
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-07: JavaBeans

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Overview
• Kinds of components in Java
• JavaBeans: design and deployment

– Properties
• Property design pattern

– Events
• Connection-oriented programming
• Observer design pattern

– Serialization
– Jar
– Introspection (InfoBeans)

➔ Chapter 14, sections 14.1, 14.3 and 14.5 of Component Software:
Beyond Object-Oriented Programming. C. Szyperski, D. Gruntz, S.
Murer, Addison-Wesley, 2002.

➔ The JavaBeans API Specification, sections 1, 2, 6, 7 and 8.
https://www.oracle.com/technetwork/java/javase/
documentation/spec-136004.html

2

https://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

Components in Java SE
(Standard Edition): Java Beans

3

Other Java Distributions

• Java/Jakarta EE (Enterprise Edition)

– Suite of specifications for application servers

– Around 20 implementations available

– Reference implementation: Oracle Glassfish

• Java ME (Micro Edition)

– embedded and mobile devices, e.g. micro-
controllers, sensors, gateways, mobile phones,
personal digital assistants (PDAs), TV set-top
boxes, printers…

4

Client side
• JavaBeans
• Applets
• Application

Components
Web server tier
• Servlets
• JSPs
Application tier:
• Stateless session EJB
• Stateful session EJB
• Entity EJB
• Message-driven EJB

5

Components in Java EE
(Enterprise Edition)

6

Components in Java EE
(Enterprise Edition)

Client side
• JavaBeans
• Applets
• Application

Components
Web server tier
• Servlets
• JSPs
Application tier:
• Stateless session EJB
• Stateful session EJB
• Entity EJB
• Message-driven EJB

The JavaBeans API (1996)

Goal: to define a software component model for Java, allowing
vendors to create and ship Java components that can be
composed together into applications by end users.
Design goals:
• Granularity: from small (eg. a button in a GUI) to medium

(eg. a spreadsheet as part of al larger document)
– Similar to Microsoft's OLE Control or ActiveX APIs

• Portability: Ok in Java based application servers. Bridges
defined to other component models (like OpenDoc,
OLE/COM/ ActiveX)

• Uniformity and Simplicity: The API should be simple to be
supported on different platforms. Strong support for small
component, with reasonable defaults.

7

What are Java Beans?

“A Java Bean is a reusable software component that can be
manipulated visually in a builder tool.”

• Sample tools: builders for web pages, visual applications, GUI
layout, server applications. Also document editors.

• A bean typically has a GUI representation, but not necessarily
– Invisible beans

• Any Java class can be recognized as a bean in a tool provided
that
– It has a public default constructor (no arguments)

– It implements the interface java.io.Serializable

– It is in a jar file with manifest file containing
Java-Bean: True

8

(Really needed?)

JavaBeans as Software Components

• Beans are binary building blocks (class files)

• Development vs. deployment (customization)

• Beans can be assembled to build a new bean
or a new application, applet, … writing glue
code to wire beans together

• Client side beans vs. beans for business logic
process in MVC on server

• Beans on server are not visible

9

Sample Reusable Components

Button Beans Slider Bean

An application constructed from Beans

10

JavaBeans common features

• Support for properties, both for customization and for
programmatic use

• Support for events: simple communication metaphor that
can be used to connect several beans

• Support for customization: in the builder the user can
customize the appearance and behaviour of the bean

• Support for persistence: a bean can be customized in an
application builder and then have its customized state
saved away and reloaded later

• Support for introspection: a builder tool can analyze how
the bean works

Emphasis on GUI, but textual programming also possible using
the existing API

11

Design time vs. run-time

• A bean must be able to run in the design
environment of a builder tool providing means
to the user to customize aspect and behaviour

• At run-time there is less need for
customization

• Possible solution: design-time information for
customization is separated form run-time
information, and not loaded at run-time
– <BeanName>BeanInfo.java class

12

Simple Properties

• Discrete named attributes that can affect a
bean instance’s appearance or behaviour

• Property X (and its type) determined by public
setter (setX) and /or getter (getX) methods

• Can be changed at design time
(customization) or run-time (application logic)

• Example property: background

public java.awt.Color getBackground ();

public void setBackground (java.awt.Color color);

13

14

How can a builder identify the properties of a bean?

Introspection

• Process of analyzing a bean to determine the
capability

• Allows application builder tool to present info
about a component to software designers

• Implicit method: based on reflection, naming
conventions, and design patterns

• Alternative: <BeanName>BeanInfo class to
explicitly describe info about a bean for the
builder tool

15

Using the BeanInfo class

16

With the BeanInfo class you can:
• Expose only those features you want to expose.
• Rely on BeanInfo to expose some Bean features

while relying on low-level reflection to expose
others.

