
301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

AP-04: Runtime Systems and intro to JVM

mailto:andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

Overview

• Runtime Systems
• The Java Runtime Environment
• The JVM as an abstract machine
• JVM Data Types
• JVM Runtime Data Areas
• Multithreading
• Per-thread Data Areas
• Dynamic Linking
• JIT compilation
• Method Area

2

Runtime system

• Every programming language defines an
execution model

• A runtime system implements (part of) such
execution model, providing support during the
execution of corresponding programs

• Runtime support is needed both by
interpreted and by compiled programs, even if
typically less by the latter

3

Runtime system (2)

• The runtime system can be made of

– Code in the executing program generated by the
compiler

– Code running in other threads/processes during
program execution

– Language libraries

– Operating systems functionalities

– The interpreter / virtual machine itself

4

Runtime Support needed for…

• Memory management
– Stack management: Push/pop of activation records

– Heap management: allocation, garbage collection

➔ Chapter 7 of "Dragon Book"

• Input/Output
– Interface to file system / network sockets / I/O devices

• Interaction with the runtime environment,
– state values accessible during execution (eg.

environment variables)

– active entities like disk drivers and people via
keyboards.

5

Runtime Support needed for… (2)

• Parallel execution via threads/tasks/processes

• Dynamic type checking and dynamic binding

• Dynamic loading and linking of modules

• Debugging

• Code generation (for JIT compilation) and
Optimization

• Verification and monitoring

6

Java Runtime Enviroment - JRE

• Includes all what is needed to run compiled Java
programs
– JVM – Java Virtual Machine
– JCL – Java Class Library (Java API)

• We shall focus on the JVM as a real runtime
system covering most of the functionalities just
listed

• Reference documentation:
– The JavaTM Virtual Machine Specification
– The Java Language Specification
– https://docs.oracle.com/javase/specs/index.html

7

https://docs.oracle.com/javase/specs/index.html

What is the JVM?

• The JVM is an abstract machine in the true sense of the word.

• The JVM specification does not give implementation details
like memory layout of run-time data area, garbage-collection
algorithm, internal optimization (can be dependent on target
OS/platform, performance requirements, etc.)

• The JVM specification defines a machine independent “class
file format” that all JVM implementations must support

• The JVM imposes strong syntactic and structural constraints
on the code in a class file. Any language with functionality
that can be expressed in terms of a valid class file can be
hosted by the JVM

10

Execution model

• JVM is a multi-threaded stack based machine
• JVM instructions

• implicitly take arguments from the top of the operand
stack of the current frame

• put their result on the top of the operand stack

• The operand stack is used to
• pass arguments to methods
• return a result from a method
• store intermediate results while evaluating

expressions
• store local variables

11

Java Abstact Machine Hierarchy

12

Class Files and Class File Format

.class files

JVM

load

External representation
(platform independent)

Internal representation
(implementation dependent)

objects

classes

methods

arrays
strings

primitive types

13

JVM Data Types

Primitive types:
• numeric integral: byte, short, int, long, char
• numeric floating point: float, double
• boolean: boolean (support only for arrays)
• internal, for exception handling: returnAddress

Reference types:
• class types
• array types
• interface types

Note:
• No type information on local variables at runtime
• Types of operands specified by opcodes (eg: iadd, fadd, ….)

14

Object Representation

• Left to the implementation

– Including concrete value of null

• Extra level of indirection

– need pointers to instance data and class data

– make garbage collection easier

• Object representation must include

– mutex lock

– GC state (flags)

15

JVM Runtime Data Areas

16

Per Thread Area

Shared among Threads

16

Threads

• JVM allows multiple threads per application,
starting with main

• Created as instances of Thread invoking
start() (which invokes run())

• Several background (daemon) system threads for
– Garbage collection, finalization
– Signal dispatching
– Compilation, etc.

• Threads can be supported by time-slicing and/or
multiple processors

17

Threads (2)

• Threads have shared access to heap and
persistent memory

• Complex specification of consistency model
– volatiles

– working memory vs. general store

– non-atomic longs and doubles

• The Java programming language memory
model prescribes the behaviour of
multithreaded programs (JLS Ch. 17)

18

Java Thread Life Cycle

19

Per Thread Data Areas

• pc: pointer to next instruction in method area

– undefined if current method is native

• The java stack: a stack of frames (or activation records).
– A new frame is created each time a method is invoked and it is

destroyed when the method completes.

– The JVMS does not require that frames are allocated contiguously

• The native stack: is used for invocation of native functions,
through the JNI (Java Native Interface)
– When a native function is invoked, eg. a C function, execution

continues using the native stack

– Native functions can call back Java methods, which use the Java stack

20

Structure of frames

• Local Variable Array (32 bits) containing

– Reference to this (if instance method)

– Method parameters

– Local variables

• Operand Stack to support evaluation of
expressions and evalutation of the method

– Most JVM bytecodes manipulate the stack

• Reference to Constant Pool of current class

21

Dynamic Linking (1)

• The reference to the constant pool for the current class
helps to support dynamic linking.

