
JVM & tools

Exercise 1

Write a simple Java program JustCreate that in a very long loop creates at each iteration

one object, discarding immediately any reference to it. Every 1000 iterations the program

must print the number of objects created since the beginning, and must pause for one

second (use e.g. Thread.sleep()).

Inspect the program execution with VisualVM.

Goal: Monitoring the heap occupation in VisualVM.

Exercise 2

As we have seen recently, the JVM has two instructions that can be used to compile

a switch statement: tableswitch and lookupswitch. Taking inspiration from the

examples seen at lesson, try to determine when your Java compiler

uses tableswitch and when it uses lookupswitch.

Does this depend only on the distance between the smallest and the largest constants in

the case clauses? Are other criteria considered as well?

Use javap -c -v ClassName.class to disassemble the compiled bytecode.

Goal: Reading disassembled bytecode to infer the compilation scheme for simple but non-

trivial high level control structures,

Exercise 3

Run the program WrongQueue and inspect its behaviour using visualvm. Can you

explain the continuos growth of the heap? Find the code causing the bug and fix it.

Goal: Using VisualVM to inspect the memory consumed by a Java program; Reviewing

Java code to detect non-trivial errors; Fixing bugs

Exercise 4

During the last lesson, the lecturer claimed that when compiling a switch based on a

String value, the Java compiler uses a hashing function for strings. Also, if the hash value

coincides with the hash of a string of a case clause, an additional comparison between the

two string is performed.

Using javap, disassemble the compiled code to see if the lecturer is right. Also, search in

the Java or JVM Specification the precise place where this compilation scheme is

prescribed.

Goal: Reading disassembled bytecode; cheking the Java/JVM specification.

Exercise 5

Run and inspect the program GCstrange using VisualVM, in particular check the

evolution of the heap, the activity of the GC and the activity of the Finalizer thread.

Using GCstrange as a template, write a simple class that overrides the method finalize

in order to estimate how many times the garbage collector is invoked. Write a main to test

this class.

Goal: Understanding the finalization of objects in Java; exploiting the finalize method to

infer simple properties of garbage collection.