• Associate an icon with the target Bean.
• Specify a customizer class.
• Segregate features into normal and expert

categories.
• Provide a more descriptive display name, or

additional information about a Bean feature.

Design Pattern for Simple Properties

• From pair of methods:
public <PropertyType> get<PropertyName>();

public void set<PropertyName>(<PropertyType> a);

infer existence of property propertyName of type
PropertyType

• Example:
public java.awt.Color getBackground ();

public void setBackground (java.awt.Color color);

• If only the getter (setter) method is present then the
property is read-only (write-only)

17

Pattern for Indexed Properties

• If a property is an array, setter/getter methods
can take an index or the whole array

• From these methods, by introspection the
builder infers the existence of property
spectrum of type java.awt.Color[]

18

public java.awt.Color getSpectrum (int index);

public java.awt.Color[] getSpectrum ();

public void setSpectrum (int index, java.awt.Color color);

public void setSpectrum (java.awt.Color[] colors);

Bound and Constrained Property

• A bound property generates an event when
the property is changed

• A constrained property can only change value
if none of the registered observers "poses a
veto"

➔We discuss them after the event-based
communication mechanism

19

Connection-oriented programming

• Paradigm for gluing together components in a
builder tool

• Based on the Observer design pattern

• Adequate for GUIs

20

Pattern: Observer (Behavioral)
aka Publish-Subscribe

Name: Observer

Problem: Define a one-to-many dependency

among objects so that when one object

changes state, all of its dependents are

notified and updated automatically.

21

22

Events

• In Java the Observer pattern is based on
Events and Event Listeners

• An event is an object created by an event
source and propagated to the registered event
listeners

• Multicast semantics by default: several
possible listeners

• Unicast semantics (at most one listener) can
be enforced by tagging the event source.

23

Design Pattern for Events

Based on methods for (un)registering listeners. From
public void add<EventListType>(<EventListType> a)

public void remove<EventListType>(<EventListType> a)

infer that the object is source of an event; the name is
extracted from EventListType.

Example: from
public void addUserSleepsListener (UserSleepsListener l);

public void removeUserSleepsListener (UserSleepsListener l);

infers that the class generates a UserSleeps event

24

Unicast event sources

• Unicast sematics is assumed if the add
method is declared to throw
java.util.TooManyListenersException

• Example:
public void addJackListener(JackListener t)

throws java.util.TooManyListenersException;

public void removeJackListener(JackListener t);

defines a unicast event source for the
“JackListener” interface.

25

Event Adaptors

• Placed between the event source and a listener

• Is at the same time listener and source

• Examples of uses of adaptors:
– Implementing an event queuing mechanism between

sources and listeners.

– Acting as a filter.

– Demultiplexing multiple event sources onto a single
event listener.

– Acting as a generic “wiring manager” between
sources and listeners.

26

Event Adaptors: general architecture

27

JavaBeans Events

Sun Microsystems 32 7/25/02

listeners still on the current list. Other implementations may choose to make a copy of the event

target list when they start the event delivery and then deliver the event to that exact set.

Note that this means that an event listener may be removed from an event source and then still

receive subsequent event method calls from that source, because there were multicast events in

progress when it was removed.

6.7 Event Adaptors

Event adaptors are an extremely important part of the Java event model.

Particular applications or application builder tools may choose to use a standard set of event

adaptors to interpose between event sources and event listeners to provide additional policy on

event delivery .

6.7.1 Event Adaptor Overview

When additional behavior is required during event delivery, an intermediary “event adaptor”

class may be defined, and interposed between an event source and the real event listener.

EventSource Object

public synchronized

void addFooListener(FooListener fel);

FooEvent

EventAdaptor

FooEvent

class XyzListener implements FooListener {

 void fooHappened(FooEvent fe) {

void doIt(FooEvent fe) {
...
}

eListener

eDestination

 eDestination.doIt(fe);
}

Overview of Event Adaptor Model.

register Listener

fire
Event

forward
Event

reference to destination

interface
reference

Event adaptors example:
Demultiplexing multiple event sources

28

JavaBeans Events

Sun Microsystems 34 7/25/02

In the example (see the diagram and code below) a DialogBox object has two push buttons

“OK” and “Cancel”, both of which fire a buttonPushed(PBEvent) method. The DialogBox is

designed to invoke the methods, doOKAction() when the “OK” button fires, and doCancelAc-
tion() when the “Cancel” button fires.

