
1

Assignment 2: Haskell and the Java Stream API
 Version 1.1 - December 29, 2022

This assignment is made of two parts, consisting of exercises on Haskell, and on the Java Stream

API, respectively. It is distributed with an archive aux_files.zip containing some auxiliary

files.

This document is subject to changes. Check on the course web page that you are now reading the

most recent version.

Premise: the “ciao” of a string

This definition will be used in some of the exercises below. Given a string str, we define its ciao

(characters in alphabetical order) as the string having the same length of str and containing all

the characters of str in lower case and alphabetical order. As an example, the ciao of “Hello” is

“ehllo”. A ciao string is a string that is equal to its ciao. Clearly, two strings have the same ciao if

and only if each one is an anagram of the other.

Part 1: Multisets in Haskell

This assignment requires you to implement a type constructor providing the functionalities of

multisets (also known as bags), that is, collections of elements where the order does not count, but

each element can occur several times. Your implementation must be based on the following

concrete Haskell definition of the MSet type constructor:

 data MSet a = MS [(a, Int)]

 deriving (Show)

Therefore an MSet contains a list of pairs whose first component is an element of the multiset, and

the second component is its multiplicity, that is the number of occurrences of such element in the

multiset. An MSet is well-formed if for each of its pairs (v,n) it holds n > 0, and if it does not

contain two pairs (v,n) and (v',n') such that v = v'.

Exercise 1: Constructors and operations

The goal of this exercise is to write an implementation of multisets represented concretely as

elements of the type constructor MSet.

• Implement the following constructors:

o empty, that returns an empty MSet

• Implement the following operations:

o add mset v, returning a multiset obtained by adding the element v to mset.

Clearly, if v is already present its multiplicity has to be increased by one, otherwise

it has to be inserted with multilplicity 1.

o occs mset v, returning the number of occurrences of v in mset (an Int).

o elems mset, returning a list containing all the elements of mset.

o subeq mset1 mset2, returning True if each element of mset1 is also an

element of mset2 with the same multiplicity at least.

2

o union mset1 mset2, returning an MSet having all the elements of mset1 and

of mset2, each with the sum of the corresponding multiplicites.

• Class Constructor Instances

o Define MSet to be an instance of the class constructor Eq, implementing equality as

follows: two multisets are equal if they contain the same elements with the same

multiplicity, regardless of the order.

o Define MSet to be an instance of the constructor class Foldable. To this aim,

choose a minimal set of functions to be implemented, as described in the

documentation of Foldable. Intuitively, folding a multiset with a binary function

should apply the function to the elements of the multiset, ignoring the multiplicities.

o Define a function mapMSet that takes a function f :: a -> b and an MSet of

type a as arguments, and returns the MSet of type b obtained by applying f to all

the elements of its second argument. Explain (in a comment in the same file) why it

is not possible to define an instance of Functor for MSet by providing mapMSet

as the implementation of fmap.

Important: All the operations of the present exercise that return an MSet must ensure that the

result is well-formed, as defined above. Your code should not use the Haskell module Data.MultiSet

or other similar modules, but it can use the functions of the Prelude.

Solution format: A Haskell source file called MultiSet.hs containing a Module (see Section

"Making our own modules") called MultiSet, defining the data type MSet (copy it from above)

and at least all the functions described above. The module can include other functions as well, if

convenient.

Note: The file has to be adequately commented, and each function definition must be preceded by

its type, as inferred by the Haskell compiler.

Exercise 2: Testing multisets

The goal of the exercise is testing the implemented functionalities. In a file named TestMSet.hs,

import MultiSet.hs and

1. Define a function readMSet that reads a text file whose name is passed as argument (as a

string), and returns a new MSet containing the ciao of all the words of the file, each with

the corresponding mutiplicity.

2. Define a function writeMSet that given a multiset and a file name, writes in the file, one

per line, each element of the multiset with its multiplicity in the format “<elem> -

<multiplicity>”.