• In C/C++ typically multiple object files are linked together
to produce an executable or dll.
– During the linking phase symbolic references are replaced with

an actual memory address relative to the final executable.

• In Java this linking phase is done dynamically at runtime.

• When a Java class is compiled, all references to variables
and methods are stored in the class's constant pool as
symbolic references.

22

Dynamic Linking (2)

• The JVM implementation can choose when to resolve symbolic
references.
– Eager or static resolution: when the class file is verified after being

loaded
– Lazy or late resolution: when the symbolic reference is used for the

first time

• The JVM has to behave as if the resolution occurred when each
reference is first used and throw any resolution errors at this point.

• Binding is the process of the entity (field, method or class)
identified by the symbolic reference being replaced by a direct
reference

• This only happens once because the symbolic reference is
completely replaced in the constant pool

• If the symbolic reference refers to a class that has not yet been
resolved then this class will be loaded.

23

• Memory for objects
and arrays; unlike C/C++ they are never allocated
to stack

• Explicit deallocation not supported. Only by
garbage collection.

• The HotSpot JVM includes four Generational
Garbage Collection Algorithms

• Since Oracle JDK 11: Z Garbage Collector

24

Data Areas Shared
by Threads: Heap

• Memory for objects which are never
deallocated, needed for the JVM execution

– Method area

– Interned strings

– Code cache for JIT

25

Data Areas Shared
by Threads: Non-Heap

JIT (Just In Time) compilation

• The Hotspot JVM (and other JVMs) profiles
the code during interpretation, looking for
“hot” areas of byte code that are executed
regularly

• These parts are compiled to native code.

• Such code is then stored in the code cache in
non-heap memory.

26

Method area

The memory where class files are loaded. For each class:

• Classloader Reference

• From the class file:
– Run Time Constant Pool

– Field data

– Method data

– Method code

Note: Method area is shared among thread. Access to it has to be
thread safe.

Changes of method area when:

• A new class is loaded

• A symbolic link is resolved by dynamic linking

27

Class file structure

ClassFile {
u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info contant_pool[constant_pool_count–1];
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 methods_count;
method_info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attributes_count];

}

28

Constant Pool

0xCAFEBABE

Java Language Version

Static and Instance Variables

Methods

Other Info on the Class

References to Class and Superclass

References to Direct Interfaces

access modifiers and other info

Field data in the Method Area

Per field:

• Name

• Type

• Modifiers

• Attributes

29

FieldType descriptors

30

THE CLASS FILE FORMAT Descriptors 4.3

77

Table 4.3-A. Interpretation of field descriptors

FieldType term Type Interpretation

B byte signed byte

C char Unicode character code point in the Basic

Multilingual Plane, encoded with UTF-16

D double double-precision floating-point value

F float single-precision floating-point value

I int integer

J long long integer

L ClassName ; reference an instance of class ClassName

S short signed short

Z boolean true or false

[reference one array dimension

The field descriptor of an instance variable of type int is simply I.

The field descriptor of an instance variable of type Object is Ljava/lang/Object; . Note
that the internal form of the binary name for class Object is used.

The field descriptor of an instance variable of the multidimensional array type double[]
[][] is [[[D.

4.3.3 Method Descriptors

A method descriptor contains zero or more parameter descriptors, representing the

types of parameters that the method takes, and a return descriptor , representing the

type of the value (if any) that the method returns.

MethodDescriptor:

({ParameterDescriptor}) ReturnDescriptor

ParameterDescriptor:

FieldType

ReturnDescriptor:

FieldType

VoidDescriptor

Method data

Per method:
• Name
• Return Type
• Parameter Types (in order)
• Modifiers
• Attributes
• Method code…
A method descriptor contains
• a sequence of zero or more parameter descriptors in brackets
• a return descriptor or V for void descriptor
Example: The descriptor of

Object m(int i, double d, Thread t) {...}

is:
(IDLjava/lang/Thread;)Ljava/lang/Object;

31

Method code

Per method:
• Bytecodes
• Operand stack size
• Local variable size
• Local variable table
• Exception table
• LineNumberTable – which line of source code corresponds to

which byte code instruction (for debugger)
Per exception handler (one for each try/catch/finally clause)
• Start point
• End point
• PC offset for handler code
• Constant pool index for exception class being caught

32

Disassembling Java files:
javac, javap, java

package org.jvminternals;

public class SimpleClass {

public void sayHello() {

System.out.println("Hello");