The DialogBox defines two classes, OKButtonAdaptor and CancelButtonAdaptor that both im-

plement the PBListener interface but dispatch the incoming notification to their respective ac-

tion methods.

As a side effect of instantiation of the DialogBox, instances of the private adaptors are also cre-

ated and registered with the PushButton instances, resulting in the appropriate event flow and

mapping.

// Adaptor to map “Cancel Pressed” events onto doCancelAction()

class CancelAdaptor implements PushButtonExampleListener {

private Dialog dialog;

public CancelAdaptor(Dialog dest) {

dialog = dest;

}

public void buttonPushed(PushButtonExampleEvent pbe) {

dialog.doCancelAction();

}

}

OK Button

Cancel Button

buttonPushed(PBEvent pbe)

buttonPushed(PBEvent pbe)

buttonPushed(PBEvent pbe) {

 dialog.doOKAction();
 }

 buttonPushed(PBEvent pbe) {
 dialog.doCancelAction();
 }

Dialog BoxOKButtonAdaptor

doOKAction() {
 // ...
}

doCancelAction() {
 // ...
}

okButton.addPBListener(okButtonAdaptor)

cancelButton.addPBListener(cancelButtonAdaptor)

CancelButtonAdaptor

Back to Bound Properties

• Generate an event when the property is
changed

• The event is of type PropertyChangeEvent
and is sent to objects that previously
registered an interest in receiving such
notifications

• Bean with bound property: event source
• Bean implementing listener: event target
• Helper classes in the API to simplify

implementation

29

Implement Bound Property in a Bean

1. Import java.beans package

2. Instantiate a PropertyChangeSupport helper object
private PropertyChangeSupport changes =

new PropertyChangeSupport(this);

3. Implement methods to maintain the property change listener
list:

public void

addPropertyChangeListener(PropertyChangeListener l)

{ changes.addPropertyChangeListener(l);}

(also removePropertyChangeListener method is
needed)

30

Implement Bound Property in a Bean (cont.)

4. Modify a property’s setter method to fire a property change
event when the property is changed.

public void setX(int newX){

int oldx = x;

x = newX;

changes.firePropertyChange("x", oldX, newX);

}

31

Implement Bound Property Listener

1. Listener bean must implement the interface
PropertyChangeListner

public class MyLstnr implements
PropertyChangeListener, Serializable

2. It must override the method

public abstract void
propertyChange(PropertyChangeevent evt)

3. Sample registration:
Button button = new OurButton();
MyLstnr lis = new MyLstnr();
button.addPropertyChangeListener(lis);

32

Constrained Property

• It generates an event when an attempt is made to change its
value

• The event type is PropertyChangeEvent

• The event is sent to objects that previously registered an
interest in receiving such notification

• Those other objects have the ability to veto the proposed
change by raising an exception

• This allows a bean to operate differently according to the
runtime environment

33

Three Parts in Implementation of
Constrained Property

1. Source bean containing one or more constrained
properties

2. Listener objects that implement the
VetoableChangeListener interface. These
objects either accept or reject the proposed change.
The change is rejected by raising a
PropertyVetoException

3. PropertyChangeEvent object containing property
name, old value, new value.

34

Implement Constrained Property in a Bean

The bean containing the constrained property must:

1. Import the java.beans package

2. Instantiate a VetoableChangeSupport object:
private VetoableChangeSupport vetos =

new VetoableChangeSupport(this);

3. Implement methods to maintain the listener list:
public void

addVetoableChangelistener(VetoableChangelistener l)

{ vetos.addVetoableChangeListener(l);}

4. and similarly for removeVetoableChangelistener

35

Implement Constrained Property in a Bean (cont.)

5. Write a property’s setter method to fire a property change
event:

public void setX(int newX)

{ int oldX = X;

try{

vetos.fireVetoableChange(“X”, oldX, newX);

// if no veto there

X = newX;

// add here code to notify change, if needed

} catch(PropertyVetoException e){

// code to be executed if

// change is rejected by somebody

}

}

36

Implementing Constrained Property Listeners

1. Implements the VetoableChangeListener interface
which has an abstract method
void vetoChange(PropertyChangeEvent evt)

2. Override this abstract method. This is the method that will
be called by the source bean on each object in the listener
list kept by the vetoableChangeSupport object

3. If the listener wants to forbid the change described in evt, it
should raise a PropertyVetoException. Otherwise simply
return.

37

Summary

• JavaBean is a platform-neutral component
architecture for reusable software component

• It is a black box component to be used to build
large component or application

• Property, method, event, introspector,
customizer are parts of the JavaBean API

38