3. Define a function main :: IO() which does the following:

a. Using readMSet, from directory aux_files it loads files anagram.txt,

anagram_s1.txt, anagram_s2.txt and margana2.txt in

corresponding multisets, that we call m1, m2, m3 and m4 respectively;

b. Exploiting also the functions imported from MultiSet.hs, it checks the

following facts and prints a corresponding comment:

i. Multisets m1 and m4 are not equal, but they have the same elements;

ii. Multiset m1 is equal to the union of multisets m2 and m3;

https://hackage.haskell.org/package/base-4.17.0.0/docs/Prelude.html#t:Foldable
https://hackage.haskell.org/package/Prelude-0.1.0.1/docs/Prelude.html
http://learnyouahaskell.com/modules
http://learnyouahaskell.com/modules

3

c. Finally, using writeMSet it writes multisets m1 and m4 to files anag-out.txt

and gana-out.txt, respectively.

For reading and writing files you can use the functions readFile and writeFile of the Haskell

Prelude (https://hackage.haskell.org/package/base-4.16.0.0/docs/Prelude.html).

Solution format: A Haskell source file TestMSet.hs with the functions described above, which

can be executed using runghc

(see https://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/runghc.html)

Note: The file has to be adequately commented, and each function definition has to be preceded by

its type, as inferred by the Haskell compiler.

Part 2: A job scheduler exploiting the Java Stream API

In this assignment, students are required to implement a simple software framework providing the

functionalities of a job scheduler, but ignoring the aspects of parallelism and distribution. More

precisely, the framework includes an emitter of jobs, a compute phase executing the jobs, a collect

stage grouping them, and an output action printing the results in a suitable format. As a proof of

concept, a simple working instance of the framework should be implemented as well.

Exercise 3: The framework

Following the guidelines presented in the lesson of November 16 2021, On Designing Software

Frameworks, (see http://pages.di.unipi.it/corradini/Didattica/AP-22/index.html#framework), and

more specifically the Template Method design pattern, implement in Java a JobScheduler

software framework, respecting the following specifications:

1. The framework must be generic, using type variables K and V for the types of keys and

values respectively.

2. For key/value pairs, the framework must use the class Pair.java from

aux_files.zip (you can change its package, but nothing else).

3. Jobs will be instances of (subclasses) of the abstract class AJob.java, also enclosed,

containing the abstract method execute with no parameter and returning a stream of

key/value pairs.

4. The framework must include the following methods, conceptually composed as in the

picture:

◦ emit, which generates a stream of jobs;

◦ compute, which executes the jobs received from emit by invoking execute on

them, and returns a single stream of key/value pairs obtained by concatenating the

output of the jobs;

◦ collect, which takes as input the output of compute and groups all the pairs with

the same keys in a single pair, having the same key and the list of all values;

emit compute collect output

Stream<AJob<K,V>> Stream<Pair<K,List<V>>>

Stream<Pair<K,V>>

https://hackage.haskell.org/package/base-4.16.0.0/docs/Prelude.html)
https://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/runghc.html
http://pages.di.unipi.it/corradini/Didattica/AP-22/index.html#framework

4

◦ output, which prints the result of collect in a convenient way.

5. Methods compute, collect and main must be frozen spots of the framework, while

emit and output must be hot spots.

Exercise 4: Counting anagrams

Write a program that given the absolute path of a directory prints the number of anagrams of all the

words contained in a set of documents in that directory. The program must be an instance of the

framework of the previous point. You should ignore all words of less than four characters, and

those containing non-alphabetic characters. Also, uppercase and lowercase letters should not be

distinguished.

Here are some guidelines:

1. Create a subclass of AJob having a constructor that accepts the name of a file as parameter;

the execute method must read the file, and it must return a stream containing all pairs of

the form (ciao(w), w) where w is a word of the file satisfying the above properties.

2. Emit asks the user for the absolute path of a directory where documents are stored. It visits

the directory and creates a new job for each file ending with .txt in that directory.

3. Output should write the list of ciao keys and the number of words associated with each key,

one per line, in file count_anagrams.txt, in the format “<ciao_key> - <num>”).

For testing the program, you can use the files of the enclosed archive Books.zip which contains

parts of some famous books as downloaded from the pages of the Gutenberg Project.

Solution format: An archive JobScheduler.zip containing the Java files implementing

Exercises 3 and 4, suitably commented. If you use NetBeans, please send in the archive the entire

project.

https://www.gutenberg.org/