}

}

Compiler
javac SimpleClass.java

SimpleClass.java

Disassembler
javap –c -v SimpleClass.class

JVM
java SimpleClass

SimpleClass.class

33

34

{

public org.jvminternals.SimpleClass();

descriptor: ()V

flags: ACC_PUBLIC

Code:

stack=1, locals=1, args_size=1

0: aload_0

1: invokespecial #1 // Method java/lang/Object."<init>":()V

4: return

LineNumberTable:

line 2: 0

public void sayHello();

descriptor: ()V

flags: ACC_PUBLIC

Code:

stack=2, locals=1, args_size=1

0: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;

3: ldc #3 // String Hello

5: invokevirtual #4 // Method

java/io/PrintStream.println:(Ljava/lang/String;)V

8: return

LineNumberTable:

line 4: 0

line 5: 8

}

SourceFile: "SimpleClass.java”

SimpleClass.class: constructor and method

package org.jvminternals;

public class SimpleClass {

public void sayHello() {

System.out.println("Hello");

}}

Method descriptors

Field descriptor
String literal

Index into constant pool

Local variable 0 =“this”

The constant pool

• Similar to symbol table, but with more info
• Contains constants and symbolic references used for

dynamic binding, suitably tagged
– numeric literals (Integer, Float, Long, Double)
– string literals (Utf8)
– class references (Class)
– field references (Fieldref)
– method references (Mehodref, InterfaceMethodref,

MethodHandle)
– signatures (NameAndType)

• Operands in bytecodes often are indexes in the
constant pool

35

36

Compiled from "SimpleClass.java"

public class SimpleClass

minor version: 0

major version: 52

flags: ACC_PUBLIC, ACC_SUPER

Constant pool:

#1 = Methodref #6.#14 // java/lang/Object."<init>":()V

#2 = Fieldref #15.#16 // java/lang/System.out:Ljava/io/PrintStream;

#3 = String #17 // Hello

#4 = Methodref #18.#19 //

java/io/PrintStream.println:(Ljava/lang/String;)V

#5 = Class #20 // SimpleClass

#6 = Class #21 // java/lang/Object

#7 = Utf8 <init>

#8 = Utf8 ()V

#9 = Utf8 Code

#10 = Utf8 LineNumberTable

#11 = Utf8 sayHello

#12 = Utf8 SourceFile

#13 = Utf8 SimpleClass.java

#14 = NameAndType #7:#8 // "<init>":()V

#15 = Class #22 // java/lang/System

#16 = NameAndType #23:#24 // out:Ljava/io/PrintStream;

#17 = Utf8 Hello

#18 = Class #25 // java/io/PrintStream

#19 = NameAndType #26:#27 // println:(Ljava/lang/String;)V

#20 = Utf8 SimpleClass

#21 = Utf8 java/lang/Object

#22 = Utf8 java/lang/System

#23 = Utf8 out

#24 = Utf8 Ljava/io/PrintStream;

#25 = Utf8 java/io/PrintStream

#26 = Utf8 println

#27 = Utf8 (Ljava/lang/String;)V

SimpleClass.class: the Constant pool
public class SimpleClass {

public void sayHello() {

System.out.println("Hello");

}}

public void sayHello();

descriptor: ()V

Code:

stack=2, locals=1, args_size=1

0: getstatic #2

3: ldc #3

5: invokevirtual #4

8: return

37

public void sayHello();

descriptor: ()V

Code:

stack=2, locals=1, args_size=1

0: getstatic #2

3: ldc #3

5: invokevirtual #4

8: return

Loading, Linking, and Initializing

• Loading: finding the binary representation of a
class or interface type with a given name and
creating a class or interface from it

• Linking: taking a class or interface and
combining it into the run-time state of the
Java Virtual Machine so that it can be
executed

• Initialization: executing the class or interface
initialization method <clinit>

38

JVM Startup

• The JVM starts up by loading an initial class
using the bootstrap classloader

• The class is linked and initialized

• public static void main(String[]) is
invoked.

• This will trigger loading, linking and
initialization of additional classes and
interfaces…

39

Loading

• Class or Interface C creation is triggered
– by other class or interface referencing C
– by certain methods (eg. reflection)

• Array classes are generated by the JVM
• Check whether already loaded
• If not, invoke the appropriate loader.loadClass
• Each class is tagged with the initiating loader
• Loading constraints are checked during loading

– to ensure that the same name denotes the same type
in different loaders

40

Class Loader Hierarchy

• Bootstrap Classloader loads basic Java APIs, including for example
rt.jar. It may skip much of the validation that gets done for normal
classes.

• Extension Classloader loads classes from standard Java extension APIs
such as security extension functions.

