)

-- prefix binary op becomes infix “op°

Fractional a => a -> a -> a

Integral a => a -> a -> a

Integral b)

=> a -> b -> a

16

Simple Compound Types

* Tuples
("AP" ,2017) Num b => ([Char], b) -- pair
fst (a, b) -=> a -- selector: only for pairs
snd :: (a, b) -> b -- selector: only for pairs
('4', True, "AP") (Char, Bool, [Char]) -- tuple
* LIstS
[1 :: [a] -- NIL, polymorphic type
1 : [2, 3, 4] Num a => [a]-- infix cons notation

[1,2]++[3,4]

:: Num a => [a]

-—- concatenation

head :: [a] -> a -— first element
tail :: [a] -> [a] -- rest of the list
* Records

data Person =

hg = Person {

Person {firstName String,
lastName String}

firstName = "Hermione",

lastName = '"Granger"}

17

More on list constructors

ghci> [1..20] -—- range
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
ghci> ['a'..'z']

"abcdefghijklmnopgrstuvwxyz"

gheci> [3,6..20] -—- range with step
[3,6,9,12,15,18]

ghci> [7,6..1]

[7,6,5,4,3,2,1]

ghci> [1..] —-— an infinite list: runs forever
ghci> take 10 [1..] -- prefix of an infinite lists
[1,2,3,4,5,6,7,8,9,10] -—- returns!

ghci> take 10 (cycle [1,2])
[1,2,1,2,1,2,1,2,1,2]
ghci> take 10 (repeat 5)
[5,5,5,5,5,5,5,5,5,5]

How does it work??? Later...

18

Binding variables

e Variables (names) are bound to expressions,
without evaluating them (because of lazy
evaluation)

* The scope of the binding is the rest of the session
 Comparing OCaml and Haskell

HASKELL OCaml

Prelude> let a = 6 —- no output # let a =6 ;;

val a : int = 6
Prelude> b = a + 2 --'let' optional # let b = a + 2

val b : int = 8
Prelude> b -- now b is evaluated # b ;;
8 - : int = 8
Prelude> a = a + 1 -- no output # let a = a 1
Prelude> a -- what does it print? val a : int = 7
ACInterrupted. - loop broken

Patterns and Declarations

e Patterns can be used in place of variables
<pat>::= <var> | <tuple> | <cons> | <record> ...

 Value declarations
— General form: <pat> = <exp>

— Examples
myTuple = ("Foo", "Bar")
(x,y) = myTuple -- x = "Foo”, y = "Bar"
myList = [1, 2, 3, 4]
z:zs = mylList -- z =1, zs = [2,3,4]

— Local declarations

let (x,y) = (2, "FooBar'") in x * 4

Anonymous Functions (lambda abstraction)

 Anonymous functions

\x -> x+1 —--like LISP lambda, function (..) in JS
Prelude> (\x -> x+1)5 => 6

Prelude> f = \x -> x+1

Prelude> :t £

f :: Num a => a -> a

Prelude> £ 7 => 8

* Anonymous functions using patterns

Prelude> h = \(x,y) -> x+y

h :: Num a => (a, a) -> a
Prelude> h (3, 4) => 7
Prelude> h 3 4 => error

Prelude> k = \(z:zs) -> length zs
k :: [a] -> Int
Prelude> k "hello" => 4

Function declarations
Function declaration form

<name> <pat;> =<exp,>

<name> <pat,> =<exp,> ...

Examples

f (x,y) = xty --argument must match pattern (x,y)

length [] =0
length (x:s) = 1 + length(s)

Prelude> len (z:zs) = length zs

len :: [a] -> Int

Prelude> len [1,2,3] => 2

Prelude> len []

*** Exception: <interactive>:143:5-24: Non-
exhaustive patterns in function len

More Functions on Lists

e Reverse a list

reverse [] = [] -- quadratic
reverse (x:xs) = (reverse xs) ++ [x]
reverse Xxs = -- linear, tail recursive
let rev ([], accum) = accum
rev (y:ys, accum) = rev (ys, y:accum)
in rev (xs, [])

* Other (higher-order) functions later

23