• System Classloader is the default application classloader, which loads
application classes from the classpath

• User Defined Classloaders can be used to load application classes:
– for runtime reloading of classes
– for loading from different sources, eg. from network, from an encrypted file,

or also generated on the fly
– for supporting separation between different groups of loaded classes as

required by web servers

• Class loader hooks: findClass (builds a byte array), defineClass
(turns an array of bytes into a class object), resolveClass (links a
class)

41

Runtime Constant Pool

• The constant_pool table in the .class file is
used to construct the run-time constant pool
upon class or interface creation.

• All references in the run-time constant pool are
initially symbolic.

• Symbolic references are derived from
the.class file in the expected way

• Class names are those returned by
Class.getName()

• Field and method references are made of name,
descriptor and class name

42

Linking

• Link = verification, preparation, resolution

• Verification: see below

• Preparation: allocation of storage (method
tables)

• Resolution (optional): resolve symbol
references by loading referred
classes/interfaces
– Otherwise postponed till first use by an

instruction

43

Verification

• When?
– Mainly during the load and link process

• Why?
– No guarantee that the class file was generated by a Java compiler

– Enhance runtime performance

• Examples
– There are no operand stack overflows or underflows.

– All local variable uses and stores are valid.

– The arguments to all the JVM instructions are of valid types.

• Relevant part of the JVM specification: described in
~170 pages of the JVMS (total: ~600 pages)

44

Verification Process

• Pass 1 – when the class file is loaded

– The file is properly formatted, and all its data is
recognized by the JVM

• Pass 2 – when the class file is linked

– All checks that do not involve instructions

• final classes are not subclassed, final methods
are not overridden.

• Every class (except Object) has a superclass.

• All field references and method references in the
constant pool have valid names, valid classes, and a
valid type descriptor. 45

Verification Process – cont.
• Pass 3 – still during linking

– Data-flow analysis on each method.
– Ensure that at any given point in the program, no

matter what code path is taken to reach that point:
• The operand stack is always the same size and contains the

same types of objects.
• No local variable is accessed unless it is known to contain a

value of an appropriate type.
• Methods are invoked with the appropriate arguments.
• Fields are assigned only using values of appropriate types.
• All opcodes have appropriate type arguments on the

operand stack and in the local variables
• A method must not throw more exceptions than it admits
• A method must end with a return value or throw instruction
• Method must not use one half of a two word value

46

Verification Process – cont.

• Pass 4 - the first time a method is actually invoked
– a virtual pass whose checking is done by JVM

instructions
• The referenced method or field exists in the given class.
• The currently executing method has access to the

referenced method or field.

47

Initialization

• <clinit> initialization method is invoked on classes
and interfaces to initialize class variables

• happens on direct use: method invocation,
construction, field access

• static initializers are executed
• direct superclass need to be initialized prior
• synchronized initializations: state in Class object
• <init>: initialization method for instances

– invokespecial instruction
– can be invoked only on uninitialized instances

48

Initialization example (1)

class Super {

static { System.out.print("Super ");}

}

class One {

static { System.out.print("One ");}

}

class Two extends Super {

static { System.out.print("Two ");}

}

class Test {

public static void main(String[] args) {

One o = null;

Two t = new Two();

System.out.println((Object)o == (Object)t);

}

}

What does java Test print?
49Super Two False

Initialization example (2)

class Super { static int taxi = 1729;}

}

class Sub extends Super {

static { System.out.print("Sub ");}

}

class Test {

public static void main(String[] args) {

System.out.println(Sub.taxi);

}}

What does java Test print?

A reference to a static field (§8.3.1.1) causes initialization of only
the class or interface that actually declares it, even though it might
be referred to through the name of a subclass, a subinterface, or a
class that implements an interface. (page 385 of [JLS-8])

50

Only prints "1729"

Finalization: method finalize()

• Invoked just before garbage collection

• JLS does not specify when it is invoked

• Also does not specify which thread

• No automatic invocation of super’s finalizers

• Very tricky!

• Each object can be
– Reachable, finalizer-reachable, unreachable

– Unfinalized, finalizable, finalized

void finalize() {

classVariable = this; // the object is reachable again

}

51

Finalization State Diagram
https://notendur.hi.is/snorri/SDK-docs/lang/lang083.htm

finalize() is never called a second time on the same object, but
it can be invoked as any other method!

52

JVM Exit

• classFinalize similar to object finalization

• A class can be unloaded when
– no instances exist

– class object is unreachable

• JVM exits when:
– all its non-daemon threads terminate

– Runtime.exit or System.exit assuming it is
secure

• finalizers can be optionally invoked on all objects
just before exit

53

Resources

• JVMS Chapter 2 - The Structure of the Java
Virtual Machine

• JVM Internals, by James D. Bloom
http://blog.jamesdbloom.com/JVMInternals.h
tml

• JLS Chapter 17 – Memory model

54

http://blog.jamesdbloom.com/JVMInternals.html

